Search results for: Credit Card Fraud Detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4073

Search results for: Credit Card Fraud Detection

3713 Detection of Epinephrine in Chicken Serum at Iron Oxide Screen Print Modified Electrode

Authors: Oluwole Opeyemi Dina, Saheed E. Elugoke, Peter Olutope Fayemi, Omolola E. Fayemi

Abstract:

This study presents the detection of epinephrine (EP) at Fe₃O₄ modified screen printed silver electrode (SPSE). The iron oxide (Fe₃O₄) nanoparticles were characterized with UV-visible spectroscopy, Fourier-Transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM) prior to the modification of the SPSE. The EP oxidation peak current (Iap) increased with an increase in the concentration of EP as well as the scan rate (from 25 - 400 mVs⁻¹). Using cyclic voltammetry (CV), the relationship between Iap and EP concentration was linear over a range of 3.8 -118.9 µM and 118.9-175 µM with a detection limit of 41.99 µM and 83.16 µM, respectively. Selective detection of EP in the presence of ascorbic acid was also achieved at this electrode.

Keywords: screenprint electrode, iron oxide nanoparticle, epinephrine, serum, cyclic voltametry

Procedia PDF Downloads 163
3712 Same-Day Detection Method of Salmonella Spp., Shigella Spp. and Listeria Monocytogenes with Fluorescence-Based Triplex Real-Time PCR

Authors: Ergun Sakalar, Kubra Bilgic

Abstract:

Faster detection and characterization of pathogens are the basis of the evoid from foodborne pathogens. Salmonella spp., Shigella spp. and Listeria monocytogenes are common foodborne bacteria that are among the most life-threatining. It is important to rapid and accurate detection of these pathogens to prevent food poisoning and outbreaks or to manage food chains. The present work promise to develop a sensitive, species specific and reliable PCR based detection system for simultaneous detection of Salmonella spp., Shigella spp. and Listeria monocytogenes. For this purpose, three genes were picked out, ompC for Salmonella spp., ipaH for Shigella spp. and hlyA for L. monocytogenes. After short pre-enrichment of milk was passed through a vacuum filter and bacterial DNA was exracted using commercially available kit GIDAGEN®(Turkey, İstanbul). Detection of amplicons was verified by examination of the melting temperature (Tm) that are 72° C, 78° C, 82° C for Salmonella spp., Shigella spp. and L. monocytogenes, respectively. The method specificity was checked against a group of bacteria strains, and also carried out sensitivity test resulting in under 10² CFU mL⁻¹ of milk for each bacteria strain. Our results show that the flourescence based triplex qPCR method can be used routinely to detect Salmonella spp., Shigella spp. and L. monocytogenes during the milk processing procedures in order to reduce cost, time of analysis and the risk of foodborne disease outbreaks.

Keywords: evagreen, food-born bacteria, pathogen detection, real-time pcr

Procedia PDF Downloads 242
3711 Latency-Based Motion Detection in Spiking Neural Networks

Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang

Abstract:

Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.

Keywords: neural network, motion detection, signature detection, convolutional neural network

Procedia PDF Downloads 85
3710 Inverter IGBT Open–Circuit Fault Detection Using Park's Vectors Enhanced by Polar Coordinates

Authors: Bendiabdellah Azzeddine, Cherif Bilal Djamal Eddine

Abstract:

The three-phase power converter voltage structure is widely used in many power applications but its failure can lead to partial or total loss of control of the phase currents and can cause serious system malfunctions or even a complete system shutdown. To ensure continuity of service in all circumstances, effective and rapid techniques of detection and location of inverter fault is to be implemented. The present paper is dedicated to open-circuit fault detection in a three-phase two-level inverter fed induction motor. For detection purpose, the proposed contribution addresses the Park’s current vectors associated to a polar coordinates calculation tool to compute the exact value of the fault angle corresponding directly to the faulty IGBT switch. The merit of the proposed contribution is illustrated by experimental results.

Keywords: diagnosis, detection, Park’s vectors, polar coordinates, open-circuit fault, inverter, IGBT switch

Procedia PDF Downloads 400
3709 Comparative Analysis of Edge Detection Techniques for Extracting Characters

Authors: Rana Gill, Chandandeep Kaur

Abstract:

Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts.

Keywords: segmentation, edge detection, text, extracting characters

Procedia PDF Downloads 425
3708 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines

Procedia PDF Downloads 103
3707 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters

Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu

Abstract:

Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.

Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning

Procedia PDF Downloads 198
3706 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking

Authors: Peter U. Eze, P. Udaya, Robin J. Evans

Abstract:

Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.

Keywords: Constant Correlation, Medical Image, Spread Spectrum, Tamper Detection, Watermarking

Procedia PDF Downloads 192
3705 A Microfluidic Biosensor for Detection of EGFR 19 Deletion Mutation Targeting Non-Small Cell Lung Cancer on Rolling Circle Amplification

Authors: Ji Su Kim, Bo Ram Choi, Ju Yeon Cho, Hyukjin Lee

Abstract:

Epidermal growth factor receptor (EGFR) 19 deletion mutation gene is over-expressed in carcinoma patient. EGFR 19 deletion mutation is known as typical biomarker of non-small cell lung cancer (NSCLC), which one section in the coding exon 19 of EGFR is deleted. Therefore, there have been many attempts over the years to detect EGFR 19 deletion mutation for replacing conventional diagnostic method such as PCR and tissue biopsy. We developed a simple and facile detection platform based on Rolling Circle Amplification (RCA), which provides highly amplified products in isothermal amplification of the ligated DNA template. Limit of detection (~50 nM) and a faster detection time (~30 min) could be achieved by introducing RCA.

Keywords: EGFR19, cancer, diagnosis, rolling circle amplification (RCA), hydrogel

Procedia PDF Downloads 253
3704 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 220
3703 Influence of Cucurbitacin-Containing Phytonematicides on Growth of Rough Lemon (Citrus jambhiri)

Authors: Raisibe V. Mathabatha, Phatu W. Mashela, Nehemiah M. Mokgalong

Abstract:

Occasional incidence of phytotoxicity in Nemarioc-BL and Nemafric-AL phytonematicides to crops raises credibility challenges that could negate their registration as commercial products. Responses of plants to phytonematicides are characterized by the existence of stimulation, neutral and inhibition phases, with the mid-point of the former being referred to as the Mean Concentration Stimulation Point (MSCP = Dm + Rh/2). The objective of this study was to determine the MCSP and the overall sensitivity (∑k) of Nemarioc-AL and Nemafric-BL phytonematicides to rough lemon seedling rootstocks using the Curve-fitting Allelochemical Response Dosage (CARD) computer-based model. Two parallel greenhouse experiments were initiated, with seven dilutions of each phytonematicide arranged in a randomised complete block design, replicated nine times. Six-month-old rough lemon seedlings were transplanted into 20-cm-diameter plastic pots, filled with steam-pasteurised river sand (300°C for 3 h) and Hygromix-T growing mixture. Treatments at 0, 2, 4, 8, 16, 32 and 164% dilutions were applied weekly at 300 ml/plant. At 84 days after the treatments, analysis of variance-significant plant variables was subjected to the CARD model to generate appropriate biological indices. Computed MCSP values for Nemarioc-AL and Nemafric-BL phytonematicides on rough lemon were 29 and 38%, respectively, whereas ∑k values were 1 and 0, respectively. At the applied concentrations, rough lemon seedlings were highly sensitive to Nemarioc-AL and Nemafric-BL phytonematicides.

Keywords: crude extracts, cucurbitacins, effective microbes, fruit extracts

Procedia PDF Downloads 145
3702 Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms

Authors: Tian Xia, Yuan Yan Tang

Abstract:

In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection.

Keywords: small target detection, local contrast, human vision system, Laplacian of Gaussian

Procedia PDF Downloads 466
3701 Cognitive Methods for Detecting Deception During the Criminal Investigation Process

Authors: Laid Fekih

Abstract:

Background: It is difficult to detect lying, deception, and misrepresentation just by looking at verbal or non-verbal expression during the criminal investigation process, as there is a common belief that it is possible to tell whether a person is lying or telling the truth just by looking at the way they act or behave. The process of detecting lies and deception during the criminal investigation process needs more studies and research to overcome the difficulties facing the investigators. Method: The present study aimed to identify the effectiveness of cognitive methods and techniques in detecting deception during the criminal investigation. It adopted the quasi-experimental method and covered a sample of (20) defendants distributed randomly into two homogeneous groups, an experimental group of (10) defendants be subject to criminal investigation by applying cognitive techniques to detect deception and a second experimental group of (10) defendants be subject to the direct investigation method. The tool that used is a guided interview based on models of investigative questions according to the cognitive deception detection approach, which consists of three techniques of Vrij: imposing the cognitive burden, encouragement to provide more information, and ask unexpected questions, and the Direct Investigation Method. Results: Results revealed a significant difference between the two groups in term of lie detection accuracy in favour of defendants be subject to criminal investigation by applying cognitive techniques, the cognitive deception detection approach produced superior total accuracy rates both with human observers and through an analysis of objective criteria. The cognitive deception detection approach produced superior accuracy results in truth detection: 71%, deception detection: 70% compared to a direct investigation method truth detection: 52%; deception detection: 49%. Conclusion: The study recommended if practitioners use a cognitive deception detection technique, they will correctly classify more individuals than when they use a direct investigation method.

Keywords: the cognitive lie detection approach, deception, criminal investigation, mental health

Procedia PDF Downloads 65
3700 Advancing in Cricket Analytics: Novel Approaches for Pitch and Ball Detection Employing OpenCV and YOLOV8

Authors: Pratham Madnur, Prathamkumar Shetty, Sneha Varur, Gouri Parashetti

Abstract:

In order to overcome conventional obstacles, this research paper investigates novel approaches for cricket pitch and ball detection that make use of cutting-edge technologies. The research integrates OpenCV for pitch inspection and modifies the YOLOv8 model for cricket ball detection in order to overcome the shortcomings of manual pitch assessment and traditional ball detection techniques. To ensure flexibility in a range of pitch environments, the pitch detection method leverages OpenCV’s color space transformation, contour extraction, and accurate color range defining features. Regarding ball detection, the YOLOv8 model emphasizes the preservation of minor object details to improve accuracy and is specifically trained to the unique properties of cricket balls. The methods are more reliable because of the careful preparation of the datasets, which include novel ball and pitch information. These cutting-edge methods not only improve cricket analytics but also set the stage for flexible methods in more general sports technology applications.

Keywords: OpenCV, YOLOv8, cricket, custom dataset, computer vision, sports

Procedia PDF Downloads 74
3699 An Investigation into the Impact of Brexit on Consumer Perception of Trust in the Food Industry

Authors: Babatope David Omoniyi, Fiona Lalor, Sinead Furey

Abstract:

This ongoing project investigates the impact of Brexit on consumer perceptions of trust in the food industry. Brexit has significantly impacted the food industry, triggering a paradigm shift in the movement of food/agricultural produce, regulations, and cross-border collaborations between Great Britain, Northern Ireland, and the Republic of Ireland. In a world where the dynamics have shifted because of regulatory changes that impact trade and the free movement of foods and agricultural produce between these three countries, monitoring and controlling every stage of the food supply chain have become challenging, increasing the potential for food fraud and food safety incidents. As consumers play a pivotal role in shaping the market, understanding any shifts in trust post-Brexit enables them to navigate the market with confidence and awareness. This study aims to explore the complexities of consumer perceptions, focusing on trust as a cornerstone of consumer confidence in the post-Brexit food landscape. The objectives include comparing trust in official controls pre- and post-Brexit, determining consumer awareness of food fraud, and devising recommendations that reflect the evidence from this primary research regarding consumer trust in food authenticity post-Brexit. The research design follows an exploratory sequential mixed methods approach, incorporating qualitative methods such as focus groups and structured interviews, along with quantitative research through a large-scale survey. Participants from UCD and Ulster University campuses, comprising academic and non-academic staff, students, and researchers, will provide insights into the impact of Brexit on consumer trust. Preliminary findings from focus groups and interviews highlight changes in labelling, reduced quantity and quality of foods in both Northern Ireland and the Republic of Ireland, fewer food choices, and increased food prices since Brexit. The study aims to further investigate and quantify these impacts through a comprehensive large-scale survey involving participants from Northern Ireland and the Republic of Ireland. The results will inform official controls and consumer-facing messaging contributing valuable insights to navigate the evolving post-Brexit food landscape.

Keywords: Brexit, consumer trust, food fraud, food authenticity, food safety, food industry

Procedia PDF Downloads 46
3698 Development of Cost-effective Sensitive Methods for Pathogen Detection in Community Wastewater for Disease Surveillance

Authors: Jesmin Akter, Chang Hyuk Ahn, Ilho Kim, Jaiyeop Lee

Abstract:

Global pandemic coronavirus disease (COVID-19) caused by Severe acute respiratory syndrome SARS-CoV-2, to control the spread of the COVID-19 pandemic, wastewater surveillance has been used to monitor SARS-CoV2 prevalence in the community. The challenging part is establishing wastewater surveillance; there is a need for a well-equipped laboratory for wastewater sample analysis. According to many previous studies, reverse transcription-polymerase chain reaction (RT-PCR) based molecular tests are the most widely used and popular detection method worldwide. However, the RT-qPCR based approaches for the detection or quantification of SARS-CoV-2 genetic fragments ribonucleic acid (RNA) from wastewater require a specialized laboratory, skilled personnel, expensive instruments, and a workflow that typically requires 6 to 8 hours to provide results for just minimum samples. Rapid and reliable alternative detection methods are needed to enable less-well-qualified practitioners to set up and provide sensitive detection of SARS-CoV-2 within wastewater at less-specialized regional laboratories. Therefore, scientists and researchers are conducting experiments for rapid detection methods of COVID-19; in some cases, the structural and molecular characteristics of SARS-CoV-2 are unknown, and various strategies for the correct diagnosis of COVID-19 have been proposed by research laboratories, which are presented in the present study. The ongoing research and development of these highly sensitive and rapid technologies, namely RT-LAMP, ELISA, Biosensors, GeneXpert, allows a wide range of potential options not only for SARS-CoV-2 detection but also for other viruses as well. The effort of this study is to discuss the above effective and regional rapid detection and quantification methods in community wastewater as an essential step in advancing scientific goals.

Keywords: rapid detection, SARS-CoV-2, sensitive detection, wastewater surveillance

Procedia PDF Downloads 84
3697 Design and Fabrication of Optical Nanobiosensors for Detection of MicroRNAs Involved in Neurodegenerative Diseases

Authors: Mahdi Rahaie

Abstract:

MicroRNAs are a novel class of small RNAs which regulate gene expression by translational repression or degradation of messenger RNAs. To produce sensitive, simple and cost-effective assays for microRNAs, detection is in urgent demand due to important role of these biomolecules in progression of human disease such as Alzheimer’s, Multiple sclerosis, and some other neurodegenerative diseases. Herein, we report several novel, sensitive and specific microRNA nanobiosensors which were designed based on colorimetric and fluorescence detection of nanoparticles and hybridization chain reaction amplification as an enzyme-free amplification. These new strategies eliminate the need for enzymatic reactions, chemical changes, separation processes and sophisticated equipment whereas less limit of detection with most specify are acceptable. The important features of these methods are high sensitivity and specificity to differentiate between perfectly matched, mismatched and non-complementary target microRNAs and also decent response in the real sample analysis with blood plasma. These nanobiosensors can clinically be used not only for the early detection of neuro diseases but also for every sickness related to miRNAs by direct detection of the plasma microRNAs in real clinical samples, without a need for sample preparation, RNA extraction and/or amplification.

Keywords: hybridization chain reaction, microRNA, nanobiosensor, neurodegenerative diseases

Procedia PDF Downloads 149
3696 Credit Risk and Financial Stability

Authors: Zidane Abderrezzaq

Abstract:

In contrast to recent successful developments in macro monetary policies, the modelling, measurement and management of systemic financial stability has remained problematical. Indeed, the focus of most effort has been on improving individual, rather than systemic, bank risk management; the Basel II objective has been to bring regulatory bank capital into line with the (sophisticated) banks’ assessment of their own economic capital. Even at the individual bank level there are concerns over appropriate diversification allowances, differing objectives of banks and regulators, the need for a buffer over regulatory minima, and the distinction between expected and unexpected losses (EL and UL). At the systemic level the quite complex and prescriptive content of Basel II raises dangers of ‘endogenous risk’ and procyclicality. Simulations suggest that this latter could be a serious problem. In an extension to the main analysis we study how liquidity effects interact with banking structure to produce a greater chance of systemic breakdown. We finally consider how the risk of contagion might depend on the degree of asymmetry (tiering) inherent in the structure of the banking system. A number of our results have important implications for public policy, which this paper also draws out.

Keywords: systemic stability, financial regulation, credit risk, systemic risk

Procedia PDF Downloads 378
3695 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly

Procedia PDF Downloads 225
3694 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation

Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang

Abstract:

Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.

Keywords: CCS concepts, computing methodologies, interest point, salient region detections, image segmentation

Procedia PDF Downloads 130
3693 Micro Celebrities in Social Media Instagram and Their Personal Influence in Business Perspective

Authors: Yoga Maulana Putra, Herry Hudrasyah

Abstract:

The Internet has now become an important part of human life; it can be accessed through a computer or even a smartphone almost anywhere and anytime. The Internet has created many social media such as Facebook, Twitter, and Instagram. Instagram has been acquired by Facebook in 2012. Since then, Instagram is growing fast. And now, Instagram is transforming from photo-sharing social media into business tools. As the result, some new behavior has been discovered. Some of Instagram user is becoming popular. These people also being called minor celebrity and they are also being used as marketing tools by many companies to influencing or promoting their product or service. This minor celebrity is existing because of their behavior in using Instagram. The company is using the personal influence of the minor celebrity to promoting and influencing their product or service, and the minor celebrity gets paid as much as their rate card. And their rate card based on their followers and insight. This research is using a qualitative method. An interview is being done to 6 minor celebrities from many different categories such as photographer, travel blogger, lifestyle, food blogger, fashion, and healthcare. Theory of reasoned behavior is being used as the grounded theory to discover the reason for their behavior and personal influence to describe their way to influencing people. The result of the interview is most of the minor celebrities is influenced by their friend’s circle in the process of using Instagram. They also had a different way to use their personal influence to affect their followers when the company employs them.

Keywords: humanities and social sciences, Instagram, minor celebrity, social media

Procedia PDF Downloads 166
3692 Increasing the Mastery of Kanji with Language Learning Strategies through Multimedia

Authors: Sherly Ferro Lensun, Donal Matheos Ratu, Elni Jeini Usoh, Helena M. L. Pandi, Mayske Rinny Liando

Abstract:

This study aims to gain a deep understanding of the process and the increase resulting in mastery of Kanji with a Language Learning Strategies through multimedia. This research aims to gain scientific data on process and the result of improving kanji mastery by using Chokusetsu strategy in Kanji learning. The method used in this research is Action Research developed by Kemmis and Mc. Taggart is known as Spiral Model. This model consists of following stages: planning, implementation, observation, and reflection. The research results in following findings: (1) Kanji mastery comprises 4 major aspects, those are reading, writing, the use in sentence, and memorizing, and those aspects show gradual improvement from time to time. (2) Students have more participation in learning activities which can be identified from some positive behaviours such giving respond in finishing exercise in class. (3) Students’ better attention to the lesson shown by active behaviour in giving more questions or asking for more explanation to the lecturers, memorizing Kanji card, finishing the task of making Kanji card/house, doing the exercises more seriously, and finishing homework assignment punctually. (4) More attractive learning activities and tasks in the forms of more engaging colour and pictures enables students to conduct self-evaluation on their learning process.

Keywords: Kanji, action research, language learning strategies, multimedia

Procedia PDF Downloads 176
3691 Motion-Based Detection and Tracking of Multiple Pedestrians

Authors: A. Harras, A. Tsuji, K. Terada

Abstract:

Tracking of moving people has gained a matter of great importance due to rapid technological advancements in the field of computer vision. The objective of this study is to design a motion based detection and tracking multiple walking pedestrians randomly in different directions. In our proposed method, Gaussian mixture model (GMM) is used to determine moving persons in image sequences. It reacts to changes that take place in the scene like different illumination; moving objects start and stop often, etc. Background noise in the scene is eliminated through applying morphological operations and the motions of tracked people which is determined by using the Kalman filter. The Kalman filter is applied to predict the tracked location in each frame and to determine the likelihood of each detection. We used a benchmark data set for the evaluation based on a side wall stationary camera. The actual scenes from the data set are taken on a street including up to eight people in front of the camera in different two scenes, the duration is 53 and 35 seconds, respectively. In the case of walking pedestrians in close proximity, the proposed method has achieved the detection ratio of 87%, and the tracking ratio is 77 % successfully. When they are deferred from each other, the detection ratio is increased to 90% and the tracking ratio is also increased to 79%.

Keywords: automatic detection, tracking, pedestrians, counting

Procedia PDF Downloads 256
3690 Plastic Pipe Defect Detection Using Nonlinear Acoustic Modulation

Authors: Gigih Priyandoko, Mohd Fairusham Ghazali, Tan Siew Fun

Abstract:

This paper discusses about the defect detection of plastic pipe by using nonlinear acoustic wave modulation method. It is a sensitive method for damage detection and it is based on the propagation of high frequency acoustic waves in plastic pipe with low frequency excitation. The plastic pipe is excited simultaneously with a slow amplitude modulated vibration pumping wave and a constant amplitude probing wave. The frequency of both the excitation signals coincides with the resonances of the plastic pipe. A PVP pipe is used as the specimen as it is commonly used for the conveyance of liquid in many fields. The results obtained are being observed and the difference between uncracked specimen and cracked specimen can be distinguished clearly.

Keywords: plastic pipe, defect detection, nonlinear acoustic modulation, excitation

Procedia PDF Downloads 449
3689 Aspects and Studies of Fractal Geometry in Automatic Breast Cancer Detection

Authors: Mrinal Kanti Bhowmik, Kakali Das Jr., Barin Kumar De, Debotosh Bhattacharjee

Abstract:

Breast cancer is the most common cancer and a leading cause of death for women in the 35 to 55 age group. Early detection of breast cancer can decrease the mortality rate of breast cancer. Mammography is considered as a ‘Gold Standard’ for breast cancer detection and a very popular modality, presently used for breast cancer screening and detection. The screening of digital mammograms often leads to over diagnosis and a consequence to unnecessary traumatic & painful biopsies. For that reason recent studies involving the use of thermal imaging as a screening technique have generated a growing interest especially in cases where the mammography is limited, as in young patients who have dense breast tissue. Tumor is a significant sign of breast cancer in both mammography and thermography. The tumors are complex in structure and they also exhibit a different statistical and textural features compared to the breast background tissue. Fractal geometry is a geometry which is used to describe this type of complex structure as per their main characteristic, where traditional Euclidean geometry fails. Over the last few years, fractal geometrics have been applied mostly in many medical image (1D, 2D, or 3D) analysis applications. In breast cancer detection using digital mammogram images, also it plays a significant role. Fractal is also used in thermography for early detection of the masses using the thermal texture. This paper presents an overview of the recent aspects and initiatives of fractals in breast cancer detection in both mammography and thermography. The scope of fractal geometry in automatic breast cancer detection using digital mammogram and thermogram images are analysed, which forms a foundation for further study on application of fractal geometry in medical imaging for improving the efficiency of automatic detection.

Keywords: fractal, tumor, thermography, mammography

Procedia PDF Downloads 387
3688 Mental Accounting Theory Development Review and Application

Authors: Kang-Hsien Li

Abstract:

Along with global industries in using technology to enhance the application, make the study drawn more close to the people’s behavior and produce data analysis, extended out from the mental accounting of prospect theory, this paper provides the marketing and financial applications in the field of exploration and discussions with the future. For the foreseeable future, the payment behavior depends on the form of currency, which affects a variety of product types on the marketing of marketing strategy to provide diverse payment methods to enhance the overall sales performance. This not only affects people's consumption also affects people's investments. Credit card, PayPal, Apple pay, Bitcoin and any other with advances in technology and other emerging payment instruments, began to affect people for the value and the concept of money. Such as the planning of national social welfare policies, monetary and financial regulators and regulators. The expansion can be expected to discuss marketing and finance-related mental problems at the same time, recent studies reflect two different ideas, the first idea is that individuals affected by situational frames, not broad impact at the event level, affected by the people basically mental, second idea is that when an individual event affects a broader range, and majority of people will choose the same at the time that the rational choice. That are applied to practical application of marketing, at the same time provide an explanation in the financial market under the anomalies, due to the financial markets has varied investment products and different market participants, that also highlights these two points. It would provide in-depth description of humanity's mental. Certainly, about discuss mental accounting aspects, while artificial intelligence application development, although people would be able to reduce prejudice decisions, that will also lead to more discussion on the economic and marketing strategy.

Keywords: mental accounting, behavior economics, consumer behaviors, decision-making

Procedia PDF Downloads 451
3687 Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy

Authors: Isao Tomita

Abstract:

The detection of environmental gases, 12CO_2, 13CO_2, and CH_4, using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic 13CO_2 of a 3-% CO_2 gas at 2 um with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary 12CO_2 peaks. In addition, the detection of 12CO_2 peaks of a 385-ppm (0.0385-%) CO_2 gas in the air is made at 2 um with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH_4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH_4 in a small area are attempted. For a 100-% CH_4 gas trapped in a 1 mm^3 glass container, the absorption peaks of CH_4 are obtained at 1.65 um with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data.

Keywords: environmental gases, Near-Infrared Laser Detection, Wavelength-Modulation Spectroscopy, gas pressure

Procedia PDF Downloads 421
3686 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection

Authors: Tim Farrelly

Abstract:

In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.

Keywords: deep learning, object detection, machine vision applications, sport, network design

Procedia PDF Downloads 143
3685 HRV Analysis Based Arrhythmic Beat Detection Using kNN Classifier

Authors: Onder Yakut, Oguzhan Timus, Emine Dogru Bolat

Abstract:

Health diseases have a vital significance affecting human being's life and life quality. Sudden death events can be prevented owing to early diagnosis and treatment methods. Electrical signals, taken from the human being's body using non-invasive methods and showing the heart activity is called Electrocardiogram (ECG). The ECG signal is used for following daily activity of the heart by clinicians. Heart Rate Variability (HRV) is a physiological parameter giving the variation between the heart beats. ECG data taken from MITBIH Arrhythmia Database is used in the model employed in this study. The detection of arrhythmic heart beats is aimed utilizing the features extracted from the HRV time domain parameters. The developed model provides a satisfactory performance with ~89% accuracy, 91.7 % sensitivity and 85% specificity rates for the detection of arrhythmic beats.

Keywords: arrhythmic beat detection, ECG, HRV, kNN classifier

Procedia PDF Downloads 350
3684 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network

Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar

Abstract:

Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.

Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network

Procedia PDF Downloads 107