Search results for: chemical representations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4917

Search results for: chemical representations

1077 Magnetic Nano-Composite of Self-Doped Polyaniline Nanofibers for Magnetic Dispersive Micro Solid Phase Extraction Applications

Authors: Hatem I. Mokhtar, Randa A. Abd-El-Salam, Ghada M. Hadad

Abstract:

An improved nano-composite of self-doped polyaniline nanofibers and silica-coated magnetite nanoparticles were prepared and evaluated for suitability to magnetic dispersive micro solid-phase extraction. The work focused on optimization of the composite capacity to extract four fluoroquinolones (FQs) antibiotics, ciprofloxacin, enrofloxacin, danofloxacin, and difloxacin from water and improvement of composite stability towards acid and atmospheric degradation. Self-doped polyaniline nanofibers were prepared by oxidative co-polymerization of aniline with anthranilic acid. Magnetite nanopariticles were prepared by alkaline co-precipitation and coated with silica by silicate hydrolysis on magnetite nanoparticles surface at pH 6.5. The composite was formed by self-assembly by mixing self-doped polyaniline nanofibers with silica-coated magnetite nanoparticles dispersions in ethanol. The composite structure was confirmed by transmission electron microscopy (TEM). Self-doped polyaniline nanofibers and magnetite chemical structures were confirmed by FT-IR while silica coating of the magnetite was confirmed by Energy Dispersion X-ray Spectroscopy (EDS). Improved stability of the composite magnetic component was evidenced by resistance to degrade in 2N HCl solution. The adsorption capacity of self-doped polyaniline nanofibers based composite was higher than previously reported corresponding composite prepared from polyaniline nanofibers instead of self-doped polyaniline nanofibers. Adsorption-pH profile for the studied FQs on the prepared composite revealed that the best pH for adsorption was in range of 6.5 to 7. Best extraction recovery values were obtained at pH 7 using phosphate buffer. The best solvent for FQs desorption was found to be 0.1N HCl in methanol:water (8:2; v/v) mixture. 20 mL of Spiked water sample with studied FQs were preconcentrated using 4.8 mg of composite and resulting extracts were analysed by HPLC-UV method. The prepared composite represented a suitable adsorbent phase for magnetic dispersive micro-solid phase application.

Keywords: fluoroquinolones, magnetic dispersive micro extraction, nano-composite, self-doped polyaniline nanofibers

Procedia PDF Downloads 122
1076 Leaf Photosynthesis and Water-Use Efficiency of Diverse Legume Species Nodulated by Native Rhizobial Isolates in the Glasshouse

Authors: Lebogang Jane Msiza, Felix Dapare Dakora

Abstract:

Photosynthesis is a process by which plants convert light energy to chemical energy for metabolic processes. Plants are known for converting inorganic CO₂ in the atmosphere to organic C by photosynthesis. A decrease in stomatal conductance causes a decrease in the transpiration rate of leaves, thus increasing the water-use efficiency of plants. Water-use efficiency in plants is conditioned by soil moisture availability and is enhanced under conditions of water deficit. This study evaluated leaf photosynthesis and water-use efficiency in 12 legume species inoculated with 26 rhizobial isolates from soybean, 15 from common bean, 10 from cowpea, 15 from Bambara groundnut, 7 from lessertia and 10 from Kersting bean. Gas-exchange studies were used to measure photosynthesis and water-use efficiency. The results revealed a much higher photosynthetic rate (20.95µmol CO₂ m-2s-1) induced by isolated tutpres to a lower rate (7.06 µmol CO₂ m-2s-1) by isolate mgsa 88. Stomatal conductance ranged from to 0.01 mmol m-2.s-1 by mgsa 88 to 0.12 mmol m-2.s-1 by isolate da-pua 128. Transpiration rate also ranged from 0.09 mmol m-2.s-1 induced by da-pua B2 to 3.28 mmol m-2.s-1 by da-pua 3, while water-use efficiency ranged from 91.32 µmol CO₂ m-1 H₂O elicited by mgsa 106 to 4655.50 µmol CO₂ m-1 H₂O by isolate tutswz 13. The results revealed the highest photosynthetic rate in soybean and the lowest in common bean, and also with higher stomatal conductance and transpiration rates in jack bean and Bambara groundnut. Pigeonpea exhibited much higher water-use efficiency than all the tested legumes. The findings showed significant differences between and among the test legume/rhizobia combinations. Leaf photosynthetic rates are reported to be higher in legumes with high stomatal conductance, which suggests that legume productivity can be improved by manipulating leaf stomatal conductance.

Keywords: legumes, photosynthetic rate, stomatal conductance, water-use efficiency

Procedia PDF Downloads 228
1075 Mixed Tetravalent Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) Based Vacancy-Ordered Halide Double Perovskites for Enhanced Solar Water Oxidation

Authors: Jigar Shaileshumar Halpati, Aravind Kumar Chandiran

Abstract:

Vacancy ordered double perovskites (VOPs) have been significantly attracting researchers due to their chemical structure diversity and interesting optoelectronic properties. Some VOPs have been recently reported to be suitable photoelectrodes for photoelectrochemical water-splitting reactions due to their high stability and panchromatic absorption. In this work, we systematically synthesized mixed tetravalent VOPs based on Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) and reported their structural, optical, electrochemical and photoelectrochemical properties. The structural characterization confirms that the mixed tetravalent site intermediates formed their own phases. The parent materials, as well as their intermediates, were found to be stable in ambient conditions for over 1 year and also showed incredible stability in harsh pH media ranging from pH 1 to pH 11. Moreover, these materials showed panchromatic absorption with onset up to 1000 nm depending upon the mixture stoichiometry. The extraordinary stability and excellent absorption properties make them suitable materials for photoelectrochemical water-splitting applications. PEC studies of these series of materials showed a high water oxidation photocurrent of 0.56 mA cm-² for Cs₂Ru₀.₅Pt₀.₅Cl₆. Fundamental investigation from photoelectrochemical reactions revealed that the intrinsic ruthenium-based VOP showed enhanced hole transfer to the electrolyte, while the intrinsic platinum-based VOP showed higher photovoltage. The mix of these end members at the tetravalent site showed a synergic effect of reduced charge transfer resistance from the material to the electrolyte and increased photovoltage, which led to increased PEC performance of the intermediate materials.

Keywords: solar water splitting, photo electrochemistry, photo absorbers, material characterization, device characterization, green hydrogen

Procedia PDF Downloads 75
1074 Morphology and Permeability of Biomimetic Cellulose Triacetate-Impregnated Membranes: in situ Synchrotron Imaging and Experimental Studies

Authors: Amira Abdelrasoul

Abstract:

This study aimed to ascertain the controlled permeability of biomimetic cellulose triacetate (CTA) membranes by investigating the electrical oscillatory behavior across impregnated membranes (IM). The biomimetic CTA membranes were infused with a fatty acid to induce electrical oscillatory behavior and, hence, to ensure controlled permeability. In situ synchrotron radiation micro-computed tomography (SR-μCT) at the BioMedical Imaging and Therapy (BMIT) Beamline at the Canadian Light Source (CLS) was used to evaluate the main morphology of IMs compared to neat CTA membranes to ensure fatty acid impregnation inside the pores of the membrane matrices. A monochromatic beam at 20 keV was used for the visualization of the morphology of the membrane. The X-ray radiographs were recorded by means of a beam monitor AA-40 (500 μm LuAG scintillator, Hamamatsu, Japan) coupled with a high-resolution camera, providing a pixel size of 5.5 μm and a field of view (FOV) of 4.4 mm × 2.2 mm. Changes were evident in the phase transition temperatures of the impregnated CTA membrane at the melting temperature of the fatty acid. The pulsations of measured voltages were related to changes in the salt concentration of KCl in the vicinity of the electrode. Amplitudes and frequencies of voltage pulsations were dependent on the temperature and concentration of the KCl solution, which controlled the permeability of the biomimetic membranes. The presented smart biomimetic membrane successfully combined porous polymer support and impregnating liquid not only imitate the main barrier properties of the biological membranes but could be easily modified to achieve some new properties, such as facilitated and active transport, regulation by chemical, physical and pharmaceutical factors. These results open new frontiers for the facilitation and regulation of active transport and permeability through biomimetic smart membranes for a variety of biomedical and drug delivery applications.

Keywords: biomimetic, membrane, synchrotron, permeability, morphology

Procedia PDF Downloads 102
1073 Biostimulant and Abiotic Plant Stress Interactions in Malting Barley: A Glasshouse Study

Authors: Conor Blunt, Mariluz del Pino-de Elias, Grace Cott, Saoirse Tracy, Rainer Melzer

Abstract:

The European Green Deal announced in 2021 details agricultural chemical pesticide use and synthetic fertilizer application to be reduced by 50% and 20% by 2030. Increasing and maintaining expected yields under these ambitious goals has strained the agricultural sector. This intergovernmental plan has identified plant biostimulants as one potential input to facilitate this new phase of sustainable agriculture; these products are defined as microorganisms or substances that can stimulate soil and plant functioning to enhance crop nutrient use efficiency, quality and tolerance to abiotic stresses. Spring barley is Ireland’s most widely sown tillage crop, and grain destined for malting commands the most significant market price. Heavy erratic rainfall is forecasted in Ireland’s climate future, and barley is particularly susceptible to waterlogging. Recent findings suggest that plant receptivity to biostimulants may depend on the level of stress inflicted on crops to elicit an assisted plant response. In this study, three biostimulants of different genesis (seaweed, protein hydrolysate and bacteria) are applied to ‘RGT Planet’ malting barley fertilized at three different rates (0 kg/ha, 40 kg/ha, 75 kg/ha) of calcium ammonium nitrogen (27% N) under non-stressed and waterlogged conditions. This 4x3x2 factorial trial design was planted in a completed randomized block with one plant per experimental unit. Leaf gas exchange data and key agronomic and grain quality parameters were analyzed via ANOVA. No penalty on productivity was evident on plants receiving 40 kg/ha of N and bio stimulant compared to 75 kg/ha of N treatments. The main effects of nitrogen application and waterlogging provided the most significant variation in the dataset.

Keywords: biostimulant, Barley, malting, NUE, waterlogging

Procedia PDF Downloads 76
1072 Effect of Select Surfactants on Activities of Soil Enzymes Involved in Nutrient Cycling

Authors: Frieda Eivazi, Nikita L. Mullings

Abstract:

Soils are recipient for surfactants in herbicide formulations. Surfactants entering the soil environment can possibly disrupt different chemical, physical and biological interactions. Therefore, it is critical that we understand the fate, behavior and transport of surfactants upon entering the soil. A comprehensive study was conducted to examine effect of surfactants on nutrient uptake, microbial community, and enzyme activity. The research was conducted in the greenhouse growing corn (Zea mays) as a test plant in a factorial experiment (three surfactants at two different rates with control, and three herbicides) organized as randomized blocked design. Surfactants evaluated were Activator 90, Agri-Dex, and Thrust; herbicides were glyphosate, atrazine, and bentazon. Treatments examined were surfactant only, herbicide only, and surfactant + herbicide combinations. Corn was planted in fertilized soils (silt loam and silty clay) with moisture content maintained at the field capacity for optimum growth. This paper will report results of above mentioned treatments on acid phosphatase, beta-glucosidase, arylsulfatase, beta-glucosaminidase, and dehydrogenase activities. In general, there were variations in the enzyme activities with some inhibition and some being enhanced by the treatments. Activator 90 appeared to have the highest inhibitory effect on enzymatic activities. Atrazine application significantly decreased the activities of acid phosphatase, beta-glucosidase, and dehydrogenase in both soils; however, combination of Atrazine + Agridex increased the acid phosphatase activity while significantly inhibiting the other enzyme activities in soils. It was concluded that long-term field studies are needed to validate changes in nutrient uptake, microbial community and enzyme activities due to surfactant-herbicide combination effects.

Keywords: herbicides, nutrient cycling, soil enzymes, surfactant

Procedia PDF Downloads 251
1071 Antibiotic Resistance and Susceptibility of Bacteria Strains Isolated from Sheep Milk

Authors: Fatima Bouazza, Rachida Hassikou, Lamiae Amallah, Jihane Ennadir, Khadija Khedid

Abstract:

This study evaluated the in vitro resistance and susceptibility of Enterobacteriaceae (Escherichia coli and Klebsiella oxytoca strains) and Staphylococci strains, isolated from sheep’s milk, against antibiotics and essential oils from Thymus satureioides and Mentha pulegium. Antibiotic resistance tests were done using disc diffusion while essential oils were extracted by steam distillation, and yields were calculated relative to plant dry matter. Gas chromatography-mass Spectrometry (GC-MS) was used to analyze each oil's chemical composition. The AMC, CTX, FOX, NA, CN, CIP, and OFX were very effective against the E. coli strains tested. Half of the strains were resistant to AMC, 60% to TIC, and 80% to TE. The K. oxytoca was resistant against AMC, FOX, and TIC (100%). Antibiotic-resistant testing on Staphylococci strains indicated Staphylococcus capitis and Staphylococcus chromogenes as the most sensitive. Staphylococcus aureus, Staphylococcus xylosus, and Staphylococcus cohnii ureal exhibited less resistance to OX, TE, PT, E, and P. The M. pulegium resulted in a higher yield of essential oil of 3.2% oil compared to T. satureioides with only 1.85% yield. Staphylococcus aureus, Staphylococcus xylosus, and Staphylococcus cohnii ureal had lower OX, TE, PT, E, and P resistance. M. pulegium yielded 3.2% essential oil compared to 1.85% for T. satureioides. The monoterpene oxygenated derivatives, monoterpene hydrocarbons, and phenols are found in essential oil extracts. T. satureioides essential oil had high antibacterial activity even at low concentrations (0.2; 0.55 g/mL). The Minimal Bactericidal Concentration (MBC) values indicate that the essential oils from the plants analyzed had bactericidal effects on all strains tested and are similar to the Minimal Inhibitory Concentration (MIC) values. The high antibacterial properties of these medicinal plants, against bacteria isolated from sheep’s milk, provide an opportunity to use these medicinal plants in the breeding sector as additives and preservatives in the dairy industry.

Keywords: antibiotic resistance, medicinal plants, essential oils, enterobacteriaceae, staphylococci, sheep milk

Procedia PDF Downloads 160
1070 The Formation of Thin Copper Films on Graphite Surface Using Magnetron Sputtering Method

Authors: Zydrunas Kavaliauskas, Aleksandras Iljinas, Liutauras Marcinauskas, Mindaugas Milieska, Vitas Valincius

Abstract:

The magnetron sputtering deposition method is often used to obtain thin film coatings. The main advantage of magnetron vaporization compared to other deposition methods is the high rate erosion of the cathode material (e.g., copper, aluminum, etc.) and the ability to operate under low-pressure conditions. The structure of the formed coatings depends on the working parameters of the magnetron deposition system, which is why it is possible to influence the properties of the growing film, such as morphology, crystal orientation, and dimensions, stresses, adhesion, etc. The properties of these coatings depend on the distance between the substrate and the magnetron surface, the vacuum depth, the gas used, etc. Using this deposition technology, substrates are most often placed near the anode. The magnetic trap of the magnetrons for localization of electrons in the cathode region is formed using a permanent magnet system that is on the side of the cathode. The scientific literature suggests that, after insertion of a small amount of copper into graphite, the electronic conductivity of graphite increase. The aim of this work is to create thin (up to 300 nm) layers on a graphite surface using a magnetron evaporation method, to investigate the formation peculiarities and microstructure of thin films, as well as the mechanism of copper diffusion into graphite inner layers at different thermal treatment temperatures. The electron scanning microscope was used to investigate the microrelief of the coating surface. The chemical composition is determined using the EDS method, which shows that, with an increase of the thermal treatment of the copper-carbon layer from 200 °C to 400 °C, the copper content is reduced from 8 to 4 % in atomic mass units. This is because the EDS method captures only the amount of copper on the graphite surface, while the temperature of the heat treatment increases part of the copper because of the diffusion processes penetrates into the inner layers of the graphite. The XRD method shows that the crystalline copper structure is not affected by thermal treatment.

Keywords: carbon, coatings, copper, magnetron sputtering

Procedia PDF Downloads 290
1069 Preparation of Novel Silicone/Graphene-based Nanostructured Surfaces as Fouling Release Coatings

Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Ping Jing Mo

Abstract:

As marine fouling-release (FR) surfaces, two new superhydrophobic nanocomposite series of polydimethylsiloxane (PDMS) loaded with reduced graphene oxide (RGO) and graphene oxide/boehmite nanorods (GO-γ-AlOOH) nanofillers were created. The self-cleaning and antifouling capabilities were modified by controlling the nanofillers' shapes and distribution in the silicone matrix. With an average diameter of 10-20 nm and a length of 200 nm, γ-AlOOH nanorods showed a single crystallinity. RGO was made using a hydrothermal process, whereas GO-γ-AlOOH nanocomposites were made using a chemical deposition method for use as fouling-release coating materials. These nanofillers were disseminated in the silicone matrix using the solution casting method to explore the synergetic effects of graphene-based materials on the surface, mechanical, and FR characteristics. Water contact angle (WCA), scanning electron, and atomic force microscopes were used to investigate the surface's hydrophobicity and antifouling capabilities (SEM and AFM). The roughness, superhydrophobicity, and surface mechanical characteristics of coatings all increased the homogeneity of the nanocomposite dispersion. To examine the antifouling effects of the coating systems, laboratory tests were conducted for 30 days using specified bacteria.PDMS/GO-γ-AlOOH nanorod composite demonstrated superior antibacterial efficacy against several bacterial strains than PDMS/RGO nanocomposite. The high surface area and stabilizing effects of the GO-γ-AlOOH hybrid nanofillers are to blame for this. The biodegradability percentage of the PDMS/GO-γ-AlOOH nanorod composite (3 wt.%) was the lowest (1.6%), while the microbial endurability percentages for gram-positive, gram-negative, and fungi were 86.42%, 97.94%, and 85.97%, respectively. The homogeneity of the GO-γ-AlOOH (3 wt.%) dispersion, which had a WCA of 151° and a rough surface, was the most profound superhydrophobic antifouling nanostructured coating.

Keywords: superhydrophobic nanocomposite, fouling release, nanofillers, surface coating

Procedia PDF Downloads 234
1068 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.

Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration

Procedia PDF Downloads 275
1067 Monitoring and Management of Aquatic Macroinvertebrates for Determining the Level of Water Pollution Catchment Basin of Debed River, Armenia

Authors: Inga Badasyan

Abstract:

Every year we do monitoring of water pollution of catchment basin of Debed River. Next, the Ministry of Nature Protection does modeling programme. Finely, we are managing the impact of water pollution in Debed river. Ecosystem technologies efficiency performance were estimated based on the physical, chemical, and macrobiological analyses of water on regular base between 2012 to 2015. Algae community composition was determined to assess the ecological status of Debed river, while vegetation was determined to assess biodiversity. Last time, experts werespeaking about global warming, which is having bad impact on the surface water, freshwater, etc. As, we know that global warming is caused by the current high levels of carbon dioxide in the water. Geochemical modelling is increasingly playing an important role in various areas of hydro sciences and earth sciences. Geochemical modelling of highly concentrated aqueous solutions represents an important topic in the study of many environments such as evaporation ponds, groundwater and soils in arid and semi-arid zones, costal aquifers, etc. The sampling time is important for benthic macroinvertebrates, for that reason we have chosen in the spring (abundant flow of the river, the beginning of the vegetation season) and autumn (the flow of river is scarce). The macroinvertebrates are good indicator for a chromic pollution and aquatic ecosystems. Results of our earlier investigations in the Debed river reservoirs clearly show that management problem of ecosystem reservoirs is topical. Research results can be applied to studies of monitoring water quality in the rivers and allow for rate changes and to predict possible future changes in the nature of the lake.

Keywords: ecohydrological monitoring, flood risk management, global warming, aquatic macroinvertebrates

Procedia PDF Downloads 288
1066 Antibiofilm Activities of Biogenic Silver Nanoparticles against Human Pathogenic Bacteria

Authors: Muhammad Shahzad Tufail, Iram Liaqat, Umer Sohail Meer, Muhammad Ishtaiq, Muhammad Sattar

Abstract:

Nanotechnology is a vibrant field with numerous applications in many different branches of science and technology. Several methods are used to synthesize nanoparticles (NPs), which have multiple range of applications. Comparatively, the biogenic synthesis of NPs is a more economical and environmentally favourable method than the traditional chemical method. The current study aims to synthesize biogenically silver nanoparticles (AgNPs) using bacterial isolates. Four bacterial strains Escherichia coli (MT448673), Pseudomonas aeruginosa (MN900691), Bacillus subtilis (MN900684) and Bacillus licheniformis (MN900686) were used for the synthesis of AgNPs from silver nitrate (AgNO3) solution. The biofilm time kinetics of four bacterial isolates (P. aeruginosa, E. coli, B. licheniformis and B. subtilis) was analysed by incubating bacterial cultures at 37◦C in test tubes over a period of different time intervals i.e., 2, 3, 5 and 7 days following crystal violet staining method. All the four strains had ability to form strong biofilms between 48 to 72 hours of incubation. Two strains (B. subtilis and B. licheniformis) formed significant (p < 0.05) biofilm after 3 days of incubation period. The other two strains (E. coli and P. aeruginosa) showed strong biofilm formation after 2 days of incubation. Next, the antibiofilm activity of biogenically synthesized AgNPs (10 - 100 µgmL-1) was analysed against biofilm forming human pathogenic bacteria. Findings of the work revealed that 60-90% inhibition was observed at 60 µgmL-1 of AgNPs, while maximum inhibition (i.e.,100%) was found at highest concentration (90 µgmL-1). It was evident that highly significant (p < 0.05) decrease in biofilm formation was observed with increasing concentration of AgNPs.

Keywords: antibiofilm, biofilm formation, nanotechnology, pathogenic bacteria, silver nanoparticles

Procedia PDF Downloads 106
1065 Development and Implementation of a Business Technology Program Based on Techniques for Reusing Water in a Colombian Company

Authors: Miguel A. Jimenez Barros, Elyn L. Solano Charris, Luis E. Ramirez, Lauren Castro Bolano, Carlos Torres Barreto, Juliana Morales Cubillo

Abstract:

This project sought to mitigate the high levels of water consumption in industrial processes in accordance with the water-rationing plan promoted at national and international level due to the water consumption projections published by the United Nations. Water consumption has three main uses, municipal (common use), agricultural and industrial where the latter consumes a minimum percentage (around 20% of the total consumption). Awareness on world water scarcity, a Colombian company responsible for generation of massive consumption products, decided to implement politics and techniques for water treatment, recycling, and reuse. The project consisted in a business technology program that permits a better use of wastewater caused by production operations. This approach reduces the potable water consumption, generates better conditions of water in the sewage dumps, generates a positive environmental impact for the region, and is a reference model in national and international levels. In order to achieve the objective, a process flow diagram was used in order to define the industrial processes that required potable water. This strategy allowed the industry to determine a water reuse plan at the operational level without affecting the requirements associated with the manufacturing process and even more, to support the activities developed in administrative buildings. Afterwards, the company made an evaluation and selection of the chemical and biological processes required for water reuse, in compliance with the Colombian Law. The implementation of the business technology program optimized the water use and recirculation rate up to 70%, accomplishing an important reduction of the regional environmental impact.

Keywords: bio-reactor, potable water, reverse osmosis, water treatment

Procedia PDF Downloads 235
1064 3-D Modeling of Particle Size Reduction from Micro to Nano Scale Using Finite Difference Method

Authors: Himanshu Singh, Rishi Kant, Shantanu Bhattacharya

Abstract:

This paper adopts a top-down approach for mathematical modeling to predict the size reduction from micro to nano-scale through persistent etching. The process is simulated using a finite difference approach. Previously, various researchers have simulated the etching process for 1-D and 2-D substrates. It consists of two processes: 1) Convection-Diffusion in the etchant domain; 2) Chemical reaction at the surface of the particle. Since the process requires analysis along moving boundary, partial differential equations involved cannot be solved using conventional methods. In 1-D, this problem is very similar to Stefan's problem of moving ice-water boundary. A fixed grid method using finite volume method is very popular for modelling of etching on a one and two dimensional substrate. Other popular approaches include moving grid method and level set method. In this method, finite difference method was used to discretize the spherical diffusion equation. Due to symmetrical distribution of etchant, the angular terms in the equation can be neglected. Concentration is assumed to be constant at the outer boundary. At the particle boundary, the concentration of the etchant is assumed to be zero since the rate of reaction is much faster than rate of diffusion. The rate of reaction is proportional to the velocity of the moving boundary of the particle. Modelling of the above reaction was carried out using Matlab. The initial particle size was taken to be 50 microns. The density, molecular weight and diffusion coefficient of the substrate were taken as 2.1 gm/cm3, 60 and 10-5 cm2/s respectively. The etch-rate was found to decline initially and it gradually became constant at 0.02µ/s (1.2µ/min). The concentration profile was plotted along with space at different time intervals. Initially, a sudden drop is observed at the particle boundary due to high-etch rate. This change becomes more gradual with time due to declination of etch rate.

Keywords: particle size reduction, micromixer, FDM modelling, wet etching

Procedia PDF Downloads 431
1063 Calculating Asphaltenes Precipitation Onset Pressure by Using Cardanol as Precipitation Inhibitor: A Strategy to Increment the Oil Well Production

Authors: Camilo A. Guerrero-Martin, Erik Montes Paez, Marcia C. K. Oliveira, Jonathan Campos, Elizabete F. Lucas

Abstract:

Asphaltenes precipitation is considered as a formation damage problem, which can reduce the oil recovery factor. It fouls piping and surface installations, as well as cause serious flow assurance complications and decline oil well production. Therefore, researchers have shown an interest in chemical treatments to control this phenomenon. The aim of this paper is to assess the asphaltenes precipitation onset of crude oils in the presence of cardanol, by titrating the crude with n-heptane. Moreover, based on this results obtained at atmosphere pressure, the asphaltenes precipitation onset pressure were calculated to predict asphaltenes precipitation in the reservoir, by using differential liberation and refractive index data of the oils. The influence of cardanol concentrations in the asphaltenes stabilization of three Brazilian crude oils samples (with similar API densities) was studied. Therefore, four formulations of cardanol in toluene were prepared: 0, 3, 5, 10 and 15 m/m%. The formulations were added to the crude at 2:98 ratio. The petroleum samples were characterized by API density, elemental analysis and differential liberation test. The asphaltenes precipitation onset (APO) was determined by titrating with n-heptane and monitoring with near-infrared (NIR). UV-Vis spectroscopy experiments were also done to assess the precipitate asphaltenes content. The asphaltenes precipitation envelopes (APE) were also determined by numerical simulation (Multiflash). In addition, the adequate artificial lift systems (ALS) for the oils were selected. It was based on the downhole well profile and a screening methodology. Finally, the oil flowrates were modelling by NODAL analysis production system in the PIPESIM software. The results of this study show that the asphaltenes precipitation onset of the crude oils were 2.2, 2.3 and 6.0 mL of n-heptane/g of oil. The cardanol was an effective inhibitor of asphaltenes precipitation for the crude oils used in this study, since it displaces the precipitation pressure of the oil to lower values. This indicates that cardanol can increase the oil wells productivity.

Keywords: asphaltenes, NODAL analysis production system, precipitation pressure onset, inhibitory molecule

Procedia PDF Downloads 176
1062 Myosin-Driven Movement of Nanoparticles – An Approach to High-Speed Tracking

Authors: Sneha Kumari, Ravi Krishnan Elangovan

Abstract:

This abstract describes the development of a high-speed tracking method by modification in motor components for nanoparticle attachment. Myosin motors are nano-sized protein machines powering movement that defines life. These miniature molecular devices serve as engines utilizing chemical energy stored in ATP to produce useful mechanical energy in the form of a few nanometre displacement events leading to force generation that is required for cargo transport, cell division, cell locomotion, translated to macroscopic movements like running etc. With the advent of in vitro motility assay (IVMA), detailed functional studies of the actomyosin system could be performed. The major challenge with the currently available IVMA for tracking actin filaments is a resolution limitation of ± 50nm. To overcome this, we are trying to develop Single Molecule IVMA in which nanoparticle (GNP/QD) will be attached along or on the barbed end of actin filaments using CapZ protein and visualization by a compact TIRF module called ‘cTIRF’. The waveguide-based illumination by cTIRF offers a unique separation of excitation and collection optics, enabling imaging by scattering without emission filters. So, this technology is well equipped to perform tracking with high precision in temporal resolution of 2ms with significantly improved SNR by 100-fold as compared to conventional TIRF. Also, the nanoparticles (QD/GNP) attached to actin filament act as a point source of light coffering ease in filament tracking compared to conventional manual tracking. Moreover, the attachment of cargo (QD/GNP) to the thin filament paves the way for various nano-technological applications through their transportation to different predetermined locations on the chip

Keywords: actin, cargo, IVMA, myosin motors and single-molecule system

Procedia PDF Downloads 87
1061 Synthesis, Characterization, and Catalytic Application of Modified Hierarchical Zeolites

Authors: A. Feliczak Guzik, I. Nowak

Abstract:

Zeolites, classified as microporous materials, are a large group of crystalline aluminosilicate materials commonly used in the chemical industry. These materials are characterized by large specific surface area, high adsorption capacity, hydrothermal and thermal stability. However, the micropores present in them impose strong mass transfer limitations, resulting in low catalytic performance. Consequently, mesoporous (hierarchical) zeolites have attracted considerable attention from researchers. These materials possess additional porosity in the mesopore size region (2-50 nm according to IUPAC). Mesoporous zeolites, based on commercial MFI-type zeolites modified with silver, were synthesized as follows: 0.5 g of zeolite was dispersed in a mixture containing CTABr (template), water, ethanol, and ammonia under ultrasound for 30 min at 65°C. The silicon source, which was tetraethyl orthosilicate, was then added and stirred for 4 h. After this time, silver(I) nitrate was added. In a further step, the whole mixture was filtered and washed with water: ethanol mixture. The template was removed by calcination at 550°C for 5h. All the materials obtained were characterized by the following techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, FTIR spectroscopy. X-ray diffraction and low-temperature nitrogen adsorption/desorption isotherms revealed additional secondary porosity. Moreover, the structure of the commercial zeolite was preserved during most of the material syntheses. The aforementioned materials were used in the epoxidation reaction of cyclohexene using conventional heating and microwave radiation heating. The composition of the reaction mixture was analyzed every 1 h by gas chromatography. As a result, about 60% conversion of cyclohexene and high selectivity to the desired reaction products i.e., 1,2-epoxy cyclohexane and 1,2-cyclohexane diol, were obtained.

Keywords: catalytic application, characterization, epoxidation, hierarchical zeolites, synthesis

Procedia PDF Downloads 88
1060 Preparation and Characterization of Road Base Material Based on Kazakhstan Production Waste

Authors: K. K. Kaidarova, Ye. K. Aibuldinov, Zh. B. Iskakova, G. Zh. Alzhanova, S. Zh. Zayrova

Abstract:

Currently, the existing road infrastructure of Kazakhstan needs the reconstruction of existing highways and the construction of new roads. The solution to this problem can be achieved by replacing traditional building materials with industrial waste, which in their chemical and mineralogical composition are close to natural raw materials and can partially or completely replace some natural binding materials in road construction. In this regard, the purpose of this study is to develop building materials based on the red sludge of the Pavlodar aluminum plant, blast furnace slag of the Karaganda Metallurgical Plant, lime production waste of the Pavlodar Aluminum Plant as a binder for natural loam. Changes in physical and mechanical properties were studied for uniaxial compression strength, linear expansion coefficient, water resistance, and frost resistance of the samples. Nine mixtures were formed with different percentages of these wastes 1-20:25:4; 2-20:25:6; 3-20:25:8; 4-30:30:4; 5-30:30:6; 6-30:30:8; 7-40:35:4; 8-40:35:6; 9-40:35:8 and the mixture identifier were labeled based on the waste content and composition number. The results of strength measurement during uniaxial compression of the samples showed an almost constant increase in strength and amounted to 0.67–3.56 MPa after three days and 3.33–7.38 MPa after 90 days. This increase in compressive strength is a consequence of the addition of lime and becomes more pronounced over time. The water resistance of the developed materials after 90 days was 7.12 MPa, and the frost resistance for the same period was 7.35 MPa. The maximum values of strength determination were shown by a sample of the composition 9-40:35:8. The study of the mineral composition showed that there was no contamination with heavy metals or dangerous substances. It was determined that road materials made of red sludge, blast furnace slag, lime production waste, and natural loam mixture could be used due to their strength indicators and environmental characteristics.

Keywords: production waste, uniaxial compression, water resistance of materials, frost resistance of samples

Procedia PDF Downloads 119
1059 Characterization, Classification and Fertility Capability Classification of Three Rice Zones of Ebonyi State, Southeastern Nigeria

Authors: Sunday Nathaniel Obasi, Chiamak Chinasa Obasi

Abstract:

Soil characterization and classification provide the basic information necessary to create a functional evaluation and soil classification schemes. Fertility capability classification (FCC) on the other hand is a technical system that groups the soils according to kinds of problems they present for management of soil physical and chemical properties. This research was carried out in Ebonyi state, southeastern Nigeria, which is an agrarian state and a leading rice producing part of southeastern Nigeria. In order to maximize the soil and enhance the productivity of rice in Ebonyi soils, soil classification, and fertility classification information need to be supplied. The state was grouped into three locations according to their agricultural zones namely; Ebonyi north, Ebonyi central and Ebonyi south representing Abakaliki, Ikwo and Ivo locations respectively. Major rice growing areas of the soils were located and two profile pits were sunk in each of the studied zones from which soils were characterized, classified and fertility capability classification (FCC) developed. Soil classification was done using United State Department of Agriculture (USDA) Soil Taxonomy and correlated with World Reference Base for soil resources. Results obtained classified Abakaliki 1 and Abakaliki 2 as Typic Fluvaquents (Ochric Fluvisols). Ikwo 1 was classified as Vertic Eutrudepts (Eutric Vertisols) while Ikwo 2 was classified as Typic Eutrudepts (Eutric Cambisols). Ivo 1 and Ivo 2 were both classified as Aquic Eutrudepts (Gleyic Leptosols). Fertility capability classification (FCC) revealed that all studied soils had mostly loamy topsoils and subsoils except Ikwo 1 with clayey topsoil. Limitations encountered in the studied soils include; dryness (d), low ECEC (e), low nutrient capital reserve (k) and water logging/ anaerobic condition (gley). Thus, FCC classifications were Ldek for Abakaliki 1 and 2, Ckv for Ikwo 1, LCk for Ikwo 2 while Ivo 1 and 2 were Legk and Lgk respectively.

Keywords: soil classification, soil fertility, limitations, modifiers, Southeastern Nigeria

Procedia PDF Downloads 129
1058 Applying Cognitive Psychology to Education: Translational Educational Science

Authors: Hammache Nadir

Abstract:

The scientific study of human learning and memory is now more than 125 years old. Psychologists have conducted thousands of experiments, correlational analyses, and field studies during this time, in addition to other research conducted by those from neighboring fields. A huge knowledge base has been carefully built up over the decades. Given this backdrop, we may ask ourselves: What great changes in education have resulted from this huge research base? How has the scientific study of learning and memory changed practices in education from those of, say, a century ago? Have we succeeded in building a translational educational science to rival medical science (in which biological knowledge is translated into medical practice) or types of engineering (in which, e.g., basic knowledge in chemistry is translated into products through chemical engineering)? The answer, I am afraid, is rather mixed. Psychologists and psychological research have influenced educational practice, but in fits and starts. After all, some of the great founders of American psychology—William James, Edward L. Thorndike, John Dewey, and others—are also revered as important figures in the history of education. And some psychological research and ideas have made their way into education—for instance, computer-based cognitive tutors for some specific topics have been developed in recent years—and in years past, such practices as teaching machines, programmed learning, and, in higher education, the Keller Plan were all important. These older practices have not been sustained. Was that because they failed or because of a lack of systematic research showing they were effective? At any rate, in 2012, we cannot point to a well-developed translational educational science in which research about learning and memory, thinking and reasoning, and related topics is moved from the lab into controlled field trials (like clinical trials in medicine) and the tested techniques, if they succeed, are introduced into broad educational practice. We are just not there yet, and one question that arises is how we could achieve a translational educational science.

Keywords: affective, education, cognition, pshychology

Procedia PDF Downloads 346
1057 Engineered Bio-Coal from Pressed Seed Cake for Removal of 2, 4, 6-Trichlorophenol with Parametric Optimization Using Box–Behnken Method

Authors: Harsha Nagar, Vineet Aniya, Alka Kumari, Satyavathi B.

Abstract:

In the present study, engineered bio-coal was produced from pressed seed cake, which otherwise is non-edible in origin. The production process involves a slow pyrolysis wherein, based on the optimization of process parameters; a substantial reduction in H/C and O/C of 77% was achieved with respect to the original ratio of 1.67 and 0.8, respectively. The bio-coal, so the product was found to have a higher heating value of 29899 kJ/kg with surface area 17 m²/g and pore volume of 0.002 cc/g. The functional characterization of bio-coal and its subsequent modification was carried out to enhance its active sites, which were further used as an adsorbent material for removal of 2,4,6-Trichlorophenol (2,4,6-TCP) herbicide from the aqueous stream. The point of zero charge for the bio-coal was found to be pH < 3 where its surface is positively charged and attracts anions resulting in the maximum 2, 4, 6-TCP adsorption at pH 2.0. The parametric optimization of the adsorption process was studied based on the Box-Behken design with the desirability approach. The results showed optimum values of adsorption efficiency of 74.04% and uptake capacity of 118.336 mg/g for an initial metal concentration of 250 mg/l and particle size of 0.12 mm at pH 2.0 and 1 g/L of bio-coal loading. Negative Gibbs free energy change values indicated the feasibility of 2,4,6-TCP adsorption on biochar. Decreasing the ΔG values with the rise in temperature indicated high favourability at low temperatures. The equilibrium modeling results showed that both isotherms (Langmuir and Freundlich) accurately predicted the equilibrium data, which may be attributed to the different affinity of the functional groups of bio-coal for 2,4,6-TCP removal. The possible mechanism for 2,4,6-TCP adsorption is found to be physisorption (pore diffusion, p*_p electron donor-acceptor interaction, H-bonding, and van der Waals dispersion forces) and chemisorption (phenolic and amine groups chemical bonding) based on the kinetics data modeling.

Keywords: engineered biocoal, 2, 4, 6-trichlorophenol, box behnken design, biosorption

Procedia PDF Downloads 117
1056 Lightweight Ceramics from Clay and Ground Corncobs

Authors: N.Quaranta, M. Caligaris, R. Varoli, A. Cristobal, M. Unsen, H. López

Abstract:

Corncobs are agricultural wastes and they can be used as fuel or as raw material in different industrial processes like cement manufacture, contaminant adsorption, chemical compound synthesis, etc. The aim of this work is to characterize this waste and analyze the feasibility of its use as a pore-forming material in the manufacture of lightweight ceramics for the civil construction industry. The characterization of raw materials is carried out by using various techniques: electron diffraction analysis X-ray, differential and gravimetric thermal analyses, FTIR spectroscopy, ecotoxicity evaluation, among others. The ground corncobs, particle size less than 2 mm, are mixed with clay up to 30% in volume and shaped by uniaxial pressure of 25 MPa, with 6% humidity, in moulds of 70mm x 40mm x 18mm. Then the green bodies are heat treated at 950°C for two hours following the treatment curves used in ceramic industry. The ceramic probes are characterized by several techniques: density, porosity and water absorption, permanent volumetric variation, loss on ignition, microscopies analysis, and mechanical properties. DTA-TGA analysis of corncobs shows in the range 20°-250°C a small loss in TGA curve and exothermic peaks at 250°-500°C. FTIR spectrum of the corncobs sample shows the characteristic pattern of this kind of organic matter with stretching vibration bands of adsorbed water, methyl groups, C–O and C–C bonds, and the complex form of the cellulose and hemicellulose glycosidic bonds. The obtained ceramic bodies present external good characteristics without loose edges and adequate properties for the market requirements. The porosity values of the sintered pieces are higher than those of the reference sample without waste addition. The results generally indicate that it is possible to use corncobs as porosity former in ceramic bodies without modifying the usual sintering temperatures employed in the industry.

Keywords: ceramic industry, biomass, recycling, hemicellulose glycosidic bonds

Procedia PDF Downloads 405
1055 Phytoremediation of Textile Wastewater Laden with 1,4-Dioxane Using Eichhornia crassipes: A Sustainable Development Approach

Authors: Hadeer Ibrahiem, Mahmoud Nasr, Masarrat M. M. Migahid, Mohamed A. Ghazy

Abstract:

The release of textile wastewater loaded with 1,4 dioxane into aquatic ecosystems has been associated with various human health risks and adverse environmental impacts. In parallel, phytoremediation has been recently employed to treat highly polluted wastewater because various plant species tend to produce certain enzymes as a defense mechanism against a toxic environment. To our best knowledge, this study is the first to investigate the ability of phytoremediation using Eichhornia crassipes for the removal of various pollutants, including 1,4 dioxane, from textile wastewater. A phytoremediation system composed of Eichhornia crassipes was acclimatized for 10 d, and then operated in four lab-scale hydroponic systems, viz., negative control, positive control, and two different 1,4 dioxane concentration (400 and 500 mg/L). After 11 d of operation, the phytoremediation system achieved removal efficiencies of 67.5±3.4%, 89.4±4.4%, 83.6±3.8% for 1,4 dioxane (at initial concentration 400 mg/L), chemical oxygen demand (COD) (at initial concentration 679 mg/L), and cumulative heavy metals, respectively. The removal of these pollutants was mainly supported by the phyto-sorption and phytodegradation mechanisms. The economic feasibility of this phytoremediation system was validated by estimating the capital and operating costs, requiring 4.6 USD for the treatment of 1 m3 textile wastewater. The study concluded that the phytoremediation process could be used as a practical and economical approach to treat textile wastewater laden with various organic and inorganic pollutants. Due to the observed pollution reduction and human health protection, the study objectives would fulfill the targets of SDG 3 “Good Health and Well-being” and SDG 6 “Clean Water and Sanitation”. Further studies are required to (i) investigate the ability of plant species to withstand higher concentrations of 1,4 dioxane for an extended operation time and (ii) understand the biochemical pathways for the degradation of 1,4 dioxane via the action of plant enzymes and the associated microbial community.

Keywords: 1, 4 dioxane concentrations, hydrophytes, Eichhornia crassipes, phytoremediation effectiveness, SDGs, textile industrial effluent

Procedia PDF Downloads 101
1054 Production of Vermiwash from Medicinal Plants and Its Potential Use as Fungicide against the Alternaria Alternata (fr.) Keissl. Affecting Cucumber (Cucumis sativus L.) in Guyana

Authors: Abdullah Ansari, Sinika Rambaran, Sirpaul Jaikishun

Abstract:

Vermiwash could be used to enhance plant productivity and resistance to some harmful plant pathogens, as well as provide benefit through the disposal of waste matter. Alternaria rot caused by the fungus Alternaria alternata (Fr.) Keissl., is a common soil-borne pathogen that results in postharvest fruit rot of cucumbers, peppers and other cash crops. The production and distribution of Cucumis sativus L. (cucumber) could be severely affected by Alternaria rot. Fungicides are the traditional treatment however; they are not only expensive but can also cause environmental and health problems. Vermiwash was prepared from various medicinal plants (Ocimum tenuiflorum L. {Tulsi}, Azadirachta indica A. Juss. {neem}, Cymbopogon citratus (DC. ex Nees) Stapf. {lemon grass} and Oryza sativa L. {paddy straw} and applied, in vitro, to A. alternata to investigate their effectiveness as organic alternatives to traditional fungicides. All of the samples of vermiwash inhibited the growth of A. alternata. The inhibitive effects on the fungus appeared most effective when A. indica and O. tenuiflorum were used in the production of the vermiwash. Using the serial dilution method, vermiwash from O. tenuiflorum showed the highest percent of inhibition (93.2%), followed by C. citratus (74.7%), A. indica (68.7%), O. sativa, combination, and combination without worms. Using the sterile disc diffusion method, all of the samples produced zones of inhibition against A. alternata. Vermiwash from A. indica produced a zone of inhibition, averaging 15.3mm, followed by O. tenuiflorum (14.0mm), combination without worms, combination, C. citratus and O. sativa. Nystatin produced a zone of inhibition of 10mm. The results indicate that vermiwash is not simply an organic alternative to more traditional chemical fungicides, but it may in fact be a better and more effective product in treating certain fungal plant infections, particularly A. alternata.

Keywords: vermiwash, earthworms, soil, bacteria, alternaria alternata, antifungal, antibacterial

Procedia PDF Downloads 252
1053 Use of an Insecticidal-Iridovirus Kinase towards the Development of Aphid-Resistant Plants

Authors: Saranya Ganapathy, Megha N. Parajulee, Michael San Francisco, Hong Zhang

Abstract:

Insect pests are a serious threat to agricultural productivity. Use of chemical pesticides, the predominant control method thus far, has resulted in environmental damage, pest resurgence, and negative effects on non-target species. Genetically modified (GM) crops offer a promising alternative, and Bacillus thuringiensis endotoxin genes have played a major role in this respect. However, to overcome insect tolerance issues and to broaden the target range, it is critical to identify alternative-insecticidal toxins working through novel mechanisms. Our research group has identified a kinase from Chilo iridescent virus (CIV; Family Iridoviridae) that has insecticidal activity and designated it as ISTK (Iridovirus Serine/Threonine Kinase). A 35 kDa truncated form of ISTK, designated iridoptin, was obtained during expression and purification of ISTK in the yeast system. This yeast-expressed CIV toxin induced 50% mortality in cotton aphids and 100% mortality in green peach aphids (GPA). Optimized viral genes (o-ISTK and o-IRI) were stably transformed into the model plant, Arabidopsis. PCR analysis of genomic DNA confirmed the presence of the gene insert (oISTK/oIRI) in selected transgenic lines. The further screening was performed to identify the PCR positive lines that showed expression of respective toxins at the polypeptide level using Western blot analysis. The stable lines expressing either of these two toxins induced moderate to very high mortality in GPAs and significantly affected GPA development and fecundity. The aphicidal potential of these transgenic Arabidopsis lines will be presented.

Keywords: Chilo iridescent virus, insecticidal toxin, iridoviruses, plant-incorporated protectants, serine/threonine kinase

Procedia PDF Downloads 286
1052 Ideas About Varroa Destructor Reproduction in the Honey Bees (Hymenoptera: Apidae)

Authors: William Ramirez-Benavides

Abstract:

The mite Varroa destructor Anderson & Trueman (Mesostigmata: Varroidae), is an exclusive hematophagous parasite of the Apis honey bees (Apidae: Hymenoptera). The early phoretic female mites have multiple small inactivated oocytes. Consequently, for the initial growth and vitellogenesis of the oocytes, the mother mite must feed on the hemolymph of the host, as a unique food source, by taking intermittently variable number of blood meals: 1. During the phoretic phase, to initiate vitellogenesis of the terminal oocyte, 2. From a freshly capped bee cell with a bee larva, up to the apolysis stage, to complete vitellogenesis and embryogenesis of the terminal oocyte, and 3. From all pupal stages, up to the imago stage, to induce oogenesis and vitellogenesis of the would-be nonembryonic female eggs. Additionally, oogenesis and vitellogenesis expressions in Varroa destructor and other Varroidae varies according to environmental conditions, e.g., chemical attractions produced by the adult bee and larvae, race of bees, sex of the larva, developmental period of the bee larva, food quality and quantity, and superparasitism (several cofoundressess). Also, the feeding stimuli obtained from the host hemolymph, indirectly regulate the reproductive physiology of the mite, by inducing different vitellogenin expressions, the production of a male egg first in the sequence followed by vitellogenesis of the would-be female eggs during the pupal stages. Furthermore, the different uptakes of hemolymph from the host, also indirectly induce the production of the male egg first in the sequence, local mate competition (LMC) and variable adaptive female sex ratios in the broods, especially when superparasitism occurs. Consequently, reproduction in Varroa destructor, and probably in other Varroidae, depends exclusively on feeding in the hemolymph of the bee host, even during the phoretic phase, the prepupal stages and during the pupal stages; and that, the feeding factors are common syndromes in other Varroidae.

Keywords: oogenesis, sex determination, varroa destructor, vitellogenesis

Procedia PDF Downloads 16
1051 Structural Elucidation of Intact Rough-Type Lipopolysaccharides using Field Asymmetric Ion Mobility Spectrometry and Kendrick Mass Defect Plots

Authors: Abanoub Mikhael, Darryl Hardie, Derek Smith, Helena Petrosova, Robert Ernst, David Goodlett

Abstract:

Lipopolysaccharide (LPS) is a hallmark virulence factor of Gram-negative bacteria. It is a complex, structurally het- erogeneous mixture due to variations in number, type, and position of its simplest units: fatty acids and monosaccharides. Thus, LPS structural characterization by traditional mass spectrometry (MS) methods is challenging. Here, we describe the benefits of field asymmetric ion mobility spectrometry (FAIMS) for analysis of intact R-type lipopolysaccharide complex mixture (lipooligo- saccharide; LOS). Structural characterization was performed using Escherichia coli J5 (Rc mutant) LOS, a TLR4 agonist widely used in glycoconjugate vaccine research. FAIMS gas phase fractionation improved the (S/N) ratio and number of detected LOS species. Additionally, FAIMS allowed the separation of overlapping isobars facilitating their tandem MS characterization and un- equivocal structural assignments. In addition to FAIMS gas phase fractionation benefits, extra sorting of the structurally related LOS molecules was further accomplished using Kendrick mass defect (KMD) plots. Notably, a custom KMD base unit of [Na-H] created a highly organized KMD plot that allowed identification of interesting and novel structural differences across the different LOS ion families, i.e., ions with different acylation degrees, oligosaccharides composition, and chemical modifications. Defining the composition of a single LOS ion by tandem MS along with the organized KMD plot structural network was sufficient to deduce the composition of 181 LOS species out of 321 species present in the mixture. The combination of FAIMS and KMD plots allowed in-depth characterization of the complex LOS mixture and uncovered a wealth of novel information about its structural variations.

Keywords: lipopolysaccharide, ion mobility MS, Kendrick mass defect, Tandem mass spectrometry

Procedia PDF Downloads 71
1050 Brown Macroalgae L. hyperborea as Natural Cation Exchanger and Electron Donor for the Treatment of a Zinc and Hexavalent Chromium Containing Galvanization Wastewater

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The electroplating industry requires a lot of process water, which generates a large volume of wastewater loaded with heavy metals. Two different wastewaters were collected in a company’s wastewater treatment plant, one after the use of zinc in the metal plating process and the other after the use of chromium. The main characteristics of the Zn(II) and Cr(VI) wastewaters are: pH = 6.7/5.9; chemical oxygen demand = 55/<5 mg/L; sodium, potassium, magnesium and calcium ions concentrations of 326/28, 4/28, 11/7 and 46/37 mg/L, respectively; zinc(II) = 11 mg/L and Cr(VI) = 39 mg/L. Batch studies showed that L. hyperborea can be established as a natural cation exchanger for heavy metals uptake mainly due to the presence of negatively charged functional groups in the surface of the biomass. Beyond that, L. hyperborea can be used as a natural electron donor for hexavalent chromium reduction to trivalent chromium at acidic medium through the oxidation of the biomass, and Cr(III) can be further bound to the negatively charged functional groups. The uptake capacity of Cr(III) by the oxidized biomass after Cr(VI) reduction was higher than by the algae in its original form. This can be attributed to the oxidation of the biomass during Cr(VI) reduction, turning other active sites available for Cr(III) binding. The brown macroalgae Laminaria hyperborea was packed in a fixed-bed column in order to evaluate the feasibility of the system for the continuous treatment of the two galvanization wastewaters. The column, with an internal diameter of 4.8 cm, was packed with 59 g of algae up to a bed height of 27 cm. The operation strategy adopted for the treatment of the two wastewaters consisted in: i) treatment of the Zn(II) wastewater in the first sorption cycle; ii) desorption of pre-loaded Zn(II) using an 1.0 M HCl solution; iii) treatment of the Cr(VI) wastewater, taking advantage of the acidic conditions of the column after the desorption cycle, for the reduction of the Cr(VI) to Cr(III), in the presence of the electrons resulting from the biomass oxidation. This cycle ends when all the oxidizing groups are used.

Keywords: biosorption, brown marine macroalgae, zinc, chromium

Procedia PDF Downloads 323
1049 From Homogeneous to Phase Separated UV-Cured Interpenetrating Polymer Networks: Influence of the System Composition on Properties and Microstructure

Authors: Caroline Rocco, Feyza Karasu, Céline Croutxé-Barghorn, Xavier Allonas, Maxime Lecompère, Gérard Riess, Yujing Zhang, Catarina Esteves, Leendert van der Ven, Rolf van Benthem Gijsbertus de With

Abstract:

Acrylates are widely used in UV-curing technology. Their high reactivity can, however, limit their conversion due to early vitrification. In addition, the free radical photopolymerization is known to be sensitive to oxygen inhibition leading to tacky surfaces. Although epoxides can lead to full polymerization, they are sensitive to humidity and exhibit low polymerization rate. To overcome the intrinsic limitations of both classes of monomers, Interpenetrating Polymer Networks (IPNs) can be synthesized. They consist of at least two cross linked polymers which are permanently entangled. They can be achieved under thermal and/or light induced polymerization in one or two steps approach. IPNs can display homogeneous to heterogeneous morphologies with various degrees of phase separation strongly linked to the monomer miscibility and also synthesis parameters. In this presentation, we synthesize UV-cured methacrylate - epoxide based IPNs with different chemical compositions in order to get a better understanding of their formation and phase separation. Miscibility before and during the photopolymerization, reaction kinetics, as well as mechanical properties and morphology have been investigated. The key parameters controlling the morphology and the phase separation, namely monomer miscibility and synthesis parameters have been identified. By monitoring the stiffness changes on the film surface, atomic force acoustic microscopy (AFAM) gave, in conjunction with polymerization kinetic profiles and thermomechanical properties, explanations and corroborated the miscibility predictions. When varying the methacrylate / epoxide ratio, it was possible to move from a miscible and highly-interpenetrated IPN to a totally immiscible and phase-separated one.

Keywords: investigation of properties and morphology, kinetics, phase separation, UV-cured IPNs

Procedia PDF Downloads 367
1048 Fractionation of Biosynthetic Mixture of Gentamicins by Reactive Extraction

Authors: L. Kloetzer, M. Poştaru, A. I. Galaction, D. Caşcaval

Abstract:

Gentamicin is an aminoglycoside antibiotic industrially obtained by biosynthesis of Micromonospora purpurea or echinospora, the product being a complex mixture of components with very similar structures. Among them, three exhibit the most important biological activity: gentamicins C1, C1a, C2, and C2a. The separation of gentamicin from the fermentation broths at industrial scale is rather difficult and it does not allow the fractionation of the complex mixture of gentamicins in order to increase the therapeutic activity of the product. The aim of our experiments is to analyze the possibility to selectively separate the less active gentamicin, namely gentamicin C1, from the biosynthetic mixture by reactive extraction with di-(2-ethylhexyl) phosphoric acid (D2EHPA) dissolved in dichloromethane, followed selective re-extraction of the most active gentamicins C1a, C2, and C2a. The experiments on the reactive extraction of gentamicins indicated the possibility to separate selectively the gentamicin C1 from the mixture obtained by biosynthesis. The extraction selectivity is positively influenced by increasing the pH-value of an aqueous solution and by using a D2EHPA concentration in organic phase closer to the value needed for an equimolecular ratio between the extractant and this gentamicin. For quantifying the selectivity of separation, the selectivity factor, calculated as the ratio between the degree of reactive extraction of gentamicin C1 and the overall extraction degree of gentamicins were used. The possibility to remove the gentamicin C1 at an extractant concentration of 10 g l-1 and pH = 8 is presented. In these conditions, it was obtained the maximum value of the selectivity factor of 2.14, which corresponds to the modification of the gentamicin C1 concentration from 31.92% in the biosynthetic mixture to 72% in the extract. The re-extraction of gentamicins C1, C1a, C2, and C2a with sulfuric acid from the extract previously obtained by reactive extraction (mixture A – extract obtained by non-selective reactive extraction; mixture B – extract obtained by selective reactive extraction) allows for separating selectively the most active gentamicins C1a, C2, and C2a. For recovering only the active gentamicins C1a, C2, and C2a, the re-extraction must be carried out at very low acid concentrations, far below those corresponding to the stoichiometry of its chemical reactions with these gentamicins. Therefore, the mixture resulted by re-extraction contained 92.6% gentamicins C1a, C2, and C2a. By bringing together the aqueous solutions obtained by reactive extraction and re-extraction, the overall content of the active gentamicins in the final product becomes 89%, their loss reaching 0.3% related to the initial biosynthetic product.

Keywords: di-(2-ethylhexyl) phosphoric acid, gentamicin, reactive extraction, selectivity factor

Procedia PDF Downloads 324