Search results for: carbon nanotubes network
3971 Culture Medium Design Based on Whey for the Growth and Bacteriocin Production of Strains of Pediococcus pentosaceus
Authors: Carolina Gutierrez-Cortes, Hector Suarez, Gustavo Buitrago
Abstract:
Bacteriocins are antimicrobial peptides produced by bacteria as a competitive strategy for substrate and habitat. Those peptides have a potential use as food biopreservatives due to their antimicrobial activity against foodborne pathogens, avoiding the use of additives that can be harmful to consumers. The industrial production of bacteriocins is currently expensive; one of the options to be competitive is the development of economic culture media, for example, with the use of agro-industrial wastes such as whey. This study evaluated the growth and production of bacteriocins from four strains: Pediococcus pentosaceus 63, Pediococcus pentosaceus 145, Pediococcus pentosaceus 146 and Pediococcus pentosaceus 147 isolated from ‘minas cheese’ (artisanal cheese made from raw milk in the state of Minas Gerais, Brazil) in order to select a strain with growth at high rates and higher antimicrobial activity against Listeria monocytogenes 104 after incubation on the culture medium designed with whey and other components. The media used were: MRS broth, modified MRS broth (using different sources of carbon and nitrogen and different amounts of micronutrients) and a culture medium designed by a factorial design using whey and other components. The final biomass concentrations of the four strains in MRS broth after 24 hours of incubation were very similar 9.25, 9.33, 9.25 and 9.22 (log CFU/mL) for P. pentosaceus 63, P. pentosaceus 145, P. pentosaceus 146 and P. pentosaceus 147 respectively. In the same assays, antimicrobial activity of 3200 AU/mL for the first three and of 12800 AU/mL for P. pentosaceus 147 were obtained. Culture of P. pentosaceus 63 on modified MRS broth, showed the effect of some sources of carbon on the activity of bacteriocin, obtaining 12800 AU/mL with dextrose and 25600 AU/mL with maltose. Cultures of P. pentosaceus 145, 146 and 147 with these same sugars presented activity of 12800 AU/mL. It was observed that the modified MRS medium using whey increased the antimicrobial activity of the strains at 16000, 6400, 16000 and 19200 AU/mL for each strain respectively, keeping the biomass at values close to 9 log units. About nitrogen sources, it was observed that the combination of peptone (10 g /L), meat extract (10 g/L) and yeast extract (5 g/L) promoted the highest activity (12800 AU/mL), and in all cases MgSO4, MnSO4, K2HPO4 and ammonium citrate at low concentrations adversely affected bacteriocin production. Because P. pentosaceus 147 showed the highest antimicrobial activity in the presence of whey, it was used to evaluate the culture medium (peptone (10 g/L), meat extract (8 g/L), yeast extract (2 g/L), Tween® 80 (1 g/L), ammonium citrate (2 g/L), sodium acetate (5 g/L), MgSO4 (0.2 g/L), MnSO4 (0.04 g/L)). With the designed medium added with whey, 9.34 log units of biomass concentration and 19200 AU/mL were achieved for P. pentosaceus 147. The above suggest that the new medium promotes the antimicrobial activity of P. pentosaceus 147 allowing the use of an economic medium using whey.Keywords: antimicrobial activity, bacteriocins, pediococcus, whey
Procedia PDF Downloads 2303970 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning
Authors: Shayan Mohajer Hamidi
Abstract:
Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning
Procedia PDF Downloads 773969 Modeling of Drug Distribution in the Human Vitreous
Authors: Judith Stein, Elfriede Friedmann
Abstract:
The injection of a drug into the vitreous body for the treatment of retinal diseases like wet aged-related macular degeneration (AMD) is the most common medical intervention worldwide. We develop mathematical models for drug transport in the vitreous body of a human eye to analyse the impact of different rheological models of the vitreous on drug distribution. In addition to the convection diffusion equation characterizing the drug spreading, we use porous media modeling for the healthy vitreous with a dense collagen network and include the steady permeating flow of the aqueous humor described by Darcy's law driven by a pressure drop. Additionally, the vitreous body in a healthy human eye behaves like a viscoelastic gel through the collagen fibers suspended in the network of hyaluronic acid and acts as a drug depot for the treatment of retinal diseases. In a completely liquefied vitreous, we couple the drug diffusion with the classical Navier-Stokes flow equations. We prove the global existence and uniqueness of the weak solution of the developed initial-boundary value problem describing the drug distribution in the healthy vitreous considering the permeating aqueous humor flow in the realistic three-dimensional setting. In particular, for the drug diffusion equation, results from the literature are extended from homogeneous Dirichlet boundary conditions to our mixed boundary conditions that describe the eye with the Galerkin's method using Cauchy-Schwarz inequality and trace theorem. Because there is only a small effective drug concentration range and higher concentrations may be toxic, the ability to model the drug transport could improve the therapy by considering patient individual differences and give a better understanding of the physiological and pathological processes in the vitreous.Keywords: coupled PDE systems, drug diffusion, mixed boundary conditions, vitreous body
Procedia PDF Downloads 1393968 Accessibility Analysis of Urban Green Space in Zadar Settlement, Croatia
Authors: Silvija Šiljeg, Ivan Marić, Ante Šiljeg
Abstract:
The accessibility of urban green spaces (UGS) is an integral element in the quality of life. Due to rapid urbanization, UGS studies have become a key element in urban planning. The potential benefits of space for its inhabitants are frequently analysed. A functional transport network system and the optimal spatial distribution of urban green surfaces are the prerequisites for maintaining the environmental equilibrium of the urban landscape. An accessibility analysis was conducted as part of the Urban Green Belts Project (UGB). The development of a GIS database for Zadar was the first step in generating the UGS accessibility indicator. Data were collected using the supervised classification method of multispectral LANDSAT images and manual vectorization of digital orthophoto images (DOF). An analysis of UGS accessibility according to the ANGst standard was conducted in the first phase of research. The accessibility indicator was generated on the basis of seven objective measurements, which included average UGS surface per capita and accessibility according to six functional levels of green surfaces. The generated indicator was compared with subjective measurements obtained by conducting a survey (718 respondents) within statistical units. The collected data reflected individual assessments and subjective evaluations of UGS accessibility. This study highlighted the importance of using objective and subjective measures in the process of understanding the accessibility of urban green surfaces. It may be concluded that when evaluating UGS accessibility, residents emphasize the immediate residential environment, ignoring higher UGS functional levels. It was also concluded that large areas of UGS within a city do not necessarily generate similar satisfaction with accessibility. The heterogeneity of output results may serve as guidelines for the further development of a functional UGS city network.Keywords: urban green spaces (UGS), accessibility indicator, subjective and objective measurements, Zadar
Procedia PDF Downloads 2653967 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches
Authors: Vahid Nourani, Atefeh Ashrafi
Abstract:
Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant
Procedia PDF Downloads 1323966 Economic Analysis of Policy Instruments for Energy Efficiency
Authors: Etidel Labidi
Abstract:
Energy efficiency improvement is one of the means to reduce energy consumption and carbon emissions. Recently, some developed countries have implemented the tradable white certificate scheme (TWC) as a new policy instrument based on market approach to support energy efficiency improvements. The major focus of this paper is to compare the White Certificates (TWC) scheme as an innovative policy instrument for energy efficiency improvement to other policy instruments: energy taxes and regulations setting a minimum level of energy efficiency. On the basis of our theoretical discussion and numerical simulation, we show that the white certificates system is the most interesting policy instrument for saving energy because it generates the most important level of energy savings and the least increase in energy service price.Keywords: energy savings, energy efficiency, energy policy, white certificates
Procedia PDF Downloads 3363965 A Comprehensive Study and Evaluation on Image Fashion Features Extraction
Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen
Abstract:
Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.Keywords: convolutional neural network, feature representation, image processing, machine modelling
Procedia PDF Downloads 1433964 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure
Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic
Abstract:
Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth
Procedia PDF Downloads 933963 Membranes for Direct Lithium Extraction (DLE)
Authors: Amir Razmjou, Elika Karbassi Yazdi
Abstract:
Several direct lithium extraction (DLE) technologies have been developed for Li extraction from different brines. Although laboratory studies showed that they can technically recover Li to 90%, challenges still remain in developing a sustainable process that can serve as a foundation for the lithium dependent low-carbon economy. There is a continuing quest for DLE technologies that do not need extensive pre-treatments, fewer materials, and have simplified extraction processes with high Li selectivity. Here, an overview of DLE technologies will be provided with an emphasis on the basic principles of the materials’ design for the development of membranes with nanochannels and nanopores with Li ion selectivity. We have used a variety of building blocks such as nano-clay, organic frameworks, Graphene/oxide, MXene, etc., to fabricate the membranes. Molecular dynamic simulation (MD) and density functional theory (DFT) were used to reveal new mechanisms by which high Li selectivity was obtained.Keywords: lithium recovery, membrane, lithium selectivity, decarbonization
Procedia PDF Downloads 1143962 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1353961 Thermomechanical Damage Modeling of F114 Carbon Steel
Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi
Abstract:
The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.Keywords: thermo-mechanical fatigue, failure, numerical simulation, fracture, damage
Procedia PDF Downloads 3953960 Temperature Dependent Tribological Properties of Graphite
Authors: Pankaj Kumar Das, Niranjan Kumar, Prasun Chakraborti
Abstract:
Temperature dependent tribologiocal properties of nuclear grade turbostatic graphite were studied using 100Cr6 steel counterbody. High value of friction coefficient (0.25) and high wear loss was observed at room temperature and this value decreased to 0.1 at 150oC. Consequently, wear loss is also decreased. Such behavior is explained by oxidation/vaporization of graphite and water molecules. At room temperature, the adsorbed water in graphite does not decompose and effect of passivation mechanism does not work. However, at 150oC, the water decomposed into OH, atomic hydrogen and oxygen which efficiently passivates the carbon dangling bonds. This effect is known to decrease the energy of the contact and protect against abrasive wear.Keywords: high temperature tribology, oxidation, turbostratic graphite, wear
Procedia PDF Downloads 5193959 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation
Procedia PDF Downloads 3503958 Physico-Chemical Properties of Silurian Hot Shale in Ahnet Basin, Algeria: Case Study Well ASS-1
Authors: Mohamed Mehdi Kadri
Abstract:
The prediction of hot shale interval in Silurian formation in a well drilled vertically in Ahnet basin Is by logging Data (Resistivity, Gamma Ray, Sonic) with the calculation of total organic carbon (TOC) using ∆ log R Method. The aim of this paper is to present Physico-chemical Properties of Hot Shale using IR spectroscopy and gas chromatography-mass spectrometry analysis; this mixture of measurements, evaluation and characterization show that the hot shale interval located in the lower of Silurian, the molecules adsorbed at the surface of shale sheet are significantly different from petroleum hydrocarbons this result are also supported with gas-liquid chromatography showed that the study extract is a hydroxypropyl.Keywords: physic-chemical analysis, reservoirs characterization, sweet window evaluation, Silurian shale, Ahnet basin
Procedia PDF Downloads 1033957 Exploring the Potential of PVDF/CCB Composites Filaments as Potential Materials in Energy Harvesting Applications
Authors: Fawad Ali, Mohammad Albakri
Abstract:
The increasing demand for advanced multifunctional materials has led to significant research in polymer composites, particularly polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composites. This paper explores the development and application of PVDF/CCB conducting electrodes for energy harvesting applications. PVDF is renowned for its chemical resistance, thermal stability, and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications, and discusses challenges in optimizing these materials for industrial use and future development. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies. This paper explores the development and application of polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composite conducting electrodes for energy harvesting applications. PVDF is renowned for its piezoelectric and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies.Keywords: additive manufacturing, polyvinylidene fluoride (PVDF), conducting polymer composite, energy harvesting, materials characterization
Procedia PDF Downloads 243956 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System
Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu
Abstract:
In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission
Procedia PDF Downloads 1463955 A Comparative Semantic Network Study between Chinese and Western Festivals
Authors: Jianwei Qian, Rob Law
Abstract:
With the expansion of globalization and the increment of market competition, the festival, especially the traditional one, has demonstrated its vitality under the new context. As a new tourist attraction, festivals play a critically important role in promoting the tourism economy, because the organization of a festival can engage more tourists, generate more revenues and win a wider media concern. However, in the current stage of China, traditional festivals as a way to disseminate national culture are undergoing the challenge of foreign festivals and the related culture. Different from those special events created solely for developing economy, traditional festivals have their own culture and connotation. Therefore, it is necessary to conduct a study on not only protecting the tradition, but promoting its development as well. This study conducts a comparative study of the development of China’s Valentine’s Day and Western Valentine’s Day under the Chinese context and centers on newspaper reports in China from 2000 to 2016. Based on the literature, two main research focuses can be established: one is concerned about the festival’s impact and the other is about tourists’ motivation to engage in a festival. Newspaper reports serve as the research discourse and can help cover the two focal points. With the assistance of content mining techniques, semantic networks for both Days are constructed separately to help depict the status quo of these two festivals in China. Based on the networks, two models are established to show the key component system of traditional festivals in the hope of perfecting the positive role festival tourism plays in the promotion of economy and culture. According to the semantic networks, newspaper reports on both festivals have similarities and differences. The difference is mainly reflected in its cultural connotation, because westerners and Chinese may show their love in different ways. Nevertheless, they share more common points in terms of economy, tourism, and society. They also have a similar living environment and stakeholders. Thus, they can be promoted together to revitalize some traditions in China. Three strategies are proposed to realize the aforementioned aim. Firstly, localize international festivals to suit the Chinese context to make it function better. Secondly, facilitate the internationalization process of traditional Chinese festivals to receive more recognition worldwide. Finally, allow traditional festivals to compete with foreign ones to help them learn from each other and elucidate the development of other festivals. It is believed that if all these can be realized, not only the traditional Chinese festivals can obtain a more promising future, but foreign ones are the same as well. Accordingly, the paper can contribute to the theoretical construction of festival images by the presentation of the semantic network. Meanwhile, the identified features and issues of festivals from two different cultures can enlighten the organization and marketing of festivals as a vital tourism activity. In the long run, the study can enhance the festival as a key attraction to keep the sustainable development of both the economy and the society.Keywords: Chinese context, comparative study, festival tourism, semantic network analysis, valentine’s day
Procedia PDF Downloads 2353954 Life Expansion: Visual Autobiography, Identity, Representation and the Degrees of Fictionalization of the Self on Instagram
Authors: Pablo De Macedo Silveira Vallejos
Abstract:
This article aims to observe autobiographical and visual narrative practices among users on Instagram. In this way, the work proposes to reflect on how image resources are used to develop edited representations of the self in that social network. The research aims to explore the uses of editing and the degrees of fictionalization present on Instagram.Keywords: autobiography, visual narratives, representation, fiction, social media
Procedia PDF Downloads 773953 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 1323952 A Settlement Strategy for Health Facilities in Emerging Countries: A Case Study in Brazil
Authors: Domenico Chizzoniti, Monica Moscatelli, Letizia Cattani, Piero Favino, Luca Preis
Abstract:
A settlement strategy is to anticipate and respond the needs of existing and future communities through the provision of primary health care facilities in marginalized areas. Access to a health care network is important to improving healthcare coverage, often lacking, in developing countries. The study explores that a good sanitary system strategy of rural contexts brings advantages to an existing settlement: improving transport, communication, water and social facilities. The objective of this paper is to define a possible methodology to implement primary health care facilities in disadvantaged areas of emerging countries. In this research, we analyze the case study of Lauro de Freitas, a municipality in the Brazilian state of Bahia, part of the Metropolitan Region of Salvador, with an area of 57,662 km² and 194.641 inhabitants. The health localization system in Lauro de Freitas is an integrated process that involves not only geographical aspects, but also a set of factors: population density, epidemiological data, allocation of services, road networks, and more. Data were collected also using semi-structured interviews and questionnaires to the local population. Synthesized data suggest that moving away from the coast where there is the greatest concentration of population and services, a network of primary health care facilities is able to improve the living conditions of small-dispersed communities. Based on the health service needs of populations, we have developed a methodological approach that is particularly useful in rural and remote contexts in emerging countries.Keywords: healthcare, settlement strategy, urban health, rural
Procedia PDF Downloads 3713951 Using a Card Game as a Tool for Developing a Design
Authors: Matthias Haenisch, Katharina Hermann, Marc Godau, Verena Weidner
Abstract:
Over the past two decades, international music education has been characterized by a growing interest in informal learning for formal contexts and a "compositional turn" that has moved from closed to open forms of composing. This change occurs under social and technological conditions that permeate 21st-century musical practices. This forms the background of Musical Communities in the (Post)Digital Age (MusCoDA), a four-year joint research project of the University of Erfurt (UE) and the University of Education Karlsruhe (PHK), funded by the German Federal Ministry of Education and Research (BMBF). Both explore songwriting processes as an example of collective creativity in (post)digital communities, one in formal and the other in informal learning contexts. Collective songwriting will be studied from a network perspective, that will allow us to view boundaries between both online and offline as well as formal and informal or hybrid contexts as permeable and to reconstruct musical learning practices. By comparing these songwriting processes, possibilities for a pedagogical-didactic interweaving of different educational worlds are highlighted. Therefore, the subproject of the University of Erfurt investigates school music lessons with the help of interviews, videography, and network maps by analyzing new digital pedagogical and didactic possibilities. In the first step, the international literature on songwriting in the music classroom was examined for design development. The analysis focused on the question of which methods and practices are circulating in the current literature. Results from this stage of the project form the basis for the first instructional design that will help teachers in planning regular music classes and subsequently reconstruct musical learning practices under these conditions. In analyzing the literature, we noticed certain structural methods and concepts that recur, such as the Building Blocks method and the pre-structuring of the songwriting process. From these findings, we developed a deck of cards that both captures the current state of research and serves as a method for design development. With this deck of cards, both teachers and students themselves can plan their individual songwriting lessons by independently selecting and arranging topic, structure, and action cards. In terms of science communication, music educators' interactions with the card game provide us with essential insights for developing the first design. The overall goal of MusCoDA is to develop an empirical model of collective musical creativity and learning and an instructional design for teaching music in the postdigital age.Keywords: card game, collective songwriting, community of practice, network, postdigital
Procedia PDF Downloads 653950 Policy Initiatives That Increase Mass-Market Participation of Fuel Cell Electric Vehicles
Authors: Usman Asif, Klaus Schmidt
Abstract:
In recent years, the development of alternate fuel vehicles has helped to reduce carbon emissions worldwide. As the number of vehicles will continue to increase in the future, the energy demand will also increase. Therefore, we must consider automotive technologies that are efficient and less harmful to the environment in the long run. Battery Electric Vehicles (BEVs) have gained popularity in recent years because of their lower maintenance, lower fuel costs, and lower carbon emissions. Nevertheless, BEVs show several disadvantages, such as slow charging times and lower range than traditional combustion-powered vehicles. These factors keep many people from switching to BEVs. The authors of this research believe that these limitations can be overcome by using fuel cell technology. Fuel cell technology converts chemical energy into electrical energy from hydrogen power and therefore serves as fuel to power the motor and thus replacing heavy lithium batteries that are expensive and hard to recycle. Also, in contrast to battery-powered electric vehicle technology, Fuel Cell Electric Vehicles (FCEVs) offer higher ranges and lower fuel-up times and therefore are more competitive with electric vehicles. However, FCEVs have not gained the same popularity as electric vehicles due to stringent legal frameworks, underdeveloped infrastructure, high fuel transport, and storage costs plus the expense of fuel cell technology itself. This research will focus on the legal frameworks for hydrogen-powered vehicles, and how a change in these policies may affect and improve hydrogen fueling infrastructure and lower hydrogen transport and storage costs. These policies may also facilitate reductions in fuel cell technology costs. In order to attain a better framework, a number of countries have developed conceptual roadmaps. These roadmaps have set out a series of objectives to increase the access of FCEVs to their respective markets. This research will specifically focus on policies in Japan, Europe, and the USA in their attempt to shape the automotive industry of the future. The researchers also suggest additional policies that may help to accelerate the advancement of FCEVs to mass-markets. The approach was to provide a solid literature review using resources from around the globe. After a subsequent analysis and synthesis of this review, the authors concluded that in spite of existing legal challenges that have hindered the advancement of fuel-cell technology in the automobile industry in the past, new initiatives that enhance and advance the very same technology in the future are underway.Keywords: fuel cell electric vehicles, fuel cell technology, legal frameworks, policies and regulations
Procedia PDF Downloads 1193949 Automated Resin Transfer Moulding of Carbon Phenolic Composites
Authors: Zhenyu Du, Ed Collings, James Meredith
Abstract:
The high cost of composite materials versus conventional materials remains a major barrier to uptake in the transport sector. This is exacerbated by a shortage of skilled labour which makes the labour content of a hand laid composite component (~40 % of total cost) an obvious target for reduction. Automation is a method to remove labour cost and improve quality. This work focuses on the challenges and benefits to automating the manufacturing process from raw fibre to trimmed component. It will detail the experimental work required to complete an automation cell, the control strategy used to integrate all machines and the final benefits in terms of throughput and cost.Keywords: automation, low cost technologies, processing and manufacturing technologies, resin transfer moulding
Procedia PDF Downloads 2963948 Neural Network Approach For Clustering Host Community: Based on Perceptions Toward Tourism, Their Satisfaction Level and Demographic Attributes in Iran (Lahijan)
Authors: Nasibeh Mohammadpour, Ali Rajabzadeh, Adel Azar, Hamid Zargham Borujeni,
Abstract:
Generally, various industries development depends on their stakeholders and beneficiaries supports. One of the most important stakeholders in tourism industry ( which has become one of the most important lucrative and employment-generating activities at the international level these days) are host communities in tourist destination which are affected and effect on this industry development. Recognizing host community and its segmentations can be important to get their support for future decisions and policy making. In order to identify these segments, in this study, clustering of the residents has been done by using some tools that are designed to encounter human complexities and have ability to model and generalize complex systems without any needs for the initial clusters’ seeds like classic methods. Neural networks can help to meet these expectations. The research have been planned to design neural networks-based mathematical model for clustering the host community effectively according to multi criteria, and identifies differences among segments. In order to achieve this goal, the residents’ segmentation has been done by demographic characteristics, their attitude towards the tourism development, the level of satisfaction and the type of their support in this field. The applied method is self-organized neural networks and the results have compared with K-means. As the results show, the use of Self- Organized Map (SOM) method provides much better results by considering the Cophenetic correlation and between clusters variance coefficients. Based on these criteria, the host community is divided into five sections with unique and distinctive features, which are in the best condition (in comparison other modes) according to Cophenetic correlation coefficient of 0.8769 and between clusters variance of 0.1412.Keywords: Artificial Nural Network, Clustering , Resident, SOM, Tourism
Procedia PDF Downloads 1863947 Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks
Authors: Afnan Al-Romi, Iman Al-Momani
Abstract:
The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN
Procedia PDF Downloads 3243946 Fire Resistance Capacity of Reinforced Concrete Member Strengthened by Fiber Reinforced Polymer
Authors: Soo-Yeon Seo, Jong-Wook Lim, Se-Ki Song
Abstract:
Currently, FRP (Fiber Reinforced Polymer) materials have been widely used for reinforcement of building structural members. However, since the FRP and the epoxy material for attaching it have very low resistance to heat, there is a problem in application where high temperature is an issue. In this paper, the resistance performance of FRP member made of carbon fiber at high temperature was investigated through experiment under temperature change. As a result, epoxy encapsulating FRP is damaged at not high temperatures, and the fibers are degraded. Therefore, when reinforcing a structure using FRP, a separate refractory heat treatment is necessary. The use of a 30 mm thick calcium silicate board as a fireproofing method can protect FRP up to 600ᵒC outside temperature.Keywords: FRP (Fiber Reinforced Polymer), high temperature, experiment under temperature change, calcium silicate board
Procedia PDF Downloads 3973945 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter
Authors: Van-Thanh Ho, Jaiyoung Ryu
Abstract:
In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model
Procedia PDF Downloads 1013944 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer
Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom
Abstract:
Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN
Procedia PDF Downloads 803943 Renewable Natural Gas Production from Biomass and Applications in Industry
Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis
Abstract:
For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel
Procedia PDF Downloads 1243942 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 241