Search results for: calcium-based metal–organic frameworks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5141

Search results for: calcium-based metal–organic frameworks

1361 Biohydrogen Production Derived from Banana Pseudo Stem of Agricultural Residues by Dark Fermentation

Authors: Kholik

Abstract:

Nowadays, the demand of renewable energy in general is increasing due to the crisis of fossil fuels. Biohydrogen is an alternative fuel with zero emission derived from renewable resources such as banana pseudo stem of agricultural residues. Banana plant can be easily found in tropical and subtropical areas, so the resource is abundant and readily available as a biohydrogen substrate. Banana pseudo stem has not been utilised as a resource or substrate of biohydrogen production and it mainly contains 45-65% cellulose (α-cellulose), 5-15% hemicellulose and 20-30% Lignin, which indicates that banana pseudo stem will be renewable, sustainable and promising resource as lignocellulosic biomass. In this research, biohydrogen is derived from banana pseudo stem by dark fermentation. Dark fermentation is the most suitable approach for practical biohydrogen production from organic solid wastes. The process has several advantages including a fast reaction rate, no need of light, and a smaller footprint. 321 million metric tonnes banana pseudo stem of 428 million metric tonnes banana plantation residues in worldwide for 2013 and 22.5 million metric tonnes banana pseudo stem of 30 million metric tonnes banana plantation residues in Indonesia for 2015 will be able to generate 810.60 million tonne mol H2 and 56.819 million tonne mol H2, respectively. In this paper, we will show that the banana pseudo stem is the renewable, sustainable and promising resource to be utilised and to produce biohydrogen as energy generation with high yield and high contain of cellulose in comparison with the other substrates.

Keywords: banana pseudo stem, biohydrogen, dark fermentation, lignocellulosic

Procedia PDF Downloads 338
1360 Device for Mechanical Fragmentation of Organic Substrates Before Methane Fermentation

Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski

Abstract:

This publication presents a device designed for mechanical fragmentation of plant substrate before methane fermentation. The device is equipped with a perforated rotary cylindrical drum coated with a thermal layer, connected to a substrate feeder and driven by a motoreducer. The drum contains ball- or cylinder-shaped weights of different diameters, while its interior is mounted with lateral permanent magnets with an attractive force ranging from 100 kg to 2 tonnes per m2 of the surface. Over the perforated rotary drum, an infrared radiation generator is mounted, producing 0.2 kW to 1 kW of infrared radiation per 1 m2 of the perforated drum surface. This design reduces the energy consumption required for the biomass destruction process by 10-30% in comparison to the conventional ball mill. The magnetic field generated by the permanent magnets situated within the perforated rotary drum promotes this process through generation of free radicals that act as powerful oxidants, accelerating the decomposition rate. Plant substrate shows increased susceptibility to biodegradation when subjected to magnetic conditioning, reducing the time required for biomethanation by 25%. Additionally, the electromagnetic radiation generated by the radiator improves substrate destruction by 10% and the efficiency of the process. The magnetic field and the infrared radiation contribute synergically to the increased efficiency of destruction and conversion of the substrate.

Keywords: biomass pretreatment, mechanical fragmentation, biomass, methane fermentation

Procedia PDF Downloads 565
1359 Quasiperiodic Magnetic Chains as Spin Filters

Authors: Arunava Chakrabarti

Abstract:

A one-dimensional chain of magnetic atoms, representative of a quantum gas in an artificial quasi-periodic potential and modeled by the well-known Aubry-Andre function and its variants are studied in respect of its capability of working as a spin filter for arbitrary spins. The basic formulation is explained in terms of a perfectly periodic chain first, where it is shown that a definite correlation between the spin S of the incoming particles and the magnetic moment h of the substrate atoms can open up a gap in the energy spectrum. This is crucial for a spin filtering action. The simple one-dimensional chain is shown to be equivalent to a 2S+1 strand ladder network. This equivalence is exploited to work out the condition for the opening of gaps. The formulation is then applied for a one-dimensional chain with quasi-periodic variation in the site potentials, the magnetic moments and their orientations following an Aubry-Andre modulation and its variants. In addition, we show that a certain correlation between the system parameters can generate absolutely continuous bands in such systems populated by Bloch like extended wave functions only, signaling the possibility of a metal-insulator transition. This is a case of correlated disorder (a deterministic one), and the results provide a non-trivial variation to the famous Anderson localization problem. We have worked within a tight binding formalism and have presented explicit results for the spin half, spin one, three halves and spin five half particles incident on the magnetic chain to explain our scheme and the central results.

Keywords: Aubry-Andre model, correlated disorder, localization, spin filter

Procedia PDF Downloads 345
1358 Measurement of Solids Concentration in Hydrocyclone Using ERT: Validation Against CFD

Authors: Vakamalla Teja Reddy, Narasimha Mangadoddy

Abstract:

Hydrocyclones are used to separate particles into different size fractions in the mineral processing, chemical and metallurgical industries. High speed video imaging, Laser Doppler Anemometry (LDA), X-ray and Gamma ray tomography are previously used to measure the two-phase flow characteristics in the cyclone. However, investigation of solids flow characteristics inside the cyclone is often impeded by the nature of the process due to slurry opaqueness and solid metal wall vessels. In this work, a dual-plane high speed Electrical resistance tomography (ERT) is used to measure hydrocyclone internal flow dynamics in situ. Experiments are carried out in 3 inch hydrocyclone for feed solid concentrations varying in the range of 0-50%. ERT data analysis through the optimized FEM mesh size and reconstruction algorithms on air-core and solid concentration tomograms is assessed. Results are presented in terms of the air-core diameter and solids volume fraction contours using Maxwell’s equation for various hydrocyclone operational parameters. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Algebraic slip mixture based multi-phase computational fluid dynamics (CFD) model is used to predict the air-core size and the solid concentrations in the hydrocyclone. Validation of air-core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted.

Keywords: air-core, electrical resistance tomography, hydrocyclone, multi-phase CFD

Procedia PDF Downloads 363
1357 Electrochemical and Photoelectrochemical Study of Polybithiophene–MnO2 Composite Films

Authors: H. Zouaoui, D. Abdi, B. Nessark, F. Habelhames, A. Bahloul

Abstract:

Among the conjugated organic polymers, the polythiophenes constitute a particularly important class of conjugated polymers, which has been extensively studied for the relation between the geometrical structure and the optic and electronic properties, while the polythiophene is an intractable material. They are, furthermore, chemically and thermally stable materials, and are very attractive for exploitation of their physical properties. The polythiophenes are extensively studied due to the possibility of synthesizing low band gap materials by using substituted thiophenes as precursors. Low band gap polymers may convert visible light into electricity and some photoelectrochemical cells based on these materials have been prepared. Polythiophenes (PThs) are good candidates for polymer optoelectronic devices such as polymer solar cells (PSCs) polymer light-emitting diodes (PLEDs) field-effect transistors (FETs) electrochromics and biosensors. In this work, MnO2 has been synthesized by hydrothermal method and analyzed by infrared spectroscopy. The polybithiophene+MnO2 composite films were electrochemically prepared by cyclic voltammetry technic on a conductor glass substrate ITO (indium–tin-oxide). The composite films are characterized by cyclic voltammetry, impedance spectroscopy and photoelectrochemical analyses. The results confirmed the presence of manganese dioxide nanoparticles in the polymer layer. An application has been made by using these deposits as an electrode in a photoelectrochemical cell for measuring photocurrent tests. The composite films show a significant photocurrent intensity 80 μA.cm-2.

Keywords: polybithiophene, MnO2, photoelectrochemical cells, composite films

Procedia PDF Downloads 338
1356 Black Shales Outcrops in Malaysia: Occurrence and Geological Setting

Authors: Hassan Baioumy, Yuniarti Ulfa, Mohd Nawawi, Mohammad Noor Akmal Anuar

Abstract:

Paleozoic, Mesozoic and Cenozoic black shales that can be a potential source of energy and precious metals are widely distributed in Malaysia Peninsula, Sarawak and Sabah. Two Paleozoic black shales outcrops were reported in the Langkawi Island belonging to the Cambrian fluvial Machinchang Formation and the Silurian glaciomarine Singa Formation. More the seventeen occurrences of Paleozoic black shales outcrops have been found in the Peninsular Malaysia that range in age from Devonian, Carboniferous, and Permian in the Terengganu, Perlis, Pahang, and Perak States. Mesozoic black shales outcrops occur in several places in both the Peninsular Malaysia and Sarawak. In the Peninsular Malaysia, Triassic black shales occur in the Nami area, Northern Kedah and in the Pahang area. In Sarawak, Triassic black shales have been reported in the Bau area. Cenozoic black shales outcrops were reported in both Sarawak at Miri area and Sabah at the Ranau and Tenom areas. Preliminary mineralogical and geochemical investigations on some of these black shales outcrops showed distinct compositional variations among these black shales outcrops probably due to variations in their source area composition and/or depositional and diagenetic settings of these shales. Some of these shalese also subjected to post-depositional hydrothermal mineralization that enriched these shales with Au-bearing minerals such as pyrite, calchopyrite, and arsenopyrite. Many of the studied black shales outcrops look rich in organic matter, which increase the possibility of using these black shales as an unconventional energy resource.

Keywords: black shales, energy, mineralization, Malaysia

Procedia PDF Downloads 515
1355 A Review on Application of Phase Change Materials in Textiles Finishing

Authors: Mazyar Ahrari, Ramin Khajavi, Mehdi Kamali Dolatabadi, Tayebeh Toliyat, Abosaeed Rashidi

Abstract:

Fabric as the first and most common layer that is in permanent contact with human skin is a very good interface to provide coverage, as well as heat and cold insulation. Phase change materials (PCMs) are organic and inorganic compounds which have the capability of absorbing and releasing noticeable amounts of latent heat during phase transitions between solid and liquid phases at a low temperature range. PCMs come across phase changes (liquid-solid and solid-liquid transitions) during absorbing and releasing thermal heat; so, in order to use them for a long time, they should have been encapsulated in polymeric shells, so-called microcapsules. Microencapsulation and nanoencapsulation methods have been developed in order to reduce the reactivity of a PCM with outside environment, promoting the ease of handling, decreasing the diffusion and evaporation rates. Methods of incorporation of PCMs in textiles such as electrospinning and determining thermal properties had been summarized. Paraffin waxes catch a lot of attention due to their high thermal storage density, repeatability of phase change, thermal stability, small volume change during phase transition, chemical stability, non-toxicity, non-flammability, non-corrosive and low cost and they seem to play a key role in confronting with climate change and global warming. In this article, we aimed to review the researches concentrating on the characteristics of PCMs and new materials and methods of microencapsulation.

Keywords: thermoregulation, microencapsulation, phase change materials, thermal energy storage, nanoencapsulation

Procedia PDF Downloads 373
1354 Modeling of Age Hardening Process Using Adaptive Neuro-Fuzzy Inference System: Results from Aluminum Alloy A356/Cow Horn Particulate Composite

Authors: Chidozie C. Nwobi-Okoye, Basil Q. Ochieze, Stanley Okiy

Abstract:

This research reports on the modeling of age hardening process using adaptive neuro-fuzzy inference system (ANFIS). The age hardening output (Hardness) was predicted using ANFIS. The input parameters were ageing time, temperature and percentage composition of cow horn particles (CHp%). The results show the correlation coefficient (R) of the predicted hardness values versus the measured values was of 0.9985. Subsequently, values outside the experimental data points were predicted. When the temperature was kept constant, and other input parameters were varied, the average relative error of the predicted values was 0.0931%. When the temperature was varied, and other input parameters kept constant, the average relative error of the hardness values predictions was 80%. The results show that ANFIS with coarse experimental data points for learning is not very effective in predicting process outputs in the age hardening operation of A356 alloy/CHp particulate composite. The fine experimental data requirements by ANFIS make it more expensive in modeling and optimization of age hardening operations of A356 alloy/CHp particulate composite.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), age hardening, aluminum alloy, metal matrix composite

Procedia PDF Downloads 139
1353 Thermochemical Modelling for Extraction of Lithium from Spodumene and Prediction of Promising Reagents for the Roasting Process

Authors: Allen Yushark Fosu, Ndue Kanari, James Vaughan, Alexandre Changes

Abstract:

Spodumene is a lithium-bearing mineral of great interest due to increasing demand of lithium in emerging electric and hybrid vehicles. The conventional method of processing the mineral for the metal requires inevitable thermal transformation of α-phase to the β-phase followed by roasting with suitable reagents to produce lithium salts for downstream processes. The selection of appropriate reagent for roasting is key for the success of the process and overall lithium recovery. Several researches have been conducted to identify good reagents for the process efficiency, leading to sulfation, alkaline, chlorination, fluorination, and carbonizing as the methods of lithium recovery from the mineral.HSC Chemistry is a thermochemical software that can be used to model metallurgical process feasibility and predict possible reaction products prior to experimental investigation. The software was employed to investigate and explain the various reagent characteristics as employed in literature during spodumene roasting up to 1200°C. The simulation indicated that all used reagents for sulfation and alkaline were feasible in the direction of lithium salt production. Chlorination was only feasible when Cl2 and CaCl2 were used as chlorination agents but not NaCl nor KCl. Depending on the kind of lithium salt formed during carbonizing and fluorination, the process was either spontaneous or nonspontaneous throughout the temperature range investigated. The HSC software was further used to simulate and predict some promising reagents which may be equally good for roasting the mineral for efficient lithium extraction but have not yet been considered by researchers.

Keywords: thermochemical modelling, HSC chemistry software, lithium, spodumene, roasting

Procedia PDF Downloads 148
1352 Nutritive Value of Three-Stage Olive Cake (Olea europaea L.) for Growing Rabbit

Authors: Zahia Dorbane, Si Ammar Kadi, Dalila Boudouma, Thierry Gidenne

Abstract:

In rabbits feeding, minimum fibre intake is essential to avoid digestive disorders. However, this concentration of fibre is not easy to obtain when formulating feeds, without reduction of nutritional value. Three stage olive cake, the residual material after oil extraction by centrifugation, including pulp and stones, can be used as a fibre source in rabbit diet. The incorporation of olive cake can allow a better balance between different fibre fractions and reduce health disorder. However, for practical use of any raw material, it is necessary to know its chemical and nutritive value. The aim of this study was to assess the nutritive value of three-stage olive cake (TSOC) for growing rabbits. Thus, 36 rabbits weaned at 35 days (702.8 ± 28.5) were divided into three groups of 12 receiving one of the following diets: control with 0% of TSOC, TSOC10 (10% of TSOC) and TSOC20 (20% TSOC). The rabbits were individually housed in digestibility cages and received ad libitum one of the three diets, fresh and clean water was provided ad libitum. After an adaptation period of 7d, feces were collected for 4d. Collected feces were frozen and stored for further analysis. The chemical composition of TSOC shows that it is a rich fiber raw material since it contains (%DM): 6% of CP; 7.4% of EE; 78.7% of NDF; 55.4% of ADF and 24.3% of ADL. The inclusion of TSOC at 20% of basal diet reduced the digestibility coefficient of organic matter, crude protein and NDF from 67.8 to 55.3%, 80.4 to 75.3% and from 31.5 to 18.4% (p < 0.001) respectively. The digestible energy and digestible protein content of the three-stage olive cake estimated by regression was 2.94 ± 0.52MJ DE/kg DM and 22.4 ± 6 g DP/kg DM respectively. In conclusion, based on the results of the present experiment, the three-stage olive cake can be used as a fibre source for rabbit.

Keywords: digestibility, nutritive value, olive cake, rabbit

Procedia PDF Downloads 143
1351 Understanding the Reasons for Flooding in Chennai and Strategies for Making It Flood Resilient

Authors: Nivedhitha Venkatakrishnan

Abstract:

Flooding in urban areas in India has become a usual ritual phenomenon and a nightmare to most cities, which is a consequence of man-made disruption resulting in disaster. The City planning in India falls short of withstanding hydro generated disasters. This has become a barrier and challenge in the process of development put forth by urbanization, high population density, expanding informal settlements, environment degradation from uncollected and untreated waste that flows into natural drains and water bodies, this has disrupted the natural mechanism of hazard protection such as drainage channels, wetlands and floodplains. The magnitude and the impact of the mishap was high because of the failure of development policies, strategies, plans that the city had adopted. In the current scenario, cities are becoming the home for future, with economic diversification bringing in more investment into cities especially in domains of Urban infrastructure, planning and design. The uncertainty of the Urban futures in these low elevated coastal zones faces an unprecedented risk and threat. The study on focuses on three major pillars of resilience such as Recover, Resist and Restore. This process of getting ready to handle the situation bridges the gap between disaster response management and risk reduction requires a shift in paradigm. The study involved a qualitative research and a system design approach (framework). The initial stages involved mapping out of the urban water morphology with respect to the spatial growth gave an insight of the water bodies that have gone missing over the years during the process of urbanization. The major finding of the study was missing links between traditional water harvesting network was a major reason resulting in a manmade disaster. The research conceptualized the ideology of a sponge city framework which would guide the growth through institutional frameworks at different levels. The next stage was on understanding the implementation process at various stage to ensure the shift in paradigm. Demonstration of the concepts at a neighborhood level where, how, what are the functions and benefits of each component. Quantifying the design decision with rainwater harvest, surface runoff and how much water is collected and how it could be collected, stored and reused. The study came with further recommendation for Water Mitigation Spaces that will revive the traditional harvesting network.

Keywords: flooding, man made disaster, resilient city, traditional harvesting network, waterbodies

Procedia PDF Downloads 132
1350 Recycled Aggregates from Construction and Demolition Waste in the Production of Concrete Blocks

Authors: Juan A. Ferriz-Papi, Simon Thomas

Abstract:

The construction industry generates large amounts of waste, usually mixed, which can be composed of different origin materials, most of them catalogued as non-hazardous. The European Union targets for this waste for 2020 have been already achieved by the UK, but it is mainly developed in downcycling processes (backfilling) whereas upcycling (such as recycle in new concrete batches) still keeps at a low percentage. The aim of this paper is to explore further in the use of recycled aggregates from construction and demolition waste (CDW) in concrete mixes so as to improve upcycling. A review of most recent research and legislation applied in the UK is developed regarding the production of concrete blocks. As a case study, initial tests were developed with a CDW recycled aggregate sample from a CDW plant in Swansea. Composition by visual inspection and sieving tests of two samples were developed and compared to original aggregates. More than 70% was formed by soil waste from excavation, and the rest was a mix of waste from mortar, concrete, and ceramics with small traces of plaster, glass and organic matter. Two concrete mixes were made with 80% replacement of recycled aggregates and different water/cement ratio. Tests were carried out for slump, absorption, density and compression strength. The results were compared to a reference sample and showed a substantial reduction of quality in both mixes. Despite that, the discussion brings to identify different aspects to solve, such as heterogeneity or composition, and analyze them for the successful use of these recycled aggregates in the production of concrete blocks. The conclusions obtained can help increase upcycling processes ratio with mixed CDW as recycled aggregates in concrete mixes.

Keywords: aggregates, concrete, concrete block, construction and demolition waste, recycling

Procedia PDF Downloads 282
1349 The Sustainable Strategies Research for Renewal of “Villages in City”: A Case Study of Liuzhou in Southwestern China

Authors: Kai Zhang

Abstract:

Transformation under the reconfiguration of urban-rural relation in Liuzhou city has never been as radical and visible as it has been since the tremendous turn of the last century in China. Huanjiang village is located in Linhuashan Scenic Area in the middle east of Liuzhou city, with spectacular landscape and traditional features. Nowadays Huanjiang village has become a so-called "village in city", which is considered full of great potential for development because of the economic value of regional advantages during the urban sprawl. Communities of village found it difficult to acclimatize with the dramatic changes, which later led to numerous problems including ecological damage, unemployment of landless farmers and loss of traditional culture. Government has started up a series of renewal planings to resolve the problems, which are based on advanced technology and conform to sustainable and integrated strategies of city planning considering the original context and historical culture, superseding the traditional arrangements based on the guide of extensive economic growth. This paper aims to elaborate the context of Liuzhou city and Huanjiang village offered to both the traditional and sustainable planning approaches, in order to understand challenges and solutions of the rebuilding process. Through the analysis of the place relevant to architecture, society and culture, it will establish the corresponding systematic strategies. Considering the local features, it concludes with a comprehensive perspective on organic renewal in the case of Huanjiang village.

Keywords: China, Liuzhou, sustainable strategy, urban renewal, village in city

Procedia PDF Downloads 268
1348 Studies on Toxicity and Mechanical Properties of Nonmetallic Printed Circuit Boards Waste in Recycled HDPE Composites

Authors: Shantha Kumari Muniyandi, Johan Sohaili, Siti Suhaila Mohamad

Abstract:

The aim of this study was to investigate the suitability of reusing nonmetallic printed circuit boards (PCBs) waste in recycled HDPE (rHDPE) in terms of toxicity and mechanical properties. A series of X-ray Fluorescence Spectrometry (XRF) analysis tests have been conducted on raw nonmetallic PCBs waste to determine the chemical compositions. It can be seen that the nonmetallic PCBs approximately 72% of glass fiber reinforced epoxy resin materials such as SiO2, Al2O3, CaO, MgO, BaO, Na2O, and SrO, 9.4% of metallic materials such as CuO, SnO2, and Fe2O3, and 6.53% of Br. Total Threshold Limit Concentration (TTLC) and Toxicity Characteristic Leaching Procedure (TCLP) tests also have been done to study the toxicity characteristics of raw nonmetallic PCB powders, rHDPE/PCB and virgin HDPE for comparison purposes. For both of the testing, Cu was identified as the highest metal element contained in raw PCBs with the concentration of 905 mg/kg and 59.09 mg/L for TTLC and TCLP, respectively. However, once the nonmetallic PCB was filled in rHDPE composites, the concentrations of Cu were reduced to 134 mg/kg for TTLC and to 3 mg/L for TCLP testing. For mechanical properties testing, incorporation of 40 wt% nonmetallic PCB into rHDPE has increased the flexural modulus and flexural strength by 140% and 36%, respectively. While, Izod Impact strength decreased steadily with incorporation of 10 – 40 wt% nonmetallic PCBs.

Keywords: nonmetallic printed circuit board, recycled HDPE, composites, mechanical properties, total threshold limit concentration, toxicity characteristic leaching procedure

Procedia PDF Downloads 326
1347 Feasibility Study of Friction Stir Welding Application for Kevlar Material

Authors: Ahmet Taşan, Süha Tirkeş, Yavuz Öztürk, Zafer Bingül

Abstract:

Friction stir welding (FSW) is a joining process in the solid state, which eliminates problems associated with the material melting and solidification, such as cracks, residual stresses and distortions generated during conventional welding. Among the most important advantages of FSW are; easy automation, less distortion, lower residual stress and good mechanical properties in the joining region. FSW is a recent approach to metal joining and although originally intended for aluminum alloys, it is investigated in a variety of metallic materials. The basic concept of FSW is a rotating tool, made of non-consumable material, specially designed with a geometry consisting of a pin and a recess (shoulder). This tool is inserted as spinning on its axis at the adjoining edges of two sheets or plates to be joined and then it travels along the joining path line. The tool rotation axis defines an angle of inclination with which the components to be welded. This angle is used for receiving the material to be processed at the tool base and to promote the gradual forge effect imposed by the shoulder during the passage of the tool. This prevents the material plastic flow at the tool lateral, ensuring weld closure on the back of the pin. In this study, two 4 mm Kevlar® plates which were produced with the Kevlar® fabrics, are analyzed with COMSOL Multiphysics in order to investigate the weldability via FSW. Thereafter, some experimental investigation is done with an appropriate workbench in order to compare them with the analysis results.

Keywords: analytical modeling, composite materials welding, friction stir welding, heat generation

Procedia PDF Downloads 148
1346 Essential Elements and Trace Metals on a Continuously Cultivated and Fertilised Field

Authors: Pholosho M. Kgopa, Phatu W. Mashela

Abstract:

Due to high incidents of marginal land in Limpopo Province, South Africa, and increasing demand for arable land, small-holder farmers tend to continuously cultivate the same fields and at the same time, applying fertilisers to improve yields for meeting local food security. These practices might have an impact on the distribution of trace and essential elements. Therefore, the objective of this investigation was to assess the distribution of essential elements and trace metals in a continuously cultivated and fertilised field, at the University of Limpopo Experimental Farm. Three fields, 3 ha each were identified as continuously cultivated (CC), moderately cultivated (MC) and virgin fields (VF). Each field was divided into 12 equal grids of 50 m × 50 m for sampling. A soil profile was opened in each grid, where soil samples were collected from 0-20; 20-40 and 40-60; 60-80 and 80-100 cm depths for analysis. Samples were analysed for soil texture, pH, electrical conductivity, organic matter content, selected essential elements (Ca, P and Mg), Na and trace elements (Cu, Fe, Ni, and Zn). Results suggested that most of the variables were vertically different, with high concentrations of the test elements except for magnesium. Soil pH in depth 0-20 cm was high (6.44) in CC when compared to that in VF (5.29), but lower than that of MC (7.84). There were no distinctive vertical trends of the variables, except for Mg, Na, and K which displayed a declining trend at 40-60 cm depth when compared to the 0-20 cm depth. Concentrations of Fe, Cu, Zn, and Ni were generally low which might be due to their indirect relationship with soil pH. Continuous cultivation and fertilisation altered soil chemical properties; which could explain the unproductivity of such fields.

Keywords: over-cultivation, soil chemical properties, vertical distribution, spatial distribution

Procedia PDF Downloads 173
1345 Theoretical and Experimental Investigation of Binder-free Trimetallic Phosphate Nanosheets

Authors: Iftikhar Hussain, Muhammad Ahmad, Xi Chen, Li Yuxiang

Abstract:

Transition metal phosphides and phosphates are newly emerged electrode material candidates in energy storage devices. For the first time, we report uniformly distributed, interconnected, and well-aligned two-dimensional nanosheets made from trimetallic Zn-Co-Ga phosphate (ZCGP) electrode materials with preserved crystal phase. It is found that the ZCGP electrode material exhibits about 2.85 and 1.66 times higher specific capacity than mono- and bimetallic phosphate electrode materials at the same current density. The trimetallic ZCGP electrode exhibits superior conductivity, lower internal resistance (IR) drop, and high Coulombic efficiency compared to mono- and bimetallic phosphate. The charge storage mechanism is studied for mono- bi- and trimetallic electrode materials, which illustrate the diffusion-dominated battery-type behavior. By means of density functional theory (DFT) calculations, ZCGP shows superior metallic conductivity due to the modified exchange splitting originating from 3d-orbitals of Co atoms in the presence of Zn and Ga. Moreover, a hybrid supercapacitor (ZCGP//rGO) device is engineered, which delivered a high energy density (ED) of 40 W h kg⁻¹ and a high-power density (PD) of 7,745 W kg⁻¹, lighting 5 different colors of light emitting diodes (LEDs). These outstanding results confirm the promising battery-type electrode materials for energy storage applications.

Keywords: trimetallic phosphate, nanosheets, DFT calculations, hybrid supercapacitor, binder-free, synergistic effect

Procedia PDF Downloads 195
1344 Influence of Layer-by-Layer Coating Parameters on the Properties of Hybrid Membrane for Water Treatment

Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen WIese

Abstract:

The presented investigation studies the correlation between the process parameters of Layer-by-Layer (LbL) coatings and properties of the produced hybrid membranes for water treatment. The coating of alumina ceramic support membrane with polyelectrolyte multilayers on top results in hybrid membranes with increased fouling resistant behavior, high retention (up to 90%) of salt ions and various pharmaceuticals, selectivity to various organic molecules as known from LbL coated polyether sulfone membranes and the possibility of pH response control. Chosen polyelectrolytes were added to the support using the LbL-coating process. Parameters like the type of polyelectrolyte, ionic strength, and pH were varied in order to find the most suitable process conditions and to study how they influence the properties of the final product. The applied LbL-films was investigated in respect to its homogeneity and penetration depth. The analysis of the layer buildup was performed using fluorescence labeled polyelectrolyte molecules and Confocal Laser Scanning Microscopy as well as Scanning and Transmission Electron Microscopy. Furthermore, the influence of the coating parameters on the porosity, surface potential, retention, and permeability of the developed hybrid membranes were estimated. In conclusion, a comparison was drawn between the filtration performance of the uncoated alumina ceramic membrane and modified hybrid membranes.

Keywords: water treatment, membranes, ceramic membranes, hybrid membranes, layer-by-layer modification

Procedia PDF Downloads 167
1343 Comparative and Combined Toxicity of NiO and Mn₃O₄ Nanoparticles as Assessed in vitro and in vivo

Authors: Ilzira A. Minigalieva, Tatiana V. Bushueva, Eleonore Frohlich, Vladimir Panov, Ekaterina Shishkina, Boris A. Katsnelson

Abstract:

Background: The overwhelming majority of the experimental studies in the field of metal nanotoxicology have been performed on cultures of established cell lines, with very few researchers focusing on animal experiments, while a juxtaposition of conclusions inferred from these two types of research is blatantly lacking. The least studied aspect of this problem relates to characterizing and predicting the combined toxicity of metallic nanoparticles. Methods: Comparative and combined toxic effects of purposefully prepared spherical NiO and Mn₃O₄ nanoparticles (mean diameters 16.7 ± 8.2 nm and 18.4 ± 5.4 nm respectively) were estimated on cultures of human cell lines: MRC-5 fibroblasts, THP-1 monocytes, SY-SY5Y neuroblastoma cells, as well as on the latter two lines differentiated to macrophages and neurons, respectively. The combined cytotoxicity was mathematically modeled using the response surface methodology. Results: The comparative assessment of the studied NPs unspecific toxicity previously obtained in vivo was satisfactorily reproduced by the present in vitro tests. However, with respect to manganese-specific brain damage which had been demonstrated by us in animal experiment with the same NPs, the testing on neuronall cell culture showed only a certain enhancing effect of Mn₃O₄-NPs on the toxic action of NiO-NPs, while the role of the latter prevailed. Conclusion: From the point of view of the preventive toxicology, the experimental modeling of metallic NPs combined toxicity on cell cultures can give non-reliable predictions of the in vivo action’s effects.

Keywords: manganese oxide, nickel oxide, nanoparticles, in vitro toxicity

Procedia PDF Downloads 284
1342 Spatial-Temporal Characteristics of Bacterioplankton in the Upper Part of Taktakorpu Water Complex

Authors: Fidan Z. Aliyeva

Abstract:

In the presented article, the formation of the microbiological regime in the Takhtakorpu water complex, as well as spatial-temporal changes in the quantitative indicators of bacterioplankton, were studied. Taktakorpu water complex was built as a continuation of the reconstruction and expansion project of the Samur-Absheron irrigation system in Shabran on the northeastern slope of our republic. It should be noted that with the implementation of the project, the water supply of up to 150 thousand ha of useful land in the northern region has been improved, and the drinking, technical, and irrigation water needs of the population of Baku, Sumgayit and also the Absheron Peninsula, and industrial and agricultural areas, joining the agricultural circulation of new soil areas, Takhtakorpu reservoir with a volume of 238.4 million m³, connected with them -Valvalachay- Takhtakorpu and Takhtakorpu-Jeyranbatan canals have been created, conditions have been created to increase the resources of the Jeyranbatan reservoir. Special attention is paid to the study of saprophytic bacteria in order to determine the development dynamics and biochemical activity of the microbiological regime in the Takhtakorpu Water Complex, which is of great strategic importance for our republic, to evaluate changes under the influence of anthropogenic factors, as well as to evaluate the properties of self-cleaning, mineralization features of organic substances of allochthon and autochthonous origin. One of the main goals of our research is to determine the main structural indicators of bacterioplankton in the upper part of Takhtakorpu water complex in the first three stations and analyzing their quantitative values in a certain time aspect.

Keywords: water, irrigation, sewage, wastewater

Procedia PDF Downloads 62
1341 Rapid and Efficient Removal of Lead from Water Using Chitosan/Magnetite Nanoparticles

Authors: Othman M. Hakami, Abdul Jabbar Al-Rajab

Abstract:

Occurrence of heavy metals in water resources increased in the recent years albeit at low concentrations. Lead (PbII) is among the most important inorganic pollutants in ground and surface water. However, removal of this toxic metal efficiently from water is of public and scientific concern. In this study, we developed a rapid and efficient removal method of lead from water using chitosan/magnetite nanoparticles. A simple and effective process has been used to prepare chitosan/magnetite nanoparticles (NPs) (CS/Mag NPs) with effect on saturation magnetization value; the particles were strongly responsive to an external magnetic field making separation from solution possible in less than 2 minutes using a permanent magnet and the total Fe in solution was below the detection limit of ICP-OES (<0.19 mg L-1). The hydrodynamic particle size distribution increased from an average diameter of ~60 nm for Fe3O4 NPs to ~75 nm after chitosan coating. The feasibility of the prepared NPs for the adsorption and desorption of Pb(II) from water were evaluated using Chitosan/Magnetite NPs which showed a high removal efficiency for Pb(II) uptake, with 90% of Pb(II) removed during the first 5 minutes and equilibrium in less than 10 minutes. Maximum adsorption capacities for Pb(II) occurred at pH 6.0 and under room temperature were as high as 85.5 mg g-1, according to Langmuir isotherm model. Desorption of adsorbed Pb on CS/Mag NPs was evaluated using deionized water at different pH values ranged from 1 to 7 which was an effective eluent and did not result the destruction of NPs, then, they could subsequently be reused without any loss of their activity in further adsorption tests. Overall, our results showed the high efficiency of chitosan/magnetite nanoparticles (NPs) in lead removal from water in controlled conditions, and further studies should be realized in real field conditions.

Keywords: chitosan, magnetite, water, treatment

Procedia PDF Downloads 389
1340 The Experience of Community-based Tourism in Yunguilla, Ecuador and Its Social-Cultural Impact

Authors: York Neudel

Abstract:

The phenomenon of tourism has been considered as tool to overcome cultural frontiers, to comprehend the other and to cope with mutual mistrust and suspicion. Well, that has been a myth, at least when it comes to mass-tourism. Other approaches, like community-based tourism, still are based on the idea of embracing the other in order to help or to understand the cultural difference. In 1997, two American NGOs incentivized a tourism-project in a community in the highlands of Ecuador, in order to protect the cloud forest from destructive exploitation of its own inhabitants. Nineteen years after that, I analyze in this investigation the interactions between the Ecuadorian hosts in the mestizo-community of Yunguilla and the foreign tourist in the quest for “authentic life” in the Ecuadorian cloud forest. As a sort of “contemporary pilgrim” the traveller tries to find authenticity in other times and places far away from their everyday life in Europe or North America. Therefore, tourists are guided by stereotypes and expectations that are produced by the touristic industry. The host, on the other hand, has to negotiate this pre-established imaginary. That generates a kind of theatre-play with front- and backstage in organic gardens, little fabrics and even private housing, since this alternative project offers to share the private space of the host with the tourist in the setting the community-based tourism. In order to protect their privacy, the community creates new hybrid spaces that oscillate between front- and backstages that culminates in a game of hide and seek – a phenomenon that promises interesting frictions for an anthropological case-study.

Keywords: Tourism, Authenticity, Community-based tourism, Ecuador, Yunguilla

Procedia PDF Downloads 270
1339 Dehalogenation of Aromatic Compounds in Wastewater by Bacterial Cultures

Authors: Anne Elain, Magali Le Fellic

Abstract:

Halogenated Aromatic Compounds (HAC) are major organic pollutants that are detected in several environmental compartments as a result of their widespread use as solvents, pesticides and other industrial chemicals. The degradation of HAC simultaneously at low temperature and under saline conditions would be useful for remediation of polluted sites. Hence, microbial processes based on the metabolic activities of anaerobic bacteria are especially attractive from an economic and environmental point of view. Metabolites are generally less toxic, less likely to bioaccumulate and more susceptible for further degradation. Studies on biological reductive dehalogenation have largely been restricted to chlorinated compounds while relatively few have focussed on other HAC i.e., fluorinated, brominated or iodinated compounds. The objectives of the present work were to investigate the biodegradation of a mixture of triiodoaromatic molecules in industrial wastewater by an enriched bacterial consortium. Biodegradation of the mixture was studied during batch experiments in an anaerobic reactor. The degree of mineralization and recovery of halogen were monitored by HPLC-UV, TOC analysis and potentiometric titration. Providing ethanol as an electron donor was found to stimulate anaerobic reductive dehalogenation of HAC with a deiodination rate up to 12.4 mg.L-1 per day. Sodium chloride even at high concentration (10 mM) was found to have no influence on the degradation rates nor on the microbial viability. An analysis of the 16S rDNA (MicroSeq®) revealed that at least 6 bacteria were predominant in the enrichment, including Pseudomonas aeruginosa, Pseudomonas monteilii, Kocuria rhizophila, Ochrobacterium anthropi, Ralstonia pickettii and Rhizobium rhizogenes.

Keywords: halogenated aromatics, anaerobic biodegradation, deiodination, bacterial consortium

Procedia PDF Downloads 166
1338 Effects of Amino Bisphosphonic Acid on the Growth and Phytoextraction Efficiency of Salix schwerinii Grown in Ni-Contaminated Soil

Authors: Muhammad Mohsin, Mir Md Abdus Salam, Pertti Pulkkinen, Ari Pappinen

Abstract:

Soil polluted with elevated level of nickel (Ni) concentration may cause severe hazards to humans and forest ecosystems, for example, by polluting underground water reserves, affecting food quality and by reducing agricultural productivity. The present study investigated the phytoextraction ability of Salix schwerinii, enhanced with an application of the N100 (11-amino-1-hydroxyundecylidene) chelate. N100 has proved to be a non-toxic, low risk of leaching, environmentally friendly and easily biodegradable chelate that has a potential for metal chelation. The Salix were grown in garden soil that was also amended with nickel (Ni; 150 mg kg⁻¹). Multiple doses of N100 were applied to the treatments as follows: Ni + N100 1.2 g and Ni+ N100 2.4 g. Furthermore, N100 doses were also repeated with the control soil. The effect of N100 on height growth, biomass, and the accumulation of Ni in Salix in polluted soils was studied. In this study, N100 application was found to be effective in enhancing height and biomass growth under polluted treatments. Total reflection X-ray fluorescence (TXRF) spectrometry was used to determine the concentration of Ni in the Salix tissues. The total Ni concentrations in the soils amended with N100 increased substantially by up to 324% as compared to the control. The Ni translocation factor (TF) and bioconcentration factor (BF) values for S. schwerinii increased with the application of N100 as varied from 0.45–1.25 and 0.80‒1.50, respectively. This study revealed that S. schwerinii is suitable for the phytoextraction of Ni-contaminated soils.

Keywords: bisphosphonic acid, nickel, phytoextraction, Salix

Procedia PDF Downloads 137
1337 High-Temperature Behavior of Boiler Steel by Friction Stir Processing

Authors: Supreet Singh, Manpreet Kaur, Manoj Kumar

Abstract:

High temperature corrosion is an imperative material degradation method experienced in thermal power plants and other energy generation sectors. Metallic materials such as ferritic steels have special properties such as easy fabrication and machinibilty, low cost, but a serious drawback of these materials is the worsening in properties initiating from the interaction with the environments. The metallic materials do not endure higher temperatures for extensive period of time because of their poor corrosion resistance. Friction Stir Processing (FSP), has emerged as the potent surface modification means and control of microstructure in thermo mechanically heat affecting zones of various metal alloys. In the current research work, FSP was done on the boiler tube of SA 210 Grade A1 material which is regularly used by thermal power plants. The strengthening of SA210 Grade A1 boiler steel through microstructural refinement by Friction Stir Processing (FSP) and analyze the effect of the same on high temperature corrosion behavior. The high temperature corrosion performance of the unprocessed and the FSPed specimens were evaluated in the laboratory using molten salt environment of Na₂SO₄-82%Fe₂(SO₄). The unprocessed and FSPed low carbon steel Gr A1 evaluation was done in terms of microstructure, corrosion resistance, mechanical properties like hardness- tensile. The in-depth characterization was done by EBSD, SEM/EDS and X-ray mapping analyses with an aim to propose the mechanism behind high temperature corrosion behavior of the FSPed steel.

Keywords: boiler steel, characterization, corrosion, EBSD/SEM/EDS/XRD, friction stir processing

Procedia PDF Downloads 226
1336 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater

Authors: Abimbola M. Enitan, J. Adeyemo

Abstract:

Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (µmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (dˉ¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.

Keywords: brewery wastewater, methane generation model, environment, anaerobic modeling

Procedia PDF Downloads 242
1335 Arsenic Removal from Drinking Water by Hybrid Hydrogel-Biochar Matrix: An Understanding of Process Parameters

Authors: Vibha Sinha, Sumedha Chakma

Abstract:

Arsenic (As) contamination in drinking water is a serious concern worldwide resulting in severe health maladies. To tackle this problem, several hydrogel based matrix which selectively uptake toxic metals from contaminated water has increasingly been examined as a potential practical method for metal removal. The major concern in hydrogels is low stability of matrix, resulting in poor performance. In this study, the potential of hybrid hydrogel-biochar matrix synthesized from natural plant polymers, specific for As removal was explored. Various compositional and functional group changes of the elements contained in the matrix due to the adsorption of As were identified. Moreover, to resolve the stability issue in hydrogel matrix, optimum and effective mixing of hydrogel with biochar was studied. Mixing varied proportions of matrix components at the time of digestion process was tested. Preliminary results suggest that partial premixing methods may increase the stability and reduce cost. Addition of nanoparticles and specific catalysts with different concentrations of As(III) and As(V) under batch conditions was performed to study their role in performance enhancement of the hydrogel matrix. Further, effect of process parameters, optimal uptake conditions and detailed mechanism derived from experimental studies were suitably conducted. This study provides an efficient, specific and a low-cost As removal method that offers excellent regeneration abilities which can be reused for value.

Keywords: arsenic, catalysts, hybrid hydrogel-biochar, water purification

Procedia PDF Downloads 171
1334 Applying Cationic Porphyrin Derivative 5, 10-Dihexyl-15, 20bis Porphyrin, as Transfection Reagent for Gene Delivery into Mammalian Cells

Authors: Hajar Hosseini Khorami

Abstract:

Porphyrins are organic, aromatic compounds found in heme, cytochrome, cobalamin, chlorophyll , and many other natural products with essential roles in biological processes that their cationic forms have been used as groups of favorable non-viral vectors recently. Cationic porphyrins are self-chromogenic reagents with a high capacity for modifications, great interaction with DNA and protection of DNA from nuclease during delivery of it into a cell with low toxicity. In order to have high efficient gene transfection into the cell while causing low toxicity, genetically manipulations of the non-viral vector, cationic porphyrin, would be useful. In this study newly modified cationic porphyrin derivative, 5, 10-dihexyl-15, 20bis (N-methyl-4-pyridyl) porphyrin was applied. Cytotoxicity of synthesized cationic porphyrin on Chinese Hamster Ovarian (CHO) cells was evaluated by using MTT assay. This cationic derivative is dose-dependent, with low cytotoxicity at the ranges from 100 μM to 0.01μM. It was uptake by cells at high concentration. Using direct non-viral gene transfection method and different concentration of cationic porphyrin were tested on transfection of CHO cells by applying derived transfection reagent with X-tremeGENE HP DNA as a positive control. However, no transfection observed by porphyrin derivative and the parameters tested except for positive control. Results of this study suggested that applying different protocol, and also trying other concentration of cationic porphyrins and DNA for forming a strong complex would increase the possibility of efficient gene transfection by using cationic porphyrins.

Keywords: cationic porphyrins, gene delivery, non-viral vectors, transfection reagents

Procedia PDF Downloads 184
1333 Building up of European Administrative Space at Central and Local Level as a Key Challenge for the Kosovo's Further State Building Process

Authors: Arlinda Memetaj

Abstract:

Building up of a well-functioning administrative justice system is one of the key prerequisites for ensuring the existence of an accountable and efficient public administration in Kosovo as well. To this aim, the country has already established an almost comprehensive legislative and institutional frameworks. The latter derives from (among others) the Kosovo`s Stabilisation and Association Agreement with the EU of 2016. A series of efforts are being presently still undertaken by all relevant domestic and international stakeholders being active in both the Kosovo`s public administration reform and the country` s system of a local self-government. Both systems are thus under a constant state of reform. Despite the aforesaid, there is still a series of shortcomings in the country in above context. There is a lot of backlog of administrative cases in the Prishtina Administrative court; there is a public lack in judiciary; the public administration is organized in a fragmented way; the administrative laws are still not properly implemented at local level; the municipalities` legislative and executive branches are not sufficiently transparent for the ordinary citizens ... Against the above short background, the full paper firstly outlines the legislative and institutional framework of the Kosovo's systems of an administrative justice and local self-government (on the basis of the fact that public administration and local government are not separate fields). It then illustrates the key specific shortcomings in those fields, as seen from the perspective of the citizens' right to good administration. It finally claims that the current status quo situation in the country may be resolved (among others) by granting Kosovo a status of full member state of the Council of Europe or at least granting it with a temporary status of a contracting party of (among others) the European Human Rights Convention. The later would enable all Kosovo citizens (regardless their ethnic or other origin whose human rights are violated by the Kosovo`s relative administrative authorities including the administrative courts) to bring their case/s before the respective well-known European Strasbourg-based Human Rights Court. This would consequently put the State under permanent and full monitoring process, with a view to obliging the country to properly implement the European Court`s decisions (as adopted by this court in those cases). This would be a benefit first of all for the very Kosovo`s ordinary citizens regardless their ethnic or other background. It would provide for a particular positive input in the ongoing efforts being undertaken by Kosovo and Serbia states within the EU-facilitated Dialogue, with a view to building up of an integral administrative justice system at central and local level in the whole Kosovo` s territory. The main method used in this paper is the descriptive, analytical and comparative one.

Keywords: administrative courts, administrative justice, administrative procedure, benefit, European Human Rights Court, human rights, monitoring, reform.

Procedia PDF Downloads 291
1332 Effects of Beeswax Coating on the Properties of Cocoa Bean Shell Based Papers

Authors: Sri Rejeki, Tamrin Tamrin, RH. F. Faradilla, Muhammad N. Ibrahim, Mariana M., Irnawati Irnawati

Abstract:

Cocoa bean shells, despite their antioxidant and antimicrobial properties, are still considered as an underutilized agricultural waste. The functional properties and their lignocelluloses content make cocoa bean shells a potential material for paper-based food packaging. In our previous research, we have successfully produced papers from cocoa bean shells that had antioxidant and antibacterial activities. However, the hydrophilic nature of the lignocelluloses of cocoa bean shells hinders the application of the paper to be used as a food packaging. In this research, we aimed to study the effects of beeswax coating on the wettability and mechanical properties of the paper. The coating was done by dipping the papers in beeswax solution several times and in three different beeswax concentrations. The number of dipping and beeswax concentration significantly (p<0.05) affected the water contact angle of the papers. Results show that the water contact angle increases dramatically due to the coating treatment. The control paper or uncoated paper had a contact angle of 40.50o, while the contact angle of the best-coated paper (D3B3: 3x dipping, 3g/10mL beeswax) reached 96.93o. Both tensile strength and percent elongation were not significantly (p>0.05) affected by the coating treatment. This showed that beeswax was a potential organic material to improve the hydrophobicity of paper from cocoa bean shells without any undesirable effects on the mechanical properties of the paper.

Keywords: cocoa bean shell, paper, beeswax, coating, contact angle

Procedia PDF Downloads 136