Search results for: multivariate logistic regression
54 Family Firm Internationalization: Identification of Alternative Success Pathways
Authors: Sascha Kraus, Wolfgang Hora, Philipp Stieg, Thomas Niemand, Ferdinand Thies, Matthias Filser
Abstract:
In most countries, small and medium-sized enterprises (SME) are the backbone of the economy due to their impact on job creation, innovation and wealth creation. Moreover, the ongoing globalization makes it inevitable – even for SME that traditionally focused on their domestic markets – to internationalize their business activities to realize further growth and survive in international markets. Thus, internationalization has become one of the most common growth strategies for SME and has received increasing scholarly attention over the last two decades. One the downside internationalization can be also regarded as the most complex strategy that a firm can undertake. Particularly for family firms, that are often characterized by limited financial capital, a risk-averse nature and limited growth aspirations, it could be argued that family firms are more likely to face greater challenges when taking the pathway to internationalization. Especially the triangulation of family, ownership, and management (so-called ‘familiness’) manifests in a unique behavior and decision-making process which is often characterized by the importance given to noneconomic goals and distinguishes a family firm from other businesses. Taking this into account, the concept of socio-emotional wealth (SEW) has been evolved to describe the behavior of family firms. In order to investigate how different internal and external firm characteristics shape internationalization success of family firms, we drew on a sample consisting of 297 small and medium-sized family firms from Germany, Austria, Switzerland, and Liechtenstein. Thus, we include SEW as essential family firm characteristic and added the two major intra-organizational characteristics, entrepreneurial orientation (EO), absorptive capacity (AC) as well as collaboration intensity (CI) and relational knowledge (RK) as two major external network characteristics. Based on previous research we assume that these characteristics are important to explain internationalization success of family firm SME. Regarding the data analysis, we applied a Fuzzy Set Qualitative Comparative Analysis (fsQCA), an approach that allows identifying configurations of firm characteristics, specifically used to study complex causal relationships where traditional regression techniques reach their limits. Results indicate that several combinations of these family firm characteristics can lead to international success, with no permanently required key characteristic. Instead, there are many roads to walk down for family firms to achieve internationalization success. Consequently, our data states that family owned SME are heterogeneous and internationalization is a complex and dynamic process. Results further show that network related characteristics occur in all sets, thus represent an essential element in the internationalization process of family owned SME. The contribution of our study is twofold, as we investigate different forms of international expansion for family firms and how to improve them. First, we are able to broaden the understanding of the intersection between family firm and SME internationalization with respect to major intra-organizational and network-related variables. Second, from a practical perspective, we offer family firm owners a basis for setting up internal capabilities to achieve international success.Keywords: entrepreneurial orientation, family firm, fsQCA, internationalization, socio-emotional wealth
Procedia PDF Downloads 24153 ADAM10 as a Potential Blood Biomarker of Cognitive Frailty
Authors: Izabela P. Vatanabe, Rafaela Peron, Patricia Manzine, Marcia R. Cominetti
Abstract:
Introduction: Considering the increase in life expectancy of world population, there is an emerging concern in health services to allocate better care and care to elderly, through promotion, prevention and treatment of health. It has been observed that frailty syndrome is prevalent in elderly people worldwide and this complex and heterogeneous clinical syndrome consist of the presence of physical frailty associated with cognitive dysfunction, though in absence of dementia. This can be characterized by exhaustion, unintentional weight loss, decreased walking speed, weakness and low level of physical activity, in addition, each of these symptoms may be a predictor of adverse outcomes such as hospitalization, falls, functional decline, institutionalization, and death. Cognitive frailty is a recent concept in literature, which is defined as the presence of physical frailty associated with mild cognitive impairment (MCI) however in absence of dementia. This new concept has been considered as a subtype of frailty, which along with aging process and its interaction with physical frailty, accelerates functional declines and can result in poor quality of life of the elderly. MCI represents a risk factor for Alzheimer's disease (AD) in view of high conversion rate for this disease. Comorbidities and physical frailty are frequently found in AD patients and are closely related to heterogeneity and clinical manifestations of the disease. The decreased platelets ADAM10 levels in AD patients, compared to cognitively healthy subjects, matched by sex, age and education. Objective: Based on these previous results, this study aims to evaluate whether ADAM10 platelet levels of could act as a biomarker of cognitive frailty. Methods: The study was approved by Ethics Committee of Federal University of São Carlos (UFSCar) and conducted in the municipality of São Carlos, headquarters of Federal University of São Carlos (UFSCar). Biological samples of subjects were collected, analyzed and then stored in a biorepository. ADAM10 platelet levels were analyzed by western blotting technique in subjects with MCI and compared to subjects without cognitive impairment, both with and without presence of frailty. Statistical tests of association, regression and diagnostic accuracy were performed. Results: The results have shown that ADAM10/β-actin ratio is decreased in elderly individuals with cognitive frailty compared to non-frail and cognitively healthy controls. Previous studies performed by this research group, already mentioned above, demonstrated that this reduction is still higher in AD patients. Therefore, the ADAM10/β-actin ratio appears to be a potential biomarker for cognitive frailty. The results bring important contributions to an accurate diagnosis of cognitive frailty from the perspective of ADAM10 as a biomarker for this condition, however, more experiments are being conducted, using a high number of subjects, and will help to understand the role of ADAM10 as biomarker of cognitive frailty and contribute to the implementation of tools that work in the diagnosis of cognitive frailty. Such tools can be used in public policies for the diagnosis of cognitive frailty in the elderly, resulting in a more adequate planning for health teams and better quality of life for the elderly.Keywords: ADAM10, biomarkers, cognitive frailty, elderly
Procedia PDF Downloads 23352 South-Mediterranean Oaks Forests Management in Changing Climate Case of the National Park of Tlemcen-Algeria
Authors: K. Bencherif, M. Bellifa
Abstract:
The expected climatic changes in North Africa are the increase of both intensity and frequencies of the summer droughts and a reduction in water availability during growing season. The exiting coppices and forest formations in the national park of Tlemcen are dominated by holm oak, zen oak and cork oak. These opened-fragmented structures don’t seem enough strong so to hope durable protection against climate change. According to the observed climatic tendency, the objective is to analyze the climatic context and its evolution taking into account the eventual behaving of the oak species during the next 20-30 years on one side and the landscaped context in relation with the most adequate sylvicultural models to choose and especially in relation with human activities on another side. The study methodology is based on Climatic synthesis and Floristic and spatial analysis. Meteorological data of the decade 1989-2009 are used to characterize the current climate. An another approach, based on dendrochronological analysis of a 120 years sample Aleppo pine stem growing in the park, is used so to analyze the climate evolution during one century. Results on the climate evolution during the 50 years obtained through climatic predictive models are exploited so to predict the climate tendency in the park. Spatially, in each forest unit of the Park, stratified sampling is achieved so to reduce the degree of heterogeneity and to easily delineate different stands using the GPS. Results from precedent study are used to analyze the anthropogenic factor considering the forecasts for the period 2025-2100, the number of warm days with a temperature over 25°C would increase from 30 to 70. The monthly mean temperatures of the maxima’s (M) and the minima’s (m) would pass respectively from 30.5°C to 33°C and from 2.3°C to 4.8°C. With an average drop of 25%, precipitations will be reduced to 411.37 mm. These new data highlight the importance of the risk fire and the water stress witch would affect the vegetation and the regeneration process. Spatial analysis highlights the forest and the agricultural dimensions of the park compared to the urban habitat and bare soils. Maps show both fragmentation state and forest surface regression (50% of total surface). At the level of the park, fires affected already all types of covers creating low structures with various densities. On the silvi cultural plan, Zen oak form in some places pure stands and this invasion must be considered as a natural tendency where Zen oak becomes the structuring specie. Climate-related changes have nothing to do with the real impact that South-Mediterranean forests are undergoing because human constraints they support. Nevertheless, hardwoods stand of oak in the national park of Tlemcen will face up to unexpected climate changes such as changing rainfall regime associated with a lengthening of the period of water stress, to heavy rainfall and/or to sudden cold snaps. Faced with these new conditions, management based on mixed uneven aged high forest method promoting the more dynamic specie could be an appropriate measure.Keywords: global warming, mediterranean forest, oak shrub-lands, Tlemcen
Procedia PDF Downloads 38751 Modeling the Demand for the Healthcare Services Using Data Analysis Techniques
Authors: Elizaveta S. Prokofyeva, Svetlana V. Maltseva, Roman D. Zaitsev
Abstract:
Rapidly evolving modern data analysis technologies in healthcare play a large role in understanding the operation of the system and its characteristics. Nowadays, one of the key tasks in urban healthcare is to optimize the resource allocation. Thus, the application of data analysis in medical institutions to solve optimization problems determines the significance of this study. The purpose of this research was to establish the dependence between the indicators of the effectiveness of the medical institution and its resources. Hospital discharges by diagnosis; hospital days of in-patients and in-patient average length of stay were selected as the performance indicators and the demand of the medical facility. The hospital beds by type of care, medical technology (magnetic resonance tomography, gamma cameras, angiographic complexes and lithotripters) and physicians characterized the resource provision of medical institutions for the developed models. The data source for the research was an open database of the statistical service Eurostat. The choice of the source is due to the fact that the databases contain complete and open information necessary for research tasks in the field of public health. In addition, the statistical database has a user-friendly interface that allows you to quickly build analytical reports. The study provides information on 28 European for the period from 2007 to 2016. For all countries included in the study, with the most accurate and complete data for the period under review, predictive models were developed based on historical panel data. An attempt to improve the quality and the interpretation of the models was made by cluster analysis of the investigated set of countries. The main idea was to assess the similarity of the joint behavior of the variables throughout the time period under consideration to identify groups of similar countries and to construct the separate regression models for them. Therefore, the original time series were used as the objects of clustering. The hierarchical agglomerate algorithm k-medoids was used. The sampled objects were used as the centers of the clusters obtained, since determining the centroid when working with time series involves additional difficulties. The number of clusters used the silhouette coefficient. After the cluster analysis it was possible to significantly improve the predictive power of the models: for example, in the one of the clusters, MAPE error was only 0,82%, which makes it possible to conclude that this forecast is highly reliable in the short term. The obtained predicted values of the developed models have a relatively low level of error and can be used to make decisions on the resource provision of the hospital by medical personnel. The research displays the strong dependencies between the demand for the medical services and the modern medical equipment variable, which highlights the importance of the technological component for the successful development of the medical facility. Currently, data analysis has a huge potential, which allows to significantly improving health services. Medical institutions that are the first to introduce these technologies will certainly have a competitive advantage.Keywords: data analysis, demand modeling, healthcare, medical facilities
Procedia PDF Downloads 14450 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text
Authors: Duncan Wallace, M-Tahar Kechadi
Abstract:
In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.Keywords: artificial neural networks, data-mining, machine learning, medical informatics
Procedia PDF Downloads 13049 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.Keywords: cross-validation, importance sampling, information criteria, predictive accuracy
Procedia PDF Downloads 39148 Assessing P0.1 and Occlusion Pressures in Brain-Injured Patients on Pressure Support Ventilation: A Study Protocol
Authors: S. B. R. Slagmulder
Abstract:
Monitoring inspiratory effort and dynamic lung stress in patients on pressure support ventilation in the ICU is important for protecting against self inflicted lung injury (P-SILI) and diaphragm dysfunction. Strategies to address the detrimental effects of respiratory drive and effort can lead to improved patient outcomes. Two non-invasive estimation methods, occlusion pressure (Pocc) and P0.1, have been proposed for achieving lung and diaphragm protective ventilation. However, their relationship and interpretation in neuro ICU patients is not well understood. P0.1 is the airway pressure measured during a 100-millisecond occlusion of the inspiratory port. It reflects the neural drive from the respiratory centers to the diaphragm and respiratory muscles, indicating the patient's respiratory drive during the initiation of each breath. Occlusion pressure, measured during a brief inspiratory pause against a closed airway, provides information about the inspiratory muscles' strength and the system's total resistance and compliance. Research Objective: Understanding the relationship between Pocc and P0.1 in brain-injured patients can provide insights into the interpretation of these values in pressure support ventilation. This knowledge can contribute to determining extubation readiness and optimizing ventilation strategies to improve patient outcomes. The central goal is to asses a study protocol for determining the relationship between Pocc and P0.1 in brain-injured patients on pressure support ventilation and their ability to predict successful extubation. Additionally, comparing these values between brain-damaged and non-brain-damaged patients may provide valuable insights. Key Areas of Inquiry: 1. How do Pocc and P0.1 values correlate within brain injury patients undergoing pressure support ventilation? 2. To what extent can Pocc and P0.1 values serve as predictive indicators for successful extubation in patients with brain injuries? 3. What differentiates the Pocc and P0.1 values between patients with brain injuries and those without? Methodology: P0.1 and occlusion pressures are standard measurements for pressure support ventilation patients, taken by attending doctors as per protocol. We utilize electronic patient records for existing data. Unpaired T-test will be conducted to compare P0.1 and Pocc values between both study groups. Associations between P0.1 and Pocc and other study variables, such as extubation, will be explored with simple regression and correlation analysis. Depending on how the data evolve, subgroup analysis will be performed for patients with and without extubation failure. Results: While it is anticipated that neuro patients may exhibit high respiratory drive, the linkage between such elevation, quantified by P0.1, and successful extubation remains unknown The analysis will focus on determining the ability of these values to predict successful extubation and their potential impact on ventilation strategies. Conclusion: Further research is pending to fully understand the potential of these indices and their impact on mechanical ventilation in different patient populations and clinical scenarios. Understanding these relationships can aid in determining extubation readiness and tailoring ventilation strategies to improve patient outcomes in this specific patient population. Additionally, it is vital to account for the influence of sedatives, neurological scores, and BMI on respiratory drive and occlusion pressures to ensure a comprehensive analysis.Keywords: brain damage, diaphragm dysfunction, occlusion pressure, p0.1, respiratory drive
Procedia PDF Downloads 6747 Physical Activity and Nutrition Intervention for Singaporean Women Aged 50 Years and Above: A Study Protocol for a Community Based Randomised Controlled Trial
Authors: Elaine Yee Sing Wong, Jonine Jancey, Andy H. Lee, Anthony P. James
Abstract:
Singapore has a rapidly aging population, where the majority of older women aged 50 years and above, are physically inactive and have unhealthy dietary habits, placing them at ‘high risk’ of non-communicable diseases. Given the multiplicity of less than optimal dietary habits and high levels of physical inactivity among Singaporean women, it is imperative to develop appropriate lifestyle interventions at recreational centres to enhance both their physical and nutritional knowledge, as well as provide them with the opportunity to develop skills to support behaviour change. To the best of our knowledge, this proposed study is the first physical activity and nutrition cluster randomised controlled trial conducted in Singapore for older women. Findings from this study may provide insights and recommendations for policy makers and key stakeholders to create new healthy living, recreational centres with supportive environments. This 6-month community-based cluster randomised controlled trial will involve the implementation and evaluation of physical activity and nutrition program for community dwelling Singaporean women, who currently attend recreational centres to promote social leisure activities in their local neighbourhood. The intervention will include dietary education and counselling sessions, physical activity classes, and telephone contact by certified fitness instructors and qualified nutritionists. Social Cognitive Theory with Motivational Interviewing will inform the development of strategies to support health behaviour change. Sixty recreational centres located in Singapore will be randomly selected from five major geographical districts and randomly allocated to the intervention (n=30) or control (n=30) cluster. A sample of 600 (intervention n=300; control n=300) women aged 50 years and above will then be recruited from these recreational centres. The control clusters will only undergo pre and post data collection and will not receive the intervention. It is hypothesised that by the end of the intervention, the intervention group participants (n = 300) compared to the control group (n = 300), will show significant improvements in the following variables: lipid profile, body mass index, physical activity and dietary behaviour, anthropometry, mental and physical health. Data collection will be examined and compared via the Statistical Package for the Social Science version 23. Descriptive and summary statistics will be used to quantify participants’ characteristics and outcome variables. Multi-variable mixed regression analyses will be used to confirm the effects of the proposed health intervention, taking into account the repeated measures and the clustering of the observations. The research protocol was approved by the Curtin University Human Research Ethics Committee (approval number: HRE2016-0366). The study has been registered with the Australian and New Zealand Clinical Trial Registry (12617001022358).Keywords: community based, healthy aging, intervention, nutrition, older women, physical activity
Procedia PDF Downloads 17446 Quantitative Analysis of Contract Variations Impact on Infrastructure Project Performance
Authors: Soheila Sadeghi
Abstract:
Infrastructure projects often encounter contract variations that can significantly deviate from the original tender estimates, leading to cost overruns, schedule delays, and financial implications. This research aims to quantitatively assess the impact of changes in contract variations on project performance by conducting an in-depth analysis of a comprehensive dataset from the Regional Airport Car Park project. The dataset includes tender budget, contract quantities, rates, claims, and revenue data, providing a unique opportunity to investigate the effects of variations on project outcomes. The study focuses on 21 specific variations identified in the dataset, which represent changes or additions to the project scope. The research methodology involves establishing a baseline for the project's planned cost and scope by examining the tender budget and contract quantities. Each variation is then analyzed in detail, comparing the actual quantities and rates against the tender estimates to determine their impact on project cost and schedule. The claims data is utilized to track the progress of work and identify deviations from the planned schedule. The study employs statistical analysis using R to examine the dataset, including tender budget, contract quantities, rates, claims, and revenue data. Time series analysis is applied to the claims data to track progress and detect variations from the planned schedule. Regression analysis is utilized to investigate the relationship between variations and project performance indicators, such as cost overruns and schedule delays. The research findings highlight the significance of effective variation management in construction projects. The analysis reveals that variations can have a substantial impact on project cost, schedule, and financial outcomes. The study identifies specific variations that had the most significant influence on the Regional Airport Car Park project's performance, such as PV03 (additional fill, road base gravel, spray seal, and asphalt), PV06 (extension to the commercial car park), and PV07 (additional box out and general fill). These variations contributed to increased costs, schedule delays, and changes in the project's revenue profile. The study also examines the effectiveness of project management practices in managing variations and mitigating their impact. The research suggests that proactive risk management, thorough scope definition, and effective communication among project stakeholders can help minimize the negative consequences of variations. The findings emphasize the importance of establishing clear procedures for identifying, assessing, and managing variations throughout the project lifecycle. The outcomes of this research contribute to the body of knowledge in construction project management by demonstrating the value of analyzing tender, contract, claims, and revenue data in variation impact assessment. However, the research acknowledges the limitations imposed by the dataset, particularly the absence of detailed contract and tender documents. This constraint restricts the depth of analysis possible in investigating the root causes and full extent of variations' impact on the project. Future research could build upon this study by incorporating more comprehensive data sources to further explore the dynamics of variations in construction projects.Keywords: contract variation impact, quantitative analysis, project performance, claims analysis
Procedia PDF Downloads 3945 Identification of the Target Genes to Increase the Immunotherapy Response in Bladder Cancer Patients using Computational and Experimental Approach
Authors: Sahar Nasr, Lin Li, Edwin Wang
Abstract:
Bladder cancer (BLCA) is known as the 13th cause of death among cancer patients worldwide, and ~575,000 new BLCA cases are diagnosed each year. Urothelial carcinoma (UC) is the most prevalent subtype among BLCA patients, which can be categorized into muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). Currently, various therapeutic options are available for UC patients, including (1) transurethral resection followed by intravesical instillation of chemotherapeutics or Bacillus Calmette-Guérin for NMIBC patients, (2) neoadjuvant platinum-based chemotherapy (NAC) plus radical cystectomy is the standard of care for localized MIBC patients, and (3) systematic chemotherapy for metastatic UC. However, conventional treatments may lead to several challenges for treating patients. As an illustration, some patients may suffer from recurrence of the disease after the first line of treatment. Recently, immune checkpoint therapy (ICT) has been introduced as an alternative treatment strategy for the first or second line of treatment in advanced or metastatic BLCA patients. Although ICT showed lucrative results for a fraction of BLCA patients, ~80% of patients were not responsive to it. Therefore, novel treatment methods are required to augment the ICI response rate within BLCA patients. It has been shown that the infiltration of T-cells into the tumor microenvironment (TME) is positively correlated with the response to ICT within cancerous patients. Therefore, the goal of this study is to enhance the infiltration of cytotoxic T-cells into TME through the identification of target genes within the tumor that are responsible for the non-T-cell inflamed TME and their inhibition. BLCA bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) and immune score for TCGA samples were used to determine the Pearson correlation score between the expression of different genes and immune score for each sample. The genes with strong negative correlations were selected (r < -0.2). Thereafter, the correlation between the expression of each gene and survival in BLCA patients was calculated using the TCGA data and Cox regression method. The genes that are common in both selected gene lists were chosen for further analysis. Afterward, BLCA bulk and single-cell RNA-sequencing data were ranked based on the expression of each selected gene and the top and bottom 25% samples were used for pathway enrichment analysis. If the pathways related to the T-cell infiltration (e.g., antigen presentation, interferon, or chemokine pathways) were enriched within the low-expression group, the gene was included for downstream analysis. Finally, the selected genes will be used to calculate the correlation between their expression and the infiltration rate of the activated CD+8 T-cells, natural killer cells and the activated dendric cells. A list of potential target genes has been identified and ranked based on the above-mentioned analysis and criteria. SUN-1 got the highest score within the gene list and other identified genes in the literature as benchmarks. In conclusion, inhibition of SUN1 may increase the tumor-infiltrating lymphocytes and the efficacy of ICI in BLCA patients. BLCA tumor cells with and without SUN-1 CRISPR/Cas9 knockout will be injected into the syngeneic mouse model to validate the predicted SUN-1 effect on increasing tumor-infiltrating lymphocytes.Keywords: data analysis, gene expression analysis, gene identification, immunoinformatic, functional genomics, transcriptomics
Procedia PDF Downloads 15344 The Effect of Students’ Social and Scholastic Background and Environmental Impact on Shaping Their Pattern of Digital Learning in Academia: A Pre- and Post-COVID Comparative View
Authors: Nitza Davidovitch, Yael Yossel-Eisenbach
Abstract:
The purpose of the study was to inquire whether there was a change in the shaping of undergraduate students’ digitally-oriented study pattern in the pre-Covid (2016-2017) versus post-Covid period (2022-2023), as affected by three factors: social background characteristics, high school, and academic background characteristics. These two-time points were cauterized by dramatic changes in teaching and learning at institutions of higher education. The data were collected via cross-sectional surveys at two-time points, in the 2016-2017 academic school year (N=443) and in the 2022-2023 school year (N=326). The questionnaire was distributed on social media and it includes questions on demographic background characteristics, previous studies in high school and present academic studies, and questions on learning and reading habits. Method of analysis: A. Statistical descriptive analysis, B. Mean comparison tests were conducted to analyze the variations in the mean score for the digitally-oriented learning pattern variable at two-time points (pre- and post-Covid) in relation to each of the independent variables. C. Analysis of variance was performed to test the main effects and the interactions. D. Applying linear regression, the research aimed to examine the combined effect of the independent variables on shaping students' digitally-oriented learning habits. The analysis includes four models. In all four models, the dependent variable is students’ perception of digitally oriented learning. The first model included social background variables; the second model included scholastic background as well. In the third model, the academic background variables were added, and the fourth model includes all the independent variables together with the variable of period (pre- and post-COVID). E. Factor analysis confirms using the principal component method with varimax rotation; the variables were constructed by a weighted mean of all the relevant statements merged to form a single variable denoting a shared content world. The research findings indicate a significant rise in students’ perceptions of digitally-oriented learning in the post-COVID period. From a gender perspective, the impact of COVID on shaping a digital learning pattern was much more significant for female students. The socioeconomic status perspective is eliminated when controlling for the period, and the student’s job is affected - more than all other variables. It may be assumed that the student’s work pattern mediates effects related to the convenience offered by digital learning regarding distance and time. The significant effect of scholastic background on shaping students’ digital learning patterns remained stable, even when controlling for all explanatory variables. The advantage that universities had over colleges in shaping a digital learning pattern in the pre-COVID period dissipated. Therefore, it can be said that after COVID, there was a change in how colleges shape students’ digital learning patterns in such a way that no institutional differences are evident with regard to shaping the digital learning pattern. The study shows that period has a significant independent effect on shaping students’ digital learning patterns when controlling for the explanatory variables.Keywords: learning pattern, COVID, socioeconomic status, digital learning
Procedia PDF Downloads 6243 Embryonic Aneuploidy – Morphokinetic Behaviors as a Potential Diagnostic Biomarker
Authors: Banafsheh Nikmehr, Mohsen Bahrami, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Mallory Pitts, Tolga B. Mesen, Tamer M. Yalcinkaya
Abstract:
The number of people who receive in vitro fertilization (IVF) treatment has increased on a startling trajectory over the past two decades. Despite advances in this field, particularly the introduction of intracytoplasmic sperm injection (ICSI) and the preimplantation genetic screening (PGS), the IVF success remains low. A major factor contributing to IVF failure is embryonic aneuploidy (abnormal chromosome content), which often results in miscarriage and birth defects. Although PGS is often used as the standard diagnostic tool to identify aneuploid embryos, it is an invasive approach that could affect the embryo development, and yet inaccessible to many patients due its high costs. As such, there is a clear need for a non-invasive cost-effective approach to identify euploid embryos for single embryo transfer (SET). The reported differences between morphokinetic behaviors of aneuploid and euploid embryos has shown promise to address this need. However, current literature is inconclusive and further research is urgently needed to translate current findings into clinical diagnostics. In this ongoing study, we found significant differences between morphokinetic behaviors of euploid and aneuploid embryos that provides important insights and reaffirms the promise of such behaviors for developing non-invasive methodologies. Methodology—A total of 242 embryos (euploid: 149, aneuploid: 93) from 74 patients who underwent IVF treatment in Carolinas Fertility Clinics in Winston-Salem, NC, were analyzed. All embryos were incubated in an EmbryoScope incubator. The patients were randomly selected from January 2019 to June 2021 with most patients having both euploid and aneuploid embryos. All embryos reached the blastocyst stage and had known PGS outcomes. The ploidy assessment was done by a third-party testing laboratory on day 5-7 embryo biopsies. The morphokinetic variables of each embryo were measured by the EmbryoViewer software (Uniesense FertiliTech) on time-lapse images using 7 focal depths. We compared the time to: pronuclei fading (tPNf), division to 2,3,…,9 cells (t2, t3,…,t9), start of embryo compaction (tSC), Morula formation (tM), start of blastocyst formation (tSC), blastocyst formation (tB), and blastocyst expansion (tEB), as well as intervals between them (e.g., c23 = t3 – t2). We used a mixed regression method for our statistical analyses to account for the correlation between multiple embryos per patient. Major Findings— The average age of the patients was 35.04 yrs. The average patient age associated with euploid and aneuploid embryos was not different (P = 0.6454). We found a significant difference in c45 = t5-t4 (P = 0.0298). Our results indicated this interval on average lasts significantly longer for aneuploid embryos - c45(aneuploid) = 11.93hr vs c45(euploid) = 7.97hr. In a separate analysis limited to embryos from the same patients (patients = 47, total embryos=200, euploid=112, aneuploid=88), we obtained the same results (P = 0.0316). The statistical power for this analysis exceeded 87%. No other variable was different between the two groups. Conclusion— Our results demonstrate the importance of morphokinetic variables as potential biomarkers that could aid in non-invasively characterizing euploid and aneuploid embryos. We seek to study a larger population of embryos and incorporate the embryo quality in future studies.Keywords: IVF, embryo, euploidy, aneuploidy, morphokinteic
Procedia PDF Downloads 8742 Cultural Intelligence for the Managers of Tomorrow: A Data-Based Analysis of the Antecedents and Training Needs of Today’s Business School Students
Authors: Justin Byrne, Jose Ramon Cobo
Abstract:
The growing importance of cross- or intercultural competencies (used here interchangeably) for the business and management professionals is now a commonplace in both academic and professional literature. This reflects two parallel developments. On the one hand, it is a consequence of the increased attention paid to a whole range of 'soft skills', now seen as fundamental in both individuals' and corporate success. On the other hand, and more specifically, the increasing demand for interculturally competent professionals is a corollary of ongoing processes of globalization, which multiply and intensify encounters between individuals and companies from different cultural backgrounds. Business schools have, for some decades, responded to the needs of the job market and their own students by providing students with training in intercultural skills, as they are encouraged to do so by the major accreditation agencies on both sides of the Atlantic. Adapting Early and Ang's (2003) formulation of Cultural Intelligence (CQ), this paper aims to help fill the lagunae in the current literature on intercultural training in three main ways. First, it offers an in-depth analysis of the CQ of a little studied group: contemporary Millenial and 'Generation Z' Business School students. The level of analysis distinguishes between the four different dimensions of CQ, cognition, metacognition, motivation and behaviour, and thereby provides a detailed picture of the strengths and weaknesses in CQ of the group as a whole, as well as of different sub-groups and profiles of students. Secondly, by crossing these individual-level findings with respondents' socio-cultural and educational data, this paper also proposes and tests hypotheses regarding the relative impact and importance of four possible antecedents of intercultural skills identified in the literature: prior international experience; intercultural training, foreign language proficiency, and experience of cultural diversity in habitual country of residence. Third, we use this analysis to suggest data-based intercultural training priorities for today's management students. These conclusions are based on the statistical analysis of individual responses of some 300 Bachelor or Masters students in a major European Business School provided to two on-line surveys: Ang, Van Dyne, et al's (2007) standard 20-question self-reporting CQ Scale, and an original questionnaire designed by the authors to collate information on respondent's socio-demographic and educational profile relevant to our four hypotheses and explanatory variables. The data from both instruments was crossed in both descriptive statistical analysis and regression analysis. This research shows that there is no statistically significant and positive relationship between the four antecedents analyzed and overall CQ level. The exception in this respect is the statistically significant correlation between international experience, and the cognitive dimension of CQ. In contrast, the results show that the combination of international experience and foreign language skills acting together, does have a strong overall impact on CQ levels. These results suggest that selecting and/or training students with strong foreign language skills and providing them with international experience (through multinational programmes, academic exchanges or international internships) constitutes one effective way of training culturally intelligent managers of tomorrow.Keywords: business school, cultural intelligence, millennial, training
Procedia PDF Downloads 15741 Estimated Heat Production, Blood Parameters and Mitochondrial DNA Copy Number of Nellore Bulls with High and Low Residual Feed Intake
Authors: Welder A. Baldassini, Jon J. Ramsey, Marcos R. Chiaratti, Amália S. Chaves, Renata H. Branco, Sarah F. M. Bonilha, Dante P. D. Lanna
Abstract:
With increased production costs there is a need for animals that are more efficient in terms of meat production. In this context, the role of mitochondrial DNA (mtDNA) on physiological processes in liver, muscle and adipose tissues may account for inter-animal variation in energy expenditures and heat production. The purpose this study was to investigate if the amounts of mtDNA in liver, muscle and adipose tissue (subcutaneous and visceral depots) of Nellore bulls are associated with residual feed intake (RFI) and estimated heat production (EHP). Eighteen animals were individually fed in a feedlot for 90 days. RFI values were obtained by regression of dry matter intake (DMI) in relation to average daily gain (ADG) and mid-test metabolic body weight (BW). The animals were classified into low (more efficient) and high (less efficient) RFI groups. The bulls were then randomly distributed in individual pens where they were given excess feed twice daily to result in 5 to 10% orts for 90 d with diet containing 15% crude protein and 2.7 Mcal ME/kg DM. The heart rate (HR) of bulls was monitored for 4 consecutive days and used for calculation of EHP. Electrodes were fitted to bulls with stretch belts (POLAR RS400; Kempele, Finland). To calculate oxygen pulse (O2P), oxygen consumption was obtained using a facemask connected to the gas analyzer (EXHALYZER, ECOMedics, Zurich, Switzerland) and HR were simultaneously measured for 15 minutes period. Daily oxygen (O2) consumption was calculated by multiplying the volume of O2 per beat by total daily beats. EHP was calculated multiplying O2P by the average HR obtained during the 4 days, assuming 4.89 kcal/L of O2 to measure daily EHP that was expressed in kilocalories/day/kilogram metabolic BW (kcal/day/kg BW0.75). Blood samples were collected between days 45 and 90th after the beginning of the trial period in order to measure the concentration of hemoglobin and hematocrit. The bulls were slaughtered in an experimental slaughter house in accordance with current guidelines. Immediately after slaughter, a section of liver, a portion of longissimus thoracis (LT) muscle, plus a portion of subcutaneous fat (surrounding LT muscle) and portions of visceral fat (kidney, pelvis and inguinal fat) were collected. Samples of liver, muscle and adipose tissues were used to quantify mtDNA copy number per cell. The number of mtDNA copies was determined by normalization of mtDNA amount against a single copy nuclear gene (B2M). Mean of EHP, hemoglobin and hematocrit of high and low RFI bulls were compared using two-sample t-tests. Additionally, the one-way ANOVA was used to compare mtDNA quantification considering the mains effects of RFI groups. We found lower EHP (83.047 vs. 97.590 kcal/day/kgBW0.75; P < 0.10), hemoglobin concentration (13.533 vs. 15.108 g/dL; P < 0.10) and hematocrit percentage (39.3 vs. 43.6 %; P < 0.05) in low compared to high RFI bulls, respectively, which may be useful traits to identify efficient animals. However, no differences were observed between the mtDNA content in liver, muscle and adipose tissue of Nellore bulls with high and low RFI.Keywords: bioenergetics, Bos indicus, feed efficiency, mitochondria
Procedia PDF Downloads 24440 Breast Cancer Therapy-Related Cardiac Dysfunction Identifying in Kazakhstan: Preliminary Findings of the Cohort Study
Authors: Saule Balmagambetova, Zhenisgul Tlegenova, Saule Madinova
Abstract:
Cardiotoxicity associated with anticancer treatment, now defined as cancer therapy-related cardiac dysfunction (CTRCD), accompanies cancer patients and negatively impacts their survivorship. Currently, a cardio-oncological service is being created in Kazakhstan based on the provisions of the European Society of Cardio-oncology (ESC) Guidelines. In the frames of a pilot project, a cohort study on CTRCD conditions was initiated at the Aktobe Cancer center. One hundred twenty-eight newly diagnosed breast cancer patients started on doxorubicin and/or trastuzumab were recruited. Echocardiography with global longitudinal strain (GLS) assessment, biomarkers panel (cardiac troponin (cTnI), brain natriuretic peptide (BNP), myeloperoxidase (MPO), galectin-3 (Gal-3), D-dimers, C-reactive protein (CRP)), and other tests were performed at baseline and every three months. Patients were stratified by the cardiovascular risks according to the ESC recommendations and allocated into the risk groups during the pre-treatment visit. Of them, 10 (7.8%) patients were assigned to the high-risk group, 48 (37.5%) to the medium-risk group, and 70 (54.7%) to the low-risk group, respectively. High-risk patients have been receiving their cardioprotective treatment from the outset. Patients were also divided by treatment - in the anthracycline-based 83 (64.8%), in trastuzumab- only 13 (10.2%), and in the mixed anthracycline/trastuzumab group 32 individuals (25%), respectively. Mild symptomatic CTRCD was revealed and treated in 2 (1.6%) participants, and a mild asymptomatic variant in 26 (20.5%). Mild asymptomatic conditions are defined as left ventricular ejection fraction (LVEF) ≥50% and further relative reduction in GLS by >15% from baseline and/or a further rise in cardiac biomarkers. The listed biomarkers were assessed longitudinally in repeated-measures linear regression models during 12 months of observation. The associations between changes in biomarkers and CTRCD and between changes in biomarkers and LVEF were evaluated. Analysis by risk groups revealed statistically significant differences in baseline LVEF scores (p 0.001), BNP (p 0.0075), and Gal-3 (p 0.0073). Treatment groups found no statistically significant differences at baseline. After 12 months of follow-up, only LVEF values showed a statistically significant difference by risk groups (p 0.0011). When assessing the temporal changes in the studied parameters for all treatment groups, there were statistically significant changes from visit to visit for LVEF (p 0.003); GLS (p 0.0001); BNP (p<0.00001); MPO (p<0.0001); and Gal-3 (p<0.0001). No moderate or strong correlations were found between the biomarkers values and LVEF, between biomarkers and GLS. Between the biomarkers themselves, a moderate, close to strong correlation was established between cTnI and D-dimer (r 0.65, p<0.05). The dose-dependent effect of anthracyclines has been confirmed: the summary dose has a moderate negative impact on GLS values: -r 0.31 for all treatment groups (p<0.05). The present study found myeloperoxidase as a promising biomarker of cardiac dysfunction in the mixed anthracycline/trastuzumab treatment group. The hazard of CTRCD increased by 24% (HR 1.21; 95% CI 1.01;1.73) per doubling in baseline MPO value (p 0.041). Increases in BNP were also associated with CTRCD (HR per doubling, 1.22; 95% CI 1.12;1.69). No cases of chemotherapy discontinuation due to cardiotoxic complications have been recorded. Further observations are needed to gain insight into the ability of biomarkers to predict CTRCD onset.Keywords: breast cancer, chemotherapy, cardiotoxicity, Kazakhstan
Procedia PDF Downloads 9039 Environmental Effect of Empty Nest Households in Germany: An Empirical Approach
Authors: Dominik Kowitzke
Abstract:
Housing constructions have direct and indirect environmental impacts especially caused by soil sealing and gray energy consumption related to the use of construction materials. Accordingly, the German government introduced regulations limiting additional annual soil sealing. At the same time, in many regions like metropolitan areas the demand for further housing is high and of current concern in the media and politics. It is argued that meeting this demand by making better use of the existing housing supply is more sustainable than the construction of new housing units. In this context, targeting the phenomenon of so-called over the housing of empty nest households seems worthwhile to investigate for its potential to free living space and thus, reduce the need for new housing constructions and related environmental harm. Over housing occurs if no space adjustment takes place in household lifecycle stages when children move out from home and the space formerly created for the offspring is from then on under-utilized. Although in some cases the housing space consumption might actually meet households’ equilibrium preferences, frequently space-wise adjustments to the living situation doesn’t take place due to transaction or information costs, habit formation, or government intervention leading to increasing costs of relocations like real estate transfer taxes or tenant protection laws keeping tenure rents below the market price. Moreover, many detached houses are not long-term designed in a way that freed up space could be rent out. Findings of this research based on socio-economic survey data, indeed, show a significant difference between the living space of empty nest and a comparison group of households which never had children. The approach used to estimate the average difference in living space is a linear regression model regressing the response variable living space on a two-dimensional categorical variable distinguishing the two groups of household types and further controls. This difference is assumed to be the under-utilized space and is extrapolated to the total amount of empty nests in the population. Supporting this result, it is found that households that move, despite market frictions impairing the relocation, after children left their home tend to decrease the living space. In the next step, only for areas with tight housing markets in Germany and high construction activity, the total under-utilized space in empty nests is estimated. Under the assumption of full substitutability of housing space in empty nests and space in new dwellings in these locations, it is argued that in a perfect market with empty nest households consuming their equilibrium demand quantity of housing space, dwelling constructions in the amount of the excess consumption of living space could be saved. This, on the other hand, would prevent environmental harm quantified in carbon dioxide equivalence units related to average constructions of detached or multi-family houses. This study would thus provide information on the amount of under-utilized space inside dwellings which is missing in public data and further estimates the external effect of over housing in environmental terms.Keywords: empty nests, environment, Germany, households, over housing
Procedia PDF Downloads 17138 Cyber-Victimization among Higher Education Students as Related to Academic and Personal Factors
Authors: T. Heiman, D. Olenik-Shemesh
Abstract:
Over the past decade, with the rapid growth of electronic communication, the internet and, in particular, social networking has become an inseparable part of people's daily lives. Along with its benefits, a new type of online aggression has emerged, defined as cyber bullying, a form of interpersonal aggressive behavior that takes place through electronic means. Cyber-bullying is characterized by repetitive behavior over time of maladaptive authority and power usage using computers and cell phones via sending insulting messages and hurtful pictures. Preliminary findings suggest that the prevalence of involvement in cyber-bullying among higher education students varies between 10 and 35%. As to date, universities are facing an uphill effort in trying to restrain online misbehavior. As no studies examined the relationships between cyber-bullying involvement with personal aspects, and its impacts on academic achievement and work functioning, this present study examined the nature of cyber-bullying involvement among 1,052 undergraduate students (mean age = 27.25, S.D = 4.81; 66.2% female), coping with, as well as the effects of social support, perceived self-efficacy, well-being, and body-perception, in relation to cyber-victimization. We assume that students in higher education are a vulnerable population and at high risk of being cyber-victims. We hypothesize that social support might serve as a protective factor and will moderate the relationships between the socio-emotional variables and the occurrence of cyber- victimization. The findings of this study will present the relationships between cyber-victimization and the social-emotional aspects, which constitute risk and protective factors. After receiving approval from the Ethics Committee of the University, a Google Drive questionnaire was sent to a random sample of students, studying in the various University study centers. Students' participation was voluntary, and they completed the five questionnaires anonymously: Cyber-bullying, perceived self-efficacy, subjective well-being, social support and body perception. Results revealed that 11.6% of the students reported being cyber-victims during last year. Examining the emotional and behavioral reactions to cyber-victimization revealed that female emotional and behavioral reactions were significantly greater than the male reactions (p < .001). Moreover, females reported on a significant higher social support compared to men; male reported significantly on a lower social capability than female; and men's body perception was significantly more positive than women's scores. No gender differences were observed for subjective well-being scale. Significant positive correlations were found between cyber-victimization and fewer friends, lower grades, and work ineffectiveness (r = 0.37- .40, p < 0 .001). The results of the Hierarchical regression indicated significantly that cyber-victimization can be predicted by lower social support, lower body perception, and gender (female), that explained 5.6% of the variance (R2 = 0.056, F(5,1047) = 12.47, p < 0.001). The findings deepen our understanding of the students' involvement in cyber-bullying, and present the relationships of the social-emotional and academic aspects on cyber-victim students. In view of our findings, higher education policy could help facilitate coping with cyber-bullying incidents, and student support units could develop intervention programs aimed at reducing cyber-bullying and its impacts.Keywords: academic and personal factors, cyber-victimization, social support, higher education
Procedia PDF Downloads 28837 Academic Major, Gender, and Perceived Helpfulness Predict Help-Seeking Stigma
Authors: Tran Tran
Abstract:
Mental health issues are prevalent among Vietnamese undergraduate students, and they are greatly exacerbated during the COVID-19 pandemic for this population. While there is empirical evidence supporting the effectiveness and efficiency of therapy on mental health issues among college students, the rates of Vietnamese college students seeking professional mental health services were alarmingly low. Multiple factors can prevent those in need from finding support. The Internalized Stigma Model posits that public stigma directly affects intentions to seek psychological help via self-stigma and attitudes toward seeking help. However, little research has focused on what factors can predict public stigma toward seeking professional psychological support, especially among this population. A potential predictor is academic majors since academic majors can influence undergraduate students' perceptions, attitudes, and intentions. A study suggested that students who have completed two or more psychology courses have a more positive attitude toward seeking care for mental health issues and reduced stigma, which might be attributed to increased mental health literacy. In addition, research has shown that women are more likely to utilize mental health services and have lower stigma than men. Finally, studies have also suggested that experience of mental health services can increase endorsement of perceived need and lower stigma. Thus, it is expected that perceived helpfulness from past service uses can reduce stigma. This study aims to address this gap in the literature and investigate which factors can predict public stigma, specifically academic major, gender, and perceived helpfulness, potentially suggesting an avenue of prevention and ultimately improving the well-being of Vietnamese college students. The sample includes 408 undergraduate students (Mage = 20.44; 80.88% female) Hanoi city, Vietnam. Participants completed a pen-and-paper questionnaire. Students completed the Stigma Scale for Receiving Psychological Help, which yielded a mean public stigma score. Participants also completed a measurement assessing their perceived helpfulness of their university’s counseling center, which included eight subscales: future self-development, learning issues, career counseling, medical and health issues, mental health issues, conflicts between teachers and students, conflicts between parents and students, and interpersonal relationships. Items were summed to create a composite perceived helpfulness score. Finally, participants provided demographic information. This included gender, which was dichotomized between female and other. Additionally, it included academic major, which was also similarly dichotomized between psychology and other (e.g., natural science, social science, and pedagogy & social work). Linear relationships between public stigma and gender, academic major, and perceived helpfulness were analyzed individually with a regression model. Findings suggested that academic major, gender, and perceived counseling center's helpfulness predicted stigma against seeking professional psychological help. Specifically, being a psychology major predicted lower levels of public stigma (β = -.25, p < .001). Additionally, gender female predicted lower levels of public stigma (β = -.11, p < .05). Lastly, higher levels of perceived helpfulness of the counseling center also predicted lower levels of public stigma (β = -.16, p < .01). The study’s results offer potential intervention avenues to help reduce stigma and increase well-being for Vietnamese college students.Keywords: stigma, vietnamese college students, counseling services, help-seeking
Procedia PDF Downloads 8836 Modeling Thermal Changes of Urban Blocks in Relation to the Landscape Structure and Configuration in Guilan Province
Authors: Roshanak Afrakhteh, Abdolrasoul Salman Mahini, Mahdi Motagh, Hamidreza Kamyab
Abstract:
Urban Heat Islands (UHIs) are distinctive urban areas characterized by densely populated central cores surrounded by less densely populated peripheral lands. These areas experience elevated temperatures, primarily due to impermeable surfaces and specific land use patterns. The consequences of these temperature variations are far-reaching, impacting the environment and society negatively, leading to increased energy consumption, air pollution, and public health concerns. This paper emphasizes the need for simplified approaches to comprehend UHI temperature dynamics and explains how urban development patterns contribute to land surface temperature variation. To illustrate this relationship, the study focuses on the Guilan Plain, utilizing techniques like principal component analysis and generalized additive models. The research centered on mapping land use and land surface temperature in the low-lying area of Guilan province. Satellite data from Landsat sensors for three different time periods (2002, 2012, and 2021) were employed. Using eCognition software, a spatial unit known as a "city block" was utilized through object-based analysis. The study also applied the normalized difference vegetation index (NDVI) method to estimate land surface radiance. Predictive variables for urban land surface temperature within residential city blocks were identified categorized as intrinsic (related to the block's structure) and neighboring (related to adjacent blocks) variables. Principal Component Analysis (PCA) was used to select significant variables, and a Generalized Additive Model (GAM) approach, implemented using R's mgcv package, modeled the relationship between urban land surface temperature and predictor variables.Notable findings included variations in urban temperature across different years attributed to environmental and climatic factors. Block size, shared boundary, mother polygon area, and perimeter-to-area ratio were identified as main variables for the generalized additive regression model. This model showed non-linear relationships, with block size, shared boundary, and mother polygon area positively correlated with temperature, while the perimeter-to-area ratio displayed a negative trend. The discussion highlights the challenges of predicting urban surface temperature and the significance of block size in determining urban temperature patterns. It also underscores the importance of spatial configuration and unit structure in shaping urban temperature patterns. In conclusion, this study contributes to the growing body of research on the connection between land use patterns and urban surface temperature. Block size, along with block dispersion and aggregation, emerged as key factors influencing urban surface temperature in residential areas. The proposed methodology enhances our understanding of parameter significance in shaping urban temperature patterns across various regions, particularly in Iran.Keywords: urban heat island, land surface temperature, LST modeling, GAM, Gilan province
Procedia PDF Downloads 7335 Rural-To-Urban Migrants' Experiences with Primary Care in Four Types of Medical Institutions in Guangzhou, China
Authors: Jiazhi Zeng, Leiyu Shi, Xia Zou, Wen Chen, Li Ling
Abstract:
Background: China is facing the unprecedented challenge of rapidly increasing rural-to-urban migration. Due to the household registration system, migrants are in a vulnerable state when they attempt to access to primary care services. A strong primary care system can reduce health inequities and mitigate socioeconomic disparities in healthcare utilization. Literature indicated that migrants were more reliant on the primary care system than local residents. Although the Chinese government has attached great importance to creating an efficient health system, primary care services are still underutilized. The referral system between primary care institutions and hospitals has not yet been completely established in China. The general populations often go directly to hospitals instead of primary care institutions for their primary care. Primary care institutions generally consist of community health centers (CHCs) and community health stations (CHSs) in urban areas, and township health centers (THCs) and rural health stations (THSs) in rural areas. In addition, primary care services are also provided by the outpatient department of municipal hospitals and tertiary hospitals. A better understanding of migrants’ experiences with primary care in the above-mentioned medical institutions is critical for improving the performance of primary care institutions and providing indications of the attributes that require further attention. The purpose of this pioneering study is to explore rural-to-urban migrants’ experiences in primary care, compare their primary care experiences in four types of medical institutions in Guangzhou, China, and suggest implications for targeted interventions to improve primary care for the migrants. Methods: This was a cross-sectional study conducted with 736 rural-to-urban migrants in Guangzhou, China, in 2014. A multistage sampling method was employed. A validated Chinese version of Primary Care Assessment Tool - Adult Short Version (PCAT-AS) was used to collect information on migrants’ primary care experiences. The PCAT-AS consists of 10 domains. Analysis of covariance was conducted for comparison on PCAT domain scores and total scores among migrants accessing four types of medical institutions. Multiple linear regression models were used to explore factors associated with PCAT total scores. Results: After controlling for socio-demographic characteristics, migrant characteristics, health status and health insurance status, migrants accessing primary care in tertiary hospitals had the highest PCAT total scores when compared with those accessing primary care THCs/ RHSs (25.49 vs. 24.18, P=0.007) and CHCs/ CHSs(25.49 vs. 24.24, P=0.006). There was no statistical significant difference for PCAT total scores between migrants accessing primary care in CHCs/CHSs and those in municipal hospitals (24.24 vs. 25.02, P=0.436). Factors positively associated with higher PCAT total scores also included insurance covering parts of healthcare payment (P < 0.001). Conclusions: This study highlights the need for improvement in primary care provided by primary care institutions for rural-to-urban migrants. Migrants receiving primary care from THCs, RHSs, CHSs and CHSs reported worse primary care experiences than those receiving primary care from tertiary hospitals. Relevant policies related to medical insurance should be implemented for providing affordable healthcare services for migrants accessing primary care. Further research exploring the specific reasons for poorer PCAT scores of primary care institutions users will be needed.Keywords: China, PCAT, primary care, rural-to-urban migrants
Procedia PDF Downloads 35534 Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: transformers, generative ai, gene expression design, classification
Procedia PDF Downloads 5933 Heat Transfer Phenomena Identification of a Non-Active Floor in a Stack-Ventilated Building in Summertime: Empirical Study
Authors: Miguel Chen Austin, Denis Bruneau, Alain Sempey, Laurent Mora, Alain Sommier
Abstract:
An experimental study in a Plus Energy House (PEH) prototype was conducted in August 2016. It aimed to highlight the energy charge and discharge of a concrete-slab floor submitted to the day-night-cycles heat exchanges in the southwestern part of France and to identify the heat transfer phenomena that take place in both processes: charge and discharge. The main features of this PEH, significant to this study, are the following: (i) a non-active slab covering the major part of the entire floor surface of the house, which include a concrete layer 68 mm thick as upper layer; (ii) solar window shades located on the north and south facades along with a large eave facing south, (iii) large double-glazed windows covering the majority of the south facade, (iv) a natural ventilation system (NVS) composed by ten automatized openings with different dimensions: four are located on the south facade, four on the north facade and two on the shed roof (north-oriented). To highlight the energy charge and discharge processes of the non-active slab, heat flux and temperature measurement techniques were implemented, along with airspeed measurements. Ten “measurement-poles” (MP) were distributed all over the concrete-floor surface. Each MP represented a zone of measurement, where air and surface temperatures, and convection and radiation heat fluxes, were intended to be measured. The airspeed was measured only at two points over the slab surface, near the south facade. To identify the heat transfer phenomena that take part in the charge and discharge process, some relevant dimensionless parameters were used, along with statistical analysis; heat transfer phenomena were identified based on this analysis. Experimental data, after processing, had shown that two periods could be identified at a glance: charge (heat gain, positive values) and discharge (heat losses, negative values). During the charge period, on the floor surface, radiation heat exchanges were significantly higher compared with convection. On the other hand, convection heat exchanges were significantly higher than radiation, in the discharge period. Spatially, both, convection and radiation heat exchanges are higher near the natural ventilation openings and smaller far from them, as expected. Experimental correlations have been determined using a linear regression model, showing the relation between the Nusselt number with relevant parameters: Peclet, Rayleigh, and Richardson numbers. This has led to the determination of the convective heat transfer coefficient and its comparison with the convective heat coefficient resulting from measurements. Results have shown that forced and natural convection coexists during the discharge period; more accurate correlations with the Peclet number than with the Rayleigh number, have been found. This may suggest that forced convection is stronger than natural convection. Yet, airspeed levels encountered suggest that it is natural convection that should take place rather than forced convection. Despite this, Richardson number values encountered indicate otherwise. During the charge period, air-velocity levels might indicate that none air motion occurs, which might lead to heat transfer by diffusion instead of convection.Keywords: heat flux measurement, natural ventilation, non-active concrete slab, plus energy house
Procedia PDF Downloads 41332 Impact of the 2015 Drought on Rural Livelihood – a Case Study of Masurdi Village in Latur District of Maharashtra, India
Authors: Nitin Bhagat
Abstract:
Drought is a global phenomenon. It has a huge impact on agriculture and allied sector activities. Agriculture plays a substantial role in the economy of developing countries, which mainly depends on rainfall. The present study illustrates the drought conditions in Masurdi village of Latur district in the Marathwada region, Maharashtra. This paper is based on both primary as well as secondary data sources. The multistage sample method was used for primary data collection. The 100 households sample survey data has been collected from the village through a semi-structured questionnaire. The crop production data is collected from the Department of Agriculture, Government of Maharashtra. The rainfall data is obtained from the Department of Revenue, Office of Divisional Commissioner, Aurangabad for the period from 1988 to 2018. This paper examines the severity of drought consequences of the 2015 drought on domestic water supply, crop production, and the effect on children's schooling, livestock assets, bank credit, and migration. The study also analyzed climate variables' impact on the Latur district's total food grain production for 19 years from 2000 to 2018. This study applied multiple regression analysis to check the relationship between climatic variables and the Latur district's total food grain production. The climate variables are annual rainfall, maximum temperature and minimum temperature. The study considered that climatic variables are independent variables and total food grain as the dependent variable. It shows there is a significant relationship between rainfall and maximum temperature. The study also calculated rainfall deviations to find out the drought and normal years. According to drought manual 2016, the rainfall deviation calculated using the following formula. RF dev = {(RFi – RFn) / RFn}*100.Approximately 27.43 % of the workforce migrated from rural to urban areas for searching jobs, and crop production decreased tremendously due to inadequate rainfall in the drought year 2015. Many farm and non-farm labor, some marginal and small cultivators, migrated from rural to urban areas (like Pune, Mumbai, and Western Maharashtra).About 48 % of the households' children faced education difficulties; in the drought period, children were not going to school. They left their school and joined to bring water with their mother and fathers, sometimes they fetched water on their head or using a bicycle, near about 2 km from the village. In their school-going days, drinking water was not available in their schools, so the government declared holidays early in the academic education year 2015-16 compared to another academic year. Some college and 10th class students left their education due to financial problems. Many households benefited from state government schemes, like drought subsidies, crop insurance, and bank loans. Out of 100 households, about 50 (50 %) have obtained financial support from the state government’s subsidy scheme, 58 ( 58 %) have got crop insurance, and 41(41 %) irrigated households have got bank loans from national banks; besides that, only two families have obtained loans from their relatives and moneylenders.Keywords: agriculture, drought, household, rainfall
Procedia PDF Downloads 17531 Theory of Planned Behavior Predicts Graduation Intentions of College and University Students with and without Learning Disabilities / Attention Deficit Hyperactivity Disorder in Canada and Israel
Authors: Catherine S. Fichten, Tali Heiman, Mary Jorgensen, Mai Nhu Nguyen, Rhonda Amsel, Dorit Olenik-Shemesh
Abstract:
The study examined Canadian and Israeli students' perceptions related to their intention to graduate from their program of studies. Canada and Israel are dissimilar in many ways that affect education, including language and alphabet. In addition, the postsecondary education systems differ. For example, in some parts of Canada (e.g., in Quebec, Canada’s 2nd largest province), students matriculate after 11 years of high school; in Israel, this typically occurs after 12 years. In addition, Quebec students attend two compulsory years of junior college before enrolling in a three-year university Bachelor program; in Israel students enroll in a three-year Bachelor program directly after matriculation. In addition, Israeli students typically enroll in the army shortly after high school graduation; in Canada, this is not the case. What the two countries do have in common is concern about the success of postsecondary students with disabilities. The present study was based on Ajzen’s Theory of Planned Behavior (TPB); the model suggests that behavior is influenced by Intention to carry it out. This, in turn, is predicted by the following correlated variables: Perceived Behavioral Control (i.e., ease or difficulty enacting the behavior - in this case graduation), Subjective Norms (i.e., perceived social/peer pressure from individuals important in the student’s life), and Attitude (i.e., positive or negative evaluation of graduation). A questionnaire was developed to test the TPB in previous Canadian studies and administered to 845 Canadian college students (755 nondisabled, 90 with LD/ADHD) who had completed at least one semester of studies) and to 660 Israeli university students enrolled in a Bachelor’s program (537 nondisabled, 123 with LD/ADHD). Because Israeli students were older than Canadian students we covaried age in SPSS-based ANOVA comparisons and included it in regression equations. Because females typically have better academic outcomes than males, gender was included in all analyses. ANOVA results indicate only a significant gender effect for Intention to graduate, with females having higher scores. Four stepwise regressions were conducted, with Intention to graduate as the predicted variable, and Gender and the three TPB predictors as independent variables (separate analyses for Israeli and Canadian samples with and without LD/ADHD). Results show that for samples with LD/ADHD, although Gender and Age were not significant predictors, the TPB predictors were, with all three TPB predictors being significant for the Canadian sample (i.e., Perceived Behavioral Control, Subjective Norms, Attitude, R2=.595), and two of the three (i.e., Perceived Behavioral Control, Subjective Norms) for the Israeli sample (R2=.528). For nondisabled students, the results for both countries show that all three TPB predictors were significant along with Gender: R2=.443 for Canada and R2=.332 for Israel; age was not significant. Our findings show that despite vast differences between our Canadian and Israeli samples, Intention to graduate was related to the three TPB predictors. This suggests that our TPB measure is valid for diverse samples and countries that it can be used as a quick, inexpensive way to predict graduation rates, and that strengthening the three predictor variables may result in higher graduation rates.Keywords: disability, higher education, students, theory of planned behavior
Procedia PDF Downloads 37530 Competence of the Health Workers in Diagnosing and Managing Complicated Pregnancies: A Clinical Vignette Based Assessment in District and Sub-District Hospitals in Bangladesh
Authors: Abdullah Nurus Salam Khan, Farhana Karim, Mohiuddin Ahsanul Kabir Chowdhury, S. Masum Billah, Nabila Zaka, Alexander Manu, Shams El Arifeen
Abstract:
Globally, pre-eclampsia (PE) and ante-partum haemorrhage (APH) are two major causes of maternal mortality. Prompt identification and management of these conditions depend on competency of the birth attendants. Since these conditions are infrequent to be observed, clinical vignette based assessment could identify the extent of health worker’s competence in managing emergency obstetric care (EmOC). During June-August 2016, competence of 39 medical officers (MO) and 95 nurses working in obstetric ward of 15 government health facilities (3 district hospital, 12 sub-district hospital) was measured using clinical vignettes on PE and APH. The vignettes resulted in three outcome measures: total vignette scores, scores for diagnosis component, and scores for management component. T-test was conducted to compare mean vignette scores and linear regression was conducted to measure the strength and association of vignette scores with different cadres of health workers, facility’s readiness for EmOC and average annual utilization of normal deliveries after adjusting for type of health facility, health workers’ work experience, training status on managing maternal complication. For each of the seven component of EmOC items (administration of injectable antibiotics, oxytocic and anticonvulsant; manual removal of retained placenta, retained products of conception; blood transfusion and caesarean delivery), if any was practised in the facility within last 6 months, a point was added and cumulative EmOC readiness score (range: 0-7) was generated for each facility. The yearly utilization of delivery cases were identified by taking the average of all normal deliveries conducted during three years (2013-2015) preceding the survey. About 31% of MO and all nurses were female. Mean ( ± sd) age of the nurses were higher than the MO (40.0 ± 6.9 vs. 32.2 ± 6.1 years) and also longer mean( ± sd) working experience (8.9 ± 7.9 vs. 1.9 ± 3.9 years). About 80% health workers received any training on managing maternal complication, however, only 7% received any refresher’s training within last 12 months. The overall vignette score was 8.8 (range: 0-19), which was significantly higher among MO than nurses (10.7 vs. 8.1, p < 0.001) and the score was not associated with health facility types, training status and years of experience of the providers. Vignette score for management component (range: 0-9) increased with higher annual average number of deliveries in their respective working facility (adjusted β-coefficient 0.16, CI 0.03-0.28, p=0.01) and increased with each unit increase in EmOC readiness score (adjusted β-coefficient 0.44, CI 0.04-0.8, p=0.03). The diagnosis component of vignette score was not associated with any of the factors except it was higher among the MO than the nurses (adjusted β-coefficient 1.2, CI 0.13-2.18, p=0.03). Lack of competence in diagnosing and managing obstetric complication by the nurses than the MO is of concern especially when majority of normal deliveries are conducted by the nurses. Better EmOC preparedness of the facility and higher utilization of normal deliveries resulted in higher vignette score for the management component; implying the impact of experiential learning through higher case management. Focus should be given on improving the facility readiness for EmOC and providing the health workers periodic refresher’s training to make them more competent in managing obstetric cases.Keywords: Bangladesh, emergency obstetric care, clinical vignette, competence of health workers
Procedia PDF Downloads 19029 Predicting Career Adaptability and Optimism among University Students in Turkey: The Role of Personal Growth Initiative and Socio-Demographic Variables
Authors: Yagmur Soylu, Emir Ozeren, Erol Esen, Digdem M. Siyez, Ozlem Belkis, Ezgi Burc, Gülce Demirgurz
Abstract:
The aim of the study is to determine the predictive power of personal growth initiative, socio-demographic variables (such as sex, grade, and working condition) on career adaptability and optimism of bachelor students in Dokuz Eylul University in Turkey. According to career construction theory, career adaptability is viewed as a psychosocial construct, which refers to an individual’s resources for dealing with current and expected tasks, transitions and traumas in their occupational roles. Career optimism is defined as positive results for future career development of individuals in the expectation that it will achieve or to put the emphasis on the positive aspects of the event and feel comfortable about the career planning process. Personal Growth Initiative (PGI) is defined as being proactive about one’s personal development. Additionally, personal growth is defined as the active and intentional engagement in the process of personal. A study conducted on college students revealed that individuals with high self-development orientation make more effort to discover the requirements of the profession and workspaces than individuals with low levels of personal development orientation. University life is a period that social relations and the importance of academic activities are increased, the students make efforts to progress through their career paths and it is also an environment that offers opportunities to students for their self-realization. For these reasons, personal growth initiative is potentially an important variable which has a key role for an individual during the transition phase from university to the working life. Based on the review of the literature, it is expected that individual’s personal growth initiative, sex, grade, and working condition would significantly predict one’s career adaptability. In the relevant literature, it can be seen that there are relatively few studies available on the career adaptability and optimism of university students. Most of the existing studies have been carried out with limited respondents. In this study, the authors aim to conduct a comprehensive research with a large representative sample of bachelor students in Dokuz Eylul University, Izmir, Turkey. By now, personal growth initiative and career development constructs have been predominantly discussed in western contexts where individualistic tendencies are likely to be seen. Thus, the examination of the same relationship within the context of Turkey where collectivistic cultural characteristics can be more observed is expected to offer valuable insights and provide an important contribution to the literature. The participants in this study were comprised of 1500 undergraduate students being included from thirteen faculties in Dokuz Eylul University. Stratified and random sampling methods were adopted for the selection of the participants. The Personal Growth Initiative Scale-II and Career Futures Inventory were used as the major measurement tools. In data analysis stage, several statistical analysis concerning the regression analysis, one-way ANOVA and t-test will be conducted to reveal the relationships of the constructs under investigation. At the end of this project, we will be able to determine the level of career adaptability and optimism of university students at varying degrees so that a fertile ground is likely to be created to carry out several intervention techniques to make a contribution to an emergence of a healthier and more productive youth generation in psycho-social sense.Keywords: career optimism, career adaptability, personal growth initiative, university students
Procedia PDF Downloads 41928 Assessment and Forecasting of the Impact of Negative Environmental Factors on Public Health
Authors: Nurlan Smagulov, Aiman Konkabayeva, Akerke Sadykova, Arailym Serik
Abstract:
Introduction. Adverse environmental factors do not immediately lead to pathological changes in the body. They can exert the growth of pre-pathology characterized by shifts in physiological, biochemical, immunological and other indicators of the body state. These disorders are unstable, reversible and indicative of body reactions. There is an opportunity to objectively judge the internal structure of the adaptive body reactions at the level of individual organs and systems. In order to obtain a stable response of the body to the chronic effects of unfavorable environmental factors of low intensity (compared to production environment factors), a time called the «lag time» is needed. The obtained results without considering this factor distort reality and, for the most part, cannot be a reliable statement of the main conclusions in any work. A technique is needed to reduce methodological errors and combine mathematical logic using statistical methods and a medical point of view, which ultimately will affect the obtained results and avoid a false correlation. Objective. Development of a methodology for assessing and predicting the environmental factors impact on the population health considering the «lag time.» Methods. Research objects: environmental and population morbidity indicators. The database on the environmental state was compiled from the monthly newsletters of Kazhydromet. Data on population morbidity were obtained from regional statistical yearbooks. When processing static data, a time interval (lag) was determined for each «argument-function» pair. That is the required interval, after which the harmful factor effect (argument) will fully manifest itself in the indicators of the organism's state (function). The lag value was determined by cross-correlation functions of arguments (environmental indicators) with functions (morbidity). Correlation coefficients (r) and their reliability (t), Fisher's criterion (F) and the influence share (R2) of the main factor (argument) per indicator (function) were calculated as a percentage. Results. The ecological situation of an industrially developed region has an impact on health indicators, but it has some nuances. Fundamentally opposite results were obtained in the mathematical data processing, considering the «lag time». Namely, an expressed correlation was revealed after two databases (ecology-morbidity) shifted. For example, the lag period was 4 years for dust concentration, general morbidity, and 3 years – for childhood morbidity. These periods accounted for the maximum values of the correlation coefficients and the largest percentage of the influencing factor. Similar results were observed in relation to the concentration of soot, dioxide, etc. The comprehensive statistical processing using multiple correlation-regression variance analysis confirms the correctness of the above statement. This method provided the integrated approach to predicting the degree of pollution of the main environmental components to identify the most dangerous combinations of concentrations of leading negative environmental factors. Conclusion. The method of assessing the «environment-public health» system (considering the «lag time») is qualitatively different from the traditional (without considering the «lag time»). The results significantly differ and are more amenable to a logical explanation of the obtained dependencies. The method allows presenting the quantitative and qualitative dependence in a different way within the «environment-public health» system.Keywords: ecology, morbidity, population, lag time
Procedia PDF Downloads 8027 Prevalence, Median Time, and Associated Factors with the Likelihood of Initial Antidepressant Change: A Cross-Sectional Study
Authors: Nervana Elbakary, Sami Ouanes, Sadaf Riaz, Oraib Abdallah, Islam Mahran, Noriya Al-Khuzaei, Yassin Eltorki
Abstract:
Major Depressive Disorder (MDD) requires therapeutic interventions during the initial month after being diagnosed for better disease outcomes. International guidelines recommend a duration of 4–12 weeks for an initial antidepressant (IAD) trial at an optimized dose to get a response. If depressive symptoms persist after this duration, guidelines recommend switching, augmenting, or combining strategies as the next step. Most patients with MDD in the mental health setting have been labeled incorrectly as treatment-resistant where in fact they have not been subjected to an adequate trial of guideline-recommended therapy. Premature discontinuation of IAD due to ineffectiveness can cause unfavorable consequences. Avoiding irrational practices such as subtherapeutic doses of IAD, premature switching between the ADs, and refraining from unjustified polypharmacy can help the disease to go into a remission phase We aimed to determine the prevalence and the patterns of strategies applied after an IAD was changed because of a suboptimal response as a primary outcome. Secondary outcomes included the median survival time on IAD before any change; and the predictors that were associated with IAD change. This was a retrospective cross- sectional study conducted in Mental Health Services in Qatar. A dataset between January 1, 2018, and December 31, 2019, was extracted from the electronic health records. Inclusion and exclusion criteria were defined and applied. The sample size was calculated to be at least 379 patients. Descriptive statistics were reported as frequencies and percentages, in addition, to mean and standard deviation. The median time of IAD to any change strategy was calculated using survival analysis. Associated predictors were examined using two unadjusted and adjusted cox regression models. A total of 487 patients met the inclusion criteria of the study. The average age for participants was 39.1 ± 12.3 years. Patients with first experience MDD episode 255 (52%) constituted a major part of our sample comparing to the relapse group 206(42%). About 431 (88%) of the patients had an occurrence of IAD change to any strategy before end of the study. Almost half of the sample (212 (49%); 95% CI [44–53%]) had their IAD changed less than or equal to 30 days. Switching was consistently more common than combination or augmentation at any timepoint. The median time to IAD change was 43 days with 95% CI [33.2–52.7]. Five independent variables (age, bothersome side effects, un-optimization of the dose before any change, comorbid anxiety, first onset episode) were significantly associated with the likelihood of IAD change in the unadjusted analysis. The factors statistically associated with higher hazard of IAD change in the adjusted analysis were: younger age, un-optimization of the IAD dose before any change, and comorbid anxiety. Because almost half of the patients in this study changed their IAD as early as within the first month, efforts to avoid treatment failure are needed to ensure patient-treatment targets are met. The findings of this study can have direct clinical guidance for health care professionals since an optimized, evidence-based use of AD medication can improve the clinical outcomes of patients with MDD; and also, to identify high-risk factors that could worsen the survival time on IAD such as young age and comorbid anxietyKeywords: initial antidepressant, dose optimization, major depressive disorder, comorbid anxiety, combination, augmentation, switching, premature discontinuation
Procedia PDF Downloads 14826 Academic Achievement in Argentinean College Students: Major Findings in Psychological Assessment
Authors: F. Uriel, M. M. Fernandez Liporace
Abstract:
In the last decade, academic achievement in higher education has become a topic of agenda in Argentina, regarding the high figures of adjustment problems, academic failure and dropout, and the low graduation rates in the context of massive classes and traditional teaching methods. Psychological variables, such as perceived social support, academic motivation and learning styles and strategies have much to offer since their measurement by tests allows a proper diagnose of their influence on academic achievement. Framed in a major research, several studies analysed multiple samples, totalizing 5135 students attending Argentinean public universities. The first goal was aimed at the identification of statistically significant differences in psychological variables -perceived social support, learning styles, learning strategies, and academic motivation- by age, gender, and degree of academic advance (freshmen versus sophomores). Thus, an inferential group differences study for each psychological dependent variable was developed by means of student’s T tests, given the features of data distribution. The second goal, aimed at examining associations between the four psychological variables on the one hand, and academic achievement on the other, was responded by correlational studies, calculating Pearson’s coefficients, employing grades as the quantitative indicator of academic achievement. The positive and significant results that were obtained led to the formulation of different predictive models of academic achievement which had to be tested in terms of adjustment and predictive power. These models took the four psychological variables above mentioned as predictors, using regression equations, examining predictors individually, in groups of two, and together, analysing indirect effects as well, and adding the degree of academic advance and gender, which had shown their importance within the first goal’s findings. The most relevant results were: first, gender showed no influence on any dependent variable. Second, only good achievers perceived high social support from teachers, and male students were prone to perceive less social support. Third, freshmen exhibited a pragmatic learning style, preferring unstructured environments, the use of examples and simultaneous-visual processing in learning, whereas sophomores manifest an assimilative learning style, choosing sequential and analytic processing modes. Despite these features, freshmen have to deal with abstract contents and sophomores, with practical learning situations due to study programs in force. Fifth, no differences in academic motivation were found between freshmen and sophomores. However, the latter employ a higher number of more efficient learning strategies. Sixth, freshmen low achievers lack intrinsic motivation. Seventh, models testing showed that social support, learning styles and academic motivation influence learning strategies, which affect academic achievement in freshmen, particularly males; only learning styles influence achievement in sophomores of both genders with direct effects. These findings led to conclude that educational psychologists, education specialists, teachers, and universities must plan urgent and major changes. These must be applied in renewed and better study programs, syllabi and classes, as well as tutoring and training systems. Such developments should be targeted to the support and empowerment of students in their academic pathways, and therefore to the upgrade of learning quality, especially in the case of freshmen, male freshmen, and low achievers.Keywords: academic achievement, academic motivation, coping, learning strategies, learning styles, perceived social support
Procedia PDF Downloads 12225 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction
Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal
Abstract:
Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction
Procedia PDF Downloads 137