Search results for: durability of chemical heat storage material
10537 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency
Abstract:
Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.Keywords: thermoelectric, finite element method, 3d print, energy conversion
Procedia PDF Downloads 6710536 Roasting Degree of Cocoa Beans by Artificial Neural Network (ANN) Based Electronic Nose System and Gas Chromatography (GC)
Authors: Juzhong Tan, William Kerr
Abstract:
Roasting is one critical procedure in chocolate processing, where special favors are developed, moisture content is decreased, and better processing properties are developed. Therefore, determination of roasting degree of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products, and it also decides the commercial value of cocoa beans collected from cocoa farmers. The roasting degree of cocoa beans currently relies on human specialists, who sometimes are biased, and chemical analysis, which take long time and are inaccessible to many manufacturers and farmers. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was used to detecting the gas generated by cocoa beans with a different roasting degree (0min, 20min, 30min, and 40min) and the signals collected by gas sensors were used to train a three-layers ANN. Chemical analysis of the graded beans was operated by traditional GC-MS system and the contents of volatile chemical compounds were used to train another ANN as a reference to electronic nosed signals trained ANN. Both trained ANN were used to predict cocoa beans with a different roasting degree for validation. The best accuracy of grading achieved by electronic nose signals trained ANN (using signals from TGS 813 826 820 880 830 2620 2602 2610) turned out to be 96.7%, however, the GC trained ANN got the accuracy of 83.8%.Keywords: artificial neutron network, cocoa bean, electronic nose, roasting
Procedia PDF Downloads 23410535 Effect of Concentration of Alkaline and Curing Temperature on Compressive Strength of Geopolymer Concert
Authors: Nursah Kutuk, Sevil Cetinkaya
Abstract:
Geopolymers are becoming new concrete materials to use alongside cement, which are formed due to reaction between alumino-silicates and oxides with alkaline media. Silicates obtained from natural minerals or industrial wastes are used for geopolymer synthesis. Geopolymers have recently received wide attention because of their advantages over other cementitious material like Portland cement. Some of the advantages are high compressive strength, low environmental impact, chemical and fire resistance and thermal stability. In this study, geopolymers were prepared by using inorganic materials such as kaolinite and calcite. The experiments were carried out by varying the concentration of NaOH as 5, 10, 15 and 20 M, and at cure temperature of 22, 45 and 65 °C. Compressive strengths for each mixes at each cure temperature were measured. Results of the analyses indicated that the compressive strength of geopolymers did not increase steadily with increasing concentration of NaOH, but did increase steadily with increasing cure temperature. We examined the effect Na2SiO3/NaOH weight ratio on the properties of the geopolymers, too. It was seen that Na2SiO3/NaOH weight ratio was also important to prepare geopolymers that can be applied to construction industry.Keywords: geopolymers, compressive strength, kaolinite, calcite
Procedia PDF Downloads 30110534 Improving the Dimensional Stability of Medium-Density Fiberboard with Bio-Based Additives
Authors: Reza Hosseinpourpia, Stergios Adamopoulos, Carsten Mai
Abstract:
Medium density fiberboard (MDF) is a common category of wood-based panels that are widely used in the furniture industry. Fine lignocellulosic fibres are combined with a synthetic resin, mostly urea formaldehyde (UF), and joined together under heat and pressure to form panels. Like solid wood, MDF is a hygroscopic material; therefore, its moisture content depends on the surrounding relative humidity and temperature. In addition, UF is a hydrophilic resin and susceptible to hydrolysis under certain conditions of elevated temperatures and humidity, which cause dimensional instability of the panels. The latter directly affect the performance of final products such as furniture, when they are used in situations of high relative humidity. Existing water-repellent formulations, such as paraffin, present limitations related to their non-renewable nature, cost and highest allowed added amount. Therefore, the aim of the present study was to test the suitability of renewable water repellents as alternative chemicals for enhancing the dimensional stability of MDF panels. A small amount of tall oil based formulations were used as water-repellent agents in the manufacturing of laboratory scale MDF. The effects on dimensional stability, internal bond strength and formaldehyde release of MDF were tested. The results indicated a good potential of tall oil as a bio-based substance of water repellent formulations for improving the dimensional stability of MDF.Keywords: dimensional stability, medium density fiberboard, tall oil, urea formaldehyde
Procedia PDF Downloads 24010533 A Theoretical Model for a Humidification Dehumidification (HD) Solar Desalination Unit
Authors: Yasser El-Henawy, M. Abd El-Kader, Gamal H. Moustafa
Abstract:
A theoretical study of a humidification dehumidification solar desalination unit has been carried out to increase understanding the effect of weather conditions on the unit productivity. A humidification-dehumidification (HD) solar desalination unit has been designed to provide fresh water for population in remote arid areas. It consists of solar water collector and air collector; to provide the hot water and air to the desalination chamber. The desalination chamber is divided into humidification and dehumidification towers. The circulation of air between the two towers is maintained by the forced convection. A mathematical model has been formulated, in which the thermodynamic relations were used to study the flow, heat and mass transfer inside the humidifier and dehumidifier. The present technique is performed in order to increase the unit performance. Heat and mass balance has been done and a set of governing equations has been solved using the finite difference technique. The unit productivity has been calculated along the working day during the summer and winter sessions and has compared with the available experimental results. The average accumulative productivity of the system in winter has been ranged between 2.5 to 4 kg/m2.day, while the average summer productivity has been found between 8 to 12 kg/m2 day.Keywords: solar desalination, solar collector, humidification and dehumidification, simulation, finite difference, water productivity
Procedia PDF Downloads 41210532 Microanalysis of a New Cementitious System Containing High Calcium Fly Ash and Waste Material by Scanning Electron Microscopy (SEM)
Authors: Anmar Dulaimi, Hassan Al Nageim, Felicite Ruddock, Linda Seton
Abstract:
Fast-curing cold bituminous emulsion mixture (CBEM) including active filler from high calcium fly ash (HCFA) and waste material (LJMU-A2) has been developed in this study. This will overcome the difficulties related with the use of hot mix asphalt such as greenhouse gases emissions and problems in keeping the temperature when transporting long distance. The aim of this study is to employ petrographic examinations using scanning electron microscopy (SEM) for characterizing the hydrates microstructure, in a new binary blended cement filler (BBCF) system. The new BBCF has been used as a replacement to traditional mineral filler in cold bituminous emulsion mixtures (CBEMs), comprises supplementary cementitious materials containing high calcium fly ash (HCFA) and a waste material (LJMU-A2). SEM analysis demonstrated the formation of hydrates after varying curing ages within the BBCF. The accelerated activation of HCFA by LJMU-A2 within the BBCF was revealed and as a consequence early and later stiffness was developed in novel CBEM.Keywords: cold bituminous emulsion mixtures, indirect tensile stiffness modulus, scanning electron microscopy (SEM), and high calcium fly ash
Procedia PDF Downloads 27610531 Lead Free BNT-BKT-BMgT-CoFe₂O₄ Magnetoelectric Nanoparticulate Composite Thin Films Prepared by Chemical Solution Deposition Method
Authors: A. K. Paul, Vinod Kumar
Abstract:
Lead free magnetoelectric (ME) nanoparticulate (1−x) BNT-BKT-BMgT−x CFO (x = 0, 0.1, 0.2, 0.3) composite films were synthesized using chemical solution deposition method. The X-ray diffraction and transmission electron microscope (TEM) reveal that CFO nanoparticles were well distributed in the matrix of BNT-BKT-BMgT. The nanocomposite films exhibit both good magnetic and ferroelectric properties at room temperature (R-T). It is concluded that the modulation in compositions of piezomagnetic/piezoelectric components plays a fundamental role in the magnetoelectric coupling in these nanoparticulate composite films. These ME composites provide a great opportunity as potential lead-free systems for ME devices.Keywords: lead free multiferroic, nanocomposite, ferroelectric, ferromagnetic and magneto-electric properties
Procedia PDF Downloads 12710530 Soft Ground Improved by Prefabricated Vertical Drains with Vacuum and Thermal Preloading
Authors: Gia Lam Le, Dennis T. Bergado, Thi Ngoc Truc Nguyen
Abstract:
This study focuses on behaviors of improved soft clay using prefabricated vertical drain (PVD) combined with vacuum and electro-osmotic preloading. Large-scale consolidations of reconstituted soft Bangkok clay were conducted for PVD improvement with vacuum (vacuum-PVD), and vacuum combined with heat (vacuum-thermo-PVD). The research revealed that vacuum-thermo-PVD gives high efficiency of the consolidation rate compared to the vacuum-PVD. In addition, the magnitude of settlement of the specimen improved by the vacuum-thermo-PVD is higher than the vacuum-PVD because the assistance of heat causes the collapse of the clay structure. Particularly, to reach 90% degree of consolidation, the thermal-vacuum-PVD reduced about 58% consolidation time compared to the vacuum-PVD. The increase in consolidation rate is resulted from the increase in horizontal coefficient of consolidation, Ch, the reduction of the smear effect expressed by the ratio of the horizontal hydraulic conductivity in the undisturbed zone, kh, and the horizontal hydraulic conductivity in the smeared zone, ks. Furthermore, the shear strength, Su, increased about 100% when compared using the vacuum-thermal-PVD to the vacuum PVD. In addition, numerical simulations gave reasonable results compared to the laboratory data.Keywords: PVD improvement, vacuum preloading, prefabricated vertical drain, thermal PVD
Procedia PDF Downloads 46510529 Loss Quantification Archaeological Sites in Watershed Due to the Use and Occupation of Land
Authors: Elissandro Voigt Beier, Cristiano Poleto
Abstract:
The main objective of the research is to assess the loss through the quantification of material culture (archaeological fragments) in rural areas, sites explored economically by machining on seasonal crops, and also permanent, in a hydrographic subsystem Camaquã River in the state of Rio Grande do Sul, Brazil. The study area consists of different micro basins and differs in area, ranging between 1,000 m² and 10,000 m², respectively the largest and the smallest, all with a large number of occurrences and outcrop locations of archaeological material and high density in intense farm environment. In the first stage of the research aimed to identify the dispersion of points of archaeological material through field survey through plot points by the Global Positioning System (GPS), within each river basin, was made use of concise bibliography on the topic in the region, helping theoretically in understanding the old landscaping with preferences of occupation for reasons of ancient historical people through the settlements relating to the practice observed in the field. The mapping was followed by the cartographic development in the region through the development of cartographic products of the land elevation, consequently were created cartographic products were to contribute to the understanding of the distribution of the absolute materials; the definition and scope of the material dispersed; and as a result of human activities the development of revolving letter by mechanization of in situ material, it was also necessary for the preparation of materials found density maps, linking natural environments conducive to ancient historical occupation with the current human occupation. The third stage of the project it is for the systematic collection of archaeological material without alteration or interference in the subsurface of the indigenous settlements, thus, the material was prepared and treated in the laboratory to remove soil excesses, cleaning through previous communication methodology, measurement and quantification. Approximately 15,000 were identified archaeological fragments belonging to different periods of ancient history of the region, all collected outside of its environmental and historical context and it also has quite changed and modified. The material was identified and cataloged considering features such as object weight, size, type of material (lithic, ceramic, bone, Historical porcelain and their true association with the ancient history) and it was disregarded its principles as individual lithology of the object and functionality same. As observed preliminary results, we can point out the change of materials by heavy mechanization and consequent soil disturbance processes, and these processes generate loading of archaeological materials. Therefore, as a next step will be sought, an estimate of potential losses through a mathematical model. It is expected by this process, to reach a reliable model of high accuracy which can be applied to an archeological site of lower density without encountering a significant error.Keywords: degradation of heritage, quantification in archaeology, watershed, use and occupation of land
Procedia PDF Downloads 27710528 Quadratic Convective Flow of a Micropolar Fluid in a Non-Darcy Porous Medium with Convective Boundary Condition
Authors: Ch. Ramreddy, P. Naveen, D. Srinivasacharya
Abstract:
The objective of the present study is to investigate the effect of nonlinear temperature and concentration on the mixed convective flow of micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of convective boundary condition. In order to analyze all the essential features, the transformed nonlinear conservation equations are worked out numerically by spectral method. By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the coupling number and inclination of angle tend to decrease the skin friction, mass transfer rate and the reverse change is there in wall couple stress and heat transfer rate. The nominal effect on the wall couple stress and skin friction is encountered whereas the significant effect on the local heat and mass transfer rates are found for high enough values of Biot number.Keywords: convective boundary condition, micropolar fluid, non-darcy porous medium, non-linear convection, spectral method
Procedia PDF Downloads 27910527 Physico-Chemical Characteristics and Possibilities of Utilization of Elbasan Thermal Waters
Authors: Elvin Çomo, Edlira Tako, Albana Hasimi, Rrapo Ormeni, Olger Gjuzi, Mirela Ndrita
Abstract:
In Albania, only low enthalpy geothermal springs and wells are known, the temperatures of some of them are almost at the upper limits of low enthalpy, reaching over 60°C. These resources can be used to improve the country's energy balance, as well as for profitable economic purposes. The region of Elbasan has the greatest geothermal energy potential in Albania. This bass is one of the most popular and used in our country. This area is a surface with a number of sources, located in the form of a chain, in the sector between Llixha and Hidraj and constitutes a thermo-mineral basin with stable discharge and high temperature. The sources of Elbasan Springs, with the current average flow of thermo mineral water of 12-18 l/s and its temperature 55-65oC, have specific reserves of 39.6 GJ/m2 and potential power to install 2760 kW. For the assessment of physico-chemical parameters and heavy metals, water samples were taken at 5 monitoring stations throughout the year 2022. The levels of basic parameters were analyzed using ISO, EU and APHA 21-th edition standard methods. This study presents the current state of the physico-chemical parameters of this thermal basin, the evaluation of these parameters for curative activities and for industrial processes, as well as the integrated utilization of geothermal energy. Possibilities for using thermomineral waters for heating homes in the area around them or even further, depending on the flow from the source or geothermal well. Sensitization of Albanian investors, medical research and the community for the high economic and curative effectiveness, for the integral use of geothermal energy in this area and the development of the tourist sector. An analysis of the negative environmental impact from the use of thermal water is also provided.Keywords: geothermal energy, Llixha, physic-chemical parameters, thermal water
Procedia PDF Downloads 13810526 The Study on Blast Effect of Polymer Gel by Trazul Lead Block Test and Concrete Block Test
Authors: Young-Hun Ko, Seung-Jun Kim, Khaqan Baluch, Hyung- Sik Yang
Abstract:
In this study, the polymer gel was used as coupling material in a blasting hole and its comparison was made with other coupling materials like sand, water, and air. Trazul lead block test and AUTODYN numerical analysis were conducted to analyze the effects of the coupling materials on the intensity of the explosion, as well as the verification tests were conducted by using concrete block test. The emulsion explosives were used in decoupling conditions, sand, water, and polymer gel were used as the coupling materials. The lead block test and the numerical analysis showed that the expansion of the blast hole in the lead block was similar to that of the water and gelatin and followed by sand and air conditions. The validation of concrete block test result showed the similar result as Trazul lead block test and the explosion strength was measured at 0.8 for polymer gel, 0.7 for sand, and 0.6 for no coupling material, in comparison to the full charge (1.0) case.Keywords: Trazul lead block test, AUTODYN numerical analysis, coupling material, polymer gel, soil covering concrete block explosion test
Procedia PDF Downloads 30010525 Behavioral Responses of Coccinella septempunctata and Diaeretiella rapae toward Semiochemicals and Plant Extract
Authors: Muhammad Tariq, Bushra Siddique, Muhammad Naeem, Asim Gulzar
Abstract:
The chemical ecology of natural enemies can play a pivotal role in any Integrated Pest Management (IPM) program. Different chemical cues help to correspond in the diversity of associations between prey and host plant species. Coccinellaseptempunctata and Diaeretiellarapae have the abilities to explore several chemical cues released by plants under herbivore attack that may enhance their efficiency of foraging. In this study, the behavioral responses of Coccinellaseptempunctata and Diaeretiellarapae were examined under the application of two semiochemicals and a plant extract and their combinations using four-arm olfactometer. The bioassay was consists of a pairwise treatment comparison. Data pertaining to the preference of C. septempunctata and D. rapae after treatment application were recorded and analyzed statistically. The mean number of entries and time spent of Coccinellaseptempunctata and D. rapaewere greater in arms treated with E-β-Farnesene. However, the efficacy of E-β-Farnesene was enhanced when combined with β-pinene. Thus, the mean number of entries and time spent of C. septempunctata and D. rapaewere highest in arms treated with the combination of E-β-Farnesene x β-pinene as compared with other treatments. The current work has demonstrated that the insect-derived semiochemicals may enhance the efficacy of natural enemies when applied in combination.Keywords: olfectometer, parasitoid, predator, preference
Procedia PDF Downloads 14510524 Mostar Type Indices and QSPR Analysis of Octane Isomers
Authors: B. Roopa Sri, Y Lakshmi Naidu
Abstract:
Chemical Graph Theory (CGT) is the branch of mathematical chemistry in which molecules are modeled to study their physicochemical properties using molecular descriptors. Amongst these descriptors, topological indices play a vital role in predicting the properties by defining the graph topology of the molecule. Recently, the bond-additive topological index known as the Mostar index has been proposed. In this paper, we compute the Mostar-type indices of octane isomers and use the data obtained to perform QSPR analysis. Furthermore, we show the correlation between the Mostar type indices and the properties.Keywords: chemical graph theory, mostar type indices, octane isomers, qspr analysis, topological index
Procedia PDF Downloads 13010523 Study on Electromagnetic Plasma Acceleration Using Rotating Magnetic Field Scheme
Authors: Takeru Furuawa, Kohei Takizawa, Daisuke Kuwahara, Shunjiro Shinohara
Abstract:
In the field of a space propulsion, an electric propulsion system has been developed because its fuel efficiency is much higher than a conventional chemical one. However, the practical electric propulsion systems, e.g., an ion engine, have a problem of short lifetime due to a damage of generation and acceleration electrodes of the plasma. A helicon plasma thruster is proposed as a long-lifetime electric thruster which has non-direct contact electrodes. In this system, both generation and acceleration methods of a dense plasma are executed by antennas from the outside of a discharge tube. Development of the helicon plasma thruster has been conducting under the Helicon Electrodeless Advanced Thruster (HEAT) project. Our helicon plasma thruster has two important processes. First, we generate a dense source plasma using a helicon wave with an excitation frequency between an ion and an electron cyclotron frequencies, fci and fce, respectively, applied from the outside of a discharge using a radio frequency (RF) antenna. The helicon plasma source can provide a high-density (~1019 m-3), a high-ionization ratio (up to several tens of percent), and a high particle generation efficiency. Second, in order to achieve high thrust and specific impulse, we accelerate the dense plasma by the axial Lorentz force fz using the product of the induced azimuthal current jθ and the static radial magnetic field Br, shown as fz = jθ × Br. The HEAT project has proposed several kinds of electrodeless acceleration schemes, and in our particular case, a Rotating Magnetic Field (RMF) method has been extensively studied. The RMF scheme was originally developed as a concept to maintain the Field Reversed Configuration (FRC) in a magnetically confined fusion research. Here, RMF coils are expected to generate jθ due to a nonlinear effect shown below. First, the rotating magnetic field Bω is generated by two pairs of RMF coils with AC currents, which have a phase difference of 90 degrees between the pairs. Due to the Faraday’s law, an axial electric field is induced. Second, an axial current is generated by the effects of an electron-ion and an electron-neutral collisions through the Ohm’s law. Third, the azimuthal electric field is generated by the nonlinear term, and the retarding torque generated by the collision effects again. Then, azimuthal current jθ is generated as jθ = - nₑ er ∙ 2π fRMF. Finally, the axial Lorentz force fz for plasma acceleration is generated. Here, jθ is proportional to nₑ and frequency of RMF coil current fRMF, when Bω is fully penetrated into the plasma. Our previous study has achieved 19 % increase of ion velocity using the 5 MHz and 50 A of the RMF coil power supply. In this presentation, we will show the improvement of the ion velocity using the lower frequency and higher current supplied by RMF power supply. In conclusion, helicon high-density plasma production and electromagnetic acceleration by the RMF scheme with a concept of electrodeless condition have been successfully executed.Keywords: electric propulsion, electrodeless thruster, helicon plasma, rotating magnetic field
Procedia PDF Downloads 26110522 Antibacterial Nanofibrous Film Encapsulated with 4-terpineol/β-cyclodextrin Inclusion Complexes: Relative Humidity-Triggered Release and Shrimp Preservation Application
Authors: Chuanxiang Cheng, Tiantian Min, Jin Yue
Abstract:
Antimicrobial active packaging enables extensive biological effects to improve food safety. However, the efficacy of antimicrobial packaging hinges on factors including the diffusion rate of the active agent toward the food surface, the initial content in the antimicrobial agent, and the targeted food shelf life. Among the possibilities of antimicrobial packaging design, an interesting approach involves the incorporation of volatile antimicrobial agents into the packaging material. In this case, the necessity for direct contact between the active packaging material and the food surface is mitigated, as the antimicrobial agent exerts its action through the packaging headspace atmosphere towards the food surface. However, it still remains difficult to achieve controlled and precise release of bioactive compounds to the specific target location with required quantity in food packaging applications. Remarkably, the development of stimuli-responsive materials for electrospinning has introduced the possibility of achieving controlled release of active agents under specific conditions, thereby yielding enduring biological effects. Relative humidity (RH) for the storage of food categories such as meat and aquatic products typically exceeds 90%. Consequently, high RH can be used as an abiotic trigger for the release of active agents to prevent microbial growth. Hence, a novel RH - responsive polyvinyl alcohol/chitosan (PVA/CS) composite nanofibrous film incorporated with 4-terpineol/β-cyclodextrin inclusion complexes (4-TA@β-CD ICs) was engineered by electrospinning that can be deposited as a functional packaging materials. The characterization results showed the thermal stability of the films was enhanced after the incorporation due to the hydrogen bonds between ICs and polymers. Remarkably, the 4 wt% 4-TA@β-CD ICs/PVA/CS film exhibited enhanced crystallinity, moderate hydrophilic (Water contact angle of 81.53°), light barrier property (Transparency of 1.96%) and water resistance (Water vapor permeability of 3.17 g mm/m2 h kPa). Moreover, this film also showed optimized mechanical performance with a Young’s modulus of 11.33 MPa, a tensile strength of 19.99 MPa and an elongation at break of 4.44 %. Notably, the antioxidant and antibacterial properties of this packaging material were significantly improved. The film demonstrated the half-inhibitory concentrations (IC50) values of 87.74% and 85.11% for scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2′-azinobis (3-ethylbenzothiazoline-6-sulfonic) (ABTS) free radicals, respectively, in addition to an inhibition efficiency of 65% against Shewanella putrefaciens, the characteristic bacteria in aquatic products. Most importantly, the film achieved controlled release of 4-TA under high 98% RH by inducing the plasticization of polymers caused by water molecules, swelling of polymer chains, and destruction of hydrogen bonds within the cyclodextrin inclusion complex. Consequently, low relative humidity is suitable for the preservation of nanofibrous film, while high humidity conditions typical in fresh food packaging environments effectively stimulated the release of active compounds in the film. This film with a long-term antimicrobial effect successfully extended the shelf life of Litopenaeus vannamei shrimp to 7 days at 4 °C. This attractive design could pave the way for the development of new food packaging materials.Keywords: controlled release, electrospinning, nanofibrous film, relative humidity–responsive, shrimp preservation
Procedia PDF Downloads 7110521 Characterization of the Corn Cob to Know Its Potential as a Source of Biosilica to Be Used in Sustainable Cementitious Mixtures
Authors: Sandra C. L. Dorea, Joann K. Whalen, Yixin Shao, Oumarou Savadogo
Abstract:
The major challenge for industries that rely on fossil fuels in manufacturing processes or to provide goods and services is to lower their CO2 emissions, as the case for the manufacture of Portland cement. Feasible materials for this purpose can include agro-industrial or agricultural wastes, which are termed 'biosilica' since the silica was contained in a biological matrix (biomass). Corn cob (CC) has some characteristics that make it a good candidate as biosilica source: 1) it is an abundant grain crop produced around the world; 2) more production means more available residues is left in the field to be used. This work aims to evaluate the CC collected from different farms in Canada during the corn harvest in order to see if they can be used together as a biosilica source. The characterization of the raw CC was made in the physical, chemical, and thermal way. The moisture content, the granulometry, and the morphology were also analyzed. The ash content measured was 2,1%. The Thermogravimetric Analysis (TGA) and its Derivative (DTG) evaluated of CC as a function of weight loss with temperature variation ranging between 30°C and 800°C in an atmosphere of N2. The chemical composition and the presence of silica revealed that the different sources of the CC do not interfere in its basic chemical composition, which means that this kind of waste can be used together as a source of biosilica no matter where they come from. Then, this biosilica can partially replace the cement Portland making sustainable cementitious mixtures and contributing to reduce the CO2 emissions.Keywords: biosilica, characterization, corn cob, sustainable cementitious materials
Procedia PDF Downloads 26210520 Insecticidal Effects of Plant Extract-Based Formulations on the Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)
Authors: Reza Sadeghi, Maryam Nazarahari
Abstract:
Considering the effectiveness of botanical pesticides in pest management, these compounds have garnered attention as a sustainable approach to reducing pest-induced damage in agriculture while preserving the environment. Botanical pesticides enable farmers to cultivate higher-quality crops by minimizing the use of chemical pesticides. In this study, plant extracts obtained using n-hexane as a solvent from two botanical sources, thyme and eucalyptus, were evaluated under laboratory conditions for their effectiveness in controlling the cotton bollworm (Helicoverpa armigera). The mortality rate of bollworm larvae was assessed across various concentrations of the hexane-based formulations. The results revealed that the hexane-based formulations of thyme and eucalyptus extracts significantly reduced the population of bollworm larvae after 24 hours of exposure. Thyme extract, in particular, demonstrated high effectiveness as a botanical pesticide, suggesting its potential as an efficient alternative to chemical pesticides in pest management. These findings underscore that botanical pesticides can mitigate the environmental consequences of chemical pesticides and provide innovative solutions for sustainable agriculture by leveraging the active compounds present in plant extracts.Keywords: cotton bollworm, thyme, eucalyptus, extract formulation, , toxicity
Procedia PDF Downloads 510519 A Simulation-Based Method for Evaluation of Energy System Cooperation between Pulp and Paper Mills and a District Heating System: A Case Study
Authors: Alexander Hedlund, Anna-Karin Stengard, Olof Björkqvist
Abstract:
A step towards reducing greenhouse gases and energy consumption is to collaborate with the energy system between several industries. This work is based on a case study on integration of pulp and paper mills with a district heating system in Sundsvall, Sweden. Present research shows that it is possible to make a significant reduction in the electricity demand in the mechanical pulping process. However, the profitability of the efficiency measures could be an issue, as the excess steam recovered from the refiners decreases with the electricity consumption. A consequence will be that the fuel demand for steam production will increase. If the fuel price is similar to the electricity price it would reduce the profit of such a project. If the paper mill can be integrated with a district heating system, it is possible to upgrade excess heat from a nearby kraft pulp mill to process steam via the district heating system in order to avoid the additional fuel need. The concept is investigated by using a simulation model describing both the mass and energy balance as well as the operating margin. Three scenarios were analyzed: reference, electricity reduction and energy substitution. The simulation show that the total input to the system is lowest in the Energy substitution scenario. Additionally, in the Energy substitution scenario the steam from the incineration boiler covers not only the steam shortage but also a part of the steam produced using the biofuel boiler, the cooling tower connected to the incineration boiler is no longer needed and the excess heat can cover the whole district heating load during the whole year. The study shows a substantial economic advantage if all stakeholders act together as one system. However, costs and benefits are unequally shared between the actors. This means that there is a need for new business models in order to share the system costs and benefits.Keywords: energy system, cooperation, simulation method, excess heat, district heating
Procedia PDF Downloads 22610518 Pulse Method for Investigation of Zr-C Phase Diagram at High Carbon Content Domain under High Temperatures
Authors: Arseniy M. Kondratyev, Sergey V. Onufriev, Alexander I. Savvatimskiy
Abstract:
The microsecond electrical pulse heating technique which provides uniform energy input into an investigated specimen is considered. In the present study we investigated ZrC+C carbide specimens in a form of a thin layer (about 5 microns thick) that were produced using a method of magnetron sputtering on insulating substrates. Specimens contained (at. %): Zr–17.88; C–67.69; N–8.13; O–5.98. Current through the specimen, voltage drop across it and radiation at the wavelength of 856 nm were recorded in the experiments. It enabled us to calculate the input energy, specific heat (from 2300 to 4500 K) and resistivity (referred to the initial dimensions of a specimen). To obtain the true temperature a black body specimen was used. Temperature of the beginning and completion of a phase transition (solid–liquid) was measured.Temperature of the onset of melting was 3150 K at the input energy 2.65 kJ/g; temperature of the completion of melting was 3450 K at the input energy 5.2 kJ/g. The specific heat of the solid phase of investigated carbide calculated using our data on temperature and imparted energy, is close to 0.75 J/gК for temperature range 2100–2800 K. Our results are considered together with the equilibrium Zr-C phase diagram.Keywords: pulse heating, zirconium carbide, high temperatures, melting
Procedia PDF Downloads 32310517 Economic Analysis of a Carbon Abatement Technology
Authors: Hameed Rukayat Opeyemi, Pericles Pilidis Pagone Emmanuele, Agbadede Roupa, Allison Isaiah
Abstract:
Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero-emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, the current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbomachinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50% cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low-temperature heat exchanger LTHX (referred to by some authors as air preheater the mixed conductive membrane responsible for oxygen transfer and the high-temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout)–AZEP 85% (85% CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine–AZEP 85% (85% CO2 capture). This paper discusses monte carlo risk analysis of four possible layouts of the AZEP cycle.Keywords: gas turbine, global warming, green house gas, fossil fuel power plants
Procedia PDF Downloads 39710516 Assessing the Effectiveness of Warehousing Facility Management: The Case of Mantrac Ghana Limited
Authors: Kuhorfah Emmanuel Mawuli
Abstract:
Generally, for firms to enhance their operational efficiency of logistics, it is imperative to assess the logistics function. The cost of logistics conventionally represents a key consideration in the pricing decisions of firms, which suggests that cost efficiency in logistics can go a long way to improve margins. Warehousing, which is a key part of logistics operations, has the prospect of influencing operational efficiency in logistics management as well as customer value, but this potential has often not been recognized. It has been found that there is a paucity of research that evaluates the efficiency of warehouses. Indeed, limited research has been conducted to examine potential barriers to effective warehousing management. Due to this paucity of research, there is limited knowledge on how to address the obstacles associated with warehousing management. In order for warehousing management to become profitable, there is the need to integrate, balance, and manage the economic inputs and outputs of the entire warehouse operations, something that many firms tend to ignore. Management of warehousing is not solely related to storage functions. Instead, effective warehousing management requires such practices as maximum possible mechanization and automation of operations, optimal use of space and capacity of storage facilities, organization through "continuous flow" of goods, a planned system of storage operations, and safety of goods. For example, there is an important need for space utilization of the warehouse surface as it is a good way to evaluate the storing operation and pick items per hour. In the setting of Mantrac Ghana, not much knowledge regarding the management of the warehouses exists. The researcher has personally observed many gaps in the management of the warehouse facilities in the case organization Mantrac Ghana. It is important, therefore, to assess the warehouse facility management of the case company with the objective of identifying weaknesses for improvement. The study employs an in-depth qualitative research approach using interviews as a mode of data collection. Respondents in the study mainly comprised warehouse facility managers in the studied company. A total of 10 participants were selected for the study using a purposive sampling strategy. Results emanating from the study demonstrate limited warehousing effectiveness in the case company. Findings further reveal that the major barriers to effective warehousing facility management comprise poor layout, poor picking optimization, labour costs, and inaccurate orders; policy implications of the study findings are finally outlined.Keywords: assessing, warehousing, facility, management
Procedia PDF Downloads 6510515 Cataract Surgery and Sustainability: Comparative Study of Single-Use Versus Reusable Cassettes in Phacoemulsification
Authors: Oscar Kallay
Abstract:
Objective: This study compares the sustainability, financial implications, and surgical efficiency of two phacoemulsification cassette systems for cataract surgery: a machine with single-use cassettes and another with daily, reusable ones. Methods: The observational study involves retrospective cataract surgery data collection at the Centre Médical de l'Alliance, Braine-L’alleud, Belgium, a tertiary eye care center. Information on cassette weight, quantities, and transport volume was obtained from routine procedures and purchasing records. The costs for each machine were calculated by reviewing the invoices received from the accounting department. Results: We found significant differences across comparisons. The reusable cassette machine, when compared to the single-use machine, used 306.7 kg less plastic (75.3% reduction), required 2,494 cubic meters less storage per 1000 surgeries (67.7% decrease), and cost €54.16 less per 10 procedures (16.9% reduction). The machine with daily reusable cassettes also exhibited a 7-minute priming time advantage for 10 procedures, reducing downtime between cases. Conclusions: Our findings underscore the benefits of adopting reusable cassette systems: reduced plastic consumption, storage volume, and priming time, as well as enhanced efficiency and cost savings. Healthcare professionals and institutions are encouraged to embrace environmentally conscious initiatives. The use of reusable cassette systems for cataract surgeries offers a pathway to sustainable practices.Keywords: cataract, epidemiolog, surgery treatment, lens and zonules, public health
Procedia PDF Downloads 1710514 Role of Process Parameters on Pocket Milling with Abrasive Water Jet Machining Technique
Authors: T. V. K. Gupta, J. Ramkumar, Puneet Tandon, N. S. Vyas
Abstract:
Abrasive Water Jet Machining (AWJM) is an unconventional machining process well known for machining hard to cut materials. The primary research focus on the process was for through cutting and a very limited literature is available on pocket milling using AWJM. The present work is an attempt to use this process for milling applications considering a set of various process parameters. Four different input parameters, which were considered by researchers for part separation, are selected for the above application i.e. abrasive size, flow rate, standoff distance, and traverse speed. Pockets of definite size are machined to investigate surface roughness, material removal rate, and pocket depth. Based on the data available through experiments on SS304 material, it is observed that higher traverse speeds gives a better finish because of reduction in the particle energy density and lower depth is also observed. Increase in the standoff distance and abrasive flow rate reduces the rate of material removal as the jet loses its focus and occurrence of collisions within the particles. ANOVA for individual output parameter has been studied to know the significant process parameters.Keywords: abrasive flow rate, surface finish, abrasive size, standoff distance, traverse speed
Procedia PDF Downloads 30410513 Wakala Buildings of Mamluk Era in Cairo, Egypt and Its Rating According to Rating Criteria of Leadership in Energy and Environmental Design V4
Authors: M. Fathy, I. Maarouf, S. El-Sayary
Abstract:
Our buildings are responsible for around 50% of energy consumption and most of this consumption because of spaces design, low heat isolation building material and occupant presence and behavior in buildings beside non-efficient architectural treatments. It has been shown to have large impact on heating, cooling and ventilation demand, energy consumption of lighting and appliances, and building controls. This paper aims to focus on passive treatments in Wakala Buildings in Cairo and how far it meets the LEED Criteria as the LEED – Leadership in Energy and Environmental Design – considered the widest spread rating system in the world. By studying Wakala buildings in Cairo, there are a lot of environmental potentials in it in the field of passive treatments and energy efficiency that could be found in examples by surveying and analyzing Wakala buildings. Besides the environmental treatments through the natural materials and façade architectural treatments, there is a measuring phase to declare the efficiency of the Wakala building through temperature decline between outdoor and indoor the Wakala building. Also, measuring how far the indoor conditions matched the thermal comfort for occupants. After measuring the Wakala buildings, it is the role of applying the criteria of LEED rating system to find out how fare Wakala buildings meet the LEED rating system criteria. After all, the building technologies used in Wakala buildings in the field of passive design and caused that energy efficiency would be clear and what is needed for Wakala buildings to have a LEED Certification.Keywords: energy awareness, historical commercial buildings, LEED, Wakala buildings
Procedia PDF Downloads 20310512 The Effects of pH on the Electrochromism in Nickel Oxide Films
Authors: T. Taşköprü, M. Zor, E. Turan
Abstract:
The advantages of nickel oxide as an electrochromic material are its good contrast of transmittance and its suitable use as a secondary electrochromic film with WO3 for electrochromic devices. Electrochromic nickel oxide film was prepared by using a simple and inexpensive chemical deposition bath (CBD) technique onto fluorine-doped tin oxide (FTO) coated glass substrates from nickel nitrate solution. The films were ace centered cubic NiO with preferred orientation in the (2 0 0) direction. The electrochromic (EC) properties of the films were studied as a function of pH (8, 9, 10 and 11) in an aqueous alkaline electrolyte (0.3 M KOH) using cyclic voltammetry (CV). The EC cell was formed with the following configuration; FTO/nickel oxide film/0.3 M KOH/Pt The potential was cycled from 0.1 to 0.6V at diffferent potential sweep rates in the range 10- 50 mV/s. The films exhibit anodic electrochromism, changing colour from transparent to black.CV results of a nickel oxide film showed well-resolved anodic current peak at potential; 45 mV and cathodic peak at potential 28 mV. The structural, morphological, and optical changes in NiO film following the CV were investigated by means of X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and UV-Vis- NIR spectrophotometry. No change was observed in XRD, besides surface morphology undergoes change due to the electrical discharge. The change in tansmittance between the bleached and colored state is 68% for the film deposited with pH=11 precursor.Keywords: nickel oxide, XRD, SEM, cyclic voltammetry
Procedia PDF Downloads 30610511 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy
Authors: Kemal Efe Eseller, Göktuğ Yazici
Abstract:
Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing
Procedia PDF Downloads 8710510 Overview of Pre-Analytical Lab Errors in a Tertiary Care Hospital at Rawalpindi, Pakistan
Authors: S. Saeed, T. Butt, M. Rehan, S. Khaliq
Abstract:
Objective: To determine the frequency of pre-analytical errors in samples taken from patients for various lab tests at Fauji Foundation Hospital, Rawalpindi. Material and Methods: All the lab specimens for diagnostic purposes received at the lab from Fauji Foundation hospital, Rawalpindi indoor and outdoor patients were included. Total number of samples received in the lab is recorded in the computerized program made for the hospital. All the errors observed for pre-analytical process including patient identification, sampling techniques, test collection procedures, specimen transport/processing and storage were recorded in the log book kept for the purpose. Results: A total of 476616 specimens were received in the lab during the period of study including 237931 and 238685 from outdoor and indoor patients respectively. Forty-one percent of the samples (n=197976) revealed pre-analytical discrepancies. The discrepancies included Hemolyzed samples (34.8%), Clotted blood (27.8%), Incorrect samples (17.4%), Unlabeled samples (8.9%), Insufficient specimens (3.9%), Request forms without authorized signature (2.9%), Empty containers (3.9%) and tube breakage during centrifugation (0.8%). Most of these pre-analytical discrepancies were observed in samples received from the wards revealing that inappropriate sample collection by the medical staff of the ward, as most of the outdoor samples are collected by the lab staff who are properly trained for sample collection. Conclusion: It is mandatory to educate phlebotomists and paramedical staff particularly performing duties in the wards regarding timing and techniques of sampling/appropriate container to use/early delivery of the samples to the lab to reduce pre-analytical errors.Keywords: pre analytical lab errors, tertiary care hospital, hemolyzed, paramedical staff
Procedia PDF Downloads 20410509 Thermodynamic Approach of Lanthanide-Iron Double Oxides Formation
Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze
Abstract:
Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity – temperature functions and by using the semi-empirical method for calculation of ΔH298.15 of formation. Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.Keywords: calorimetry, entropy, enthalpy, heat capacity, gibbs energy of formation, rare earth iron garnets
Procedia PDF Downloads 38310508 An Investigation of Sustainability: Scope of Eco Denim Fashion
Authors: Sneha Bhatnagar, Sachin Bhatnagar
Abstract:
Denim presently is the most widely accepted textile product and shows its hold even in future with its growing popularity. Denim today is no longer restricted to only a pair of jeans but has diversified in all different product categories. Although denim is considered as an expression of youth and demonstrates durability and comfort, denim raises issues of sustainability. Through an exploratory research, the researcher aims at addressing the possibilities of denim fashion promoting environmental sustainability by means of creativity, awareness, recycle and artisan appreciation. It also touches on how eco conscious fashion brands involve in development in terms of ideation and modification of denim as a fabric or product into diversified sustainable fashion. In conclusion, it is shown that blue denim fashion continues to evolve and shows eventual transformation in becoming green denim in future, nurturing values of both quality and sustainability.Keywords: arts, craft, creativity, denim, fashion, recycle, sustainability
Procedia PDF Downloads 333