Search results for: power plants
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8361

Search results for: power plants

4641 Phytoseiid Mite Species (Acari: Mesostigmata) on Blackberry Plants in Florida and Georgia, USA

Authors: Rana Akyazi, Cal Welbourn, Oscar E. Liburd

Abstract:

The family Phytoseiidae are the most common plant inhabiting group of predatory mites. They are generally considered to be important biological control agents of pest mites on many crops world-wide. Several species of these mites are commercially available in many countries. This study was carried out to determine phytoseiid mite species on nine different blackberry varieties (Arapaho, Choctaw, Kiowa, Nachez, Navaho, Osage, Ouachita, Von, Watchita). The survey was conducted from June to October 2016. Leaf samples were collected monthly from selected organic and conventional commercial blackberry (Rubus spp.) farms in Florida and Georgia, USA. Nine phytoseiid mite (Acari: Mesostigmata) species were determined during the study. The results also showed that the incidence of Phytoseiidae was greater in organic than in conventional blackberries. Future survey studies can provide detection of new species, which may hold potential for biological control of economically important pests in key fruit crops.

Keywords: biological control, mite, Phytoseiidae, predator, Rubus spp.

Procedia PDF Downloads 404
4640 A General Iterative Nonlinear Programming Method to Synthesize Heat Exchanger Network

Authors: Rupu Yang, Cong Toan Tran, Assaad Zoughaib

Abstract:

The work provides an iterative nonlinear programming method to synthesize a heat exchanger network by manipulating the trade-offs between the heat load of process heat exchangers (HEs) and utilities. We consider for the synthesis problem two cases, the first one without fixed cost for HEs, and the second one with fixed cost. For the no fixed cost problem, the nonlinear programming (NLP) model with all the potential HEs is optimized to obtain the global optimum. For the case with fixed cost, the NLP model is iterated through adding/removing HEs. The method was applied in five case studies and illustrated quite well effectiveness. Among which, the approach reaches the lowest TAC (2,904,026$/year) compared with the best record for the famous Aromatic plants problem. It also locates a slightly better design than records in literature for a 10 streams case without fixed cost with only 1/9 computational time. Moreover, compared to the traditional mixed-integer nonlinear programming approach, the iterative NLP method opens a possibility to consider constraints (such as controllability or dynamic performances) that require knowing the structure of the network to be calculated.

Keywords: heat exchanger network, synthesis, NLP, optimization

Procedia PDF Downloads 167
4639 Optimized Processing of Neural Sensory Information with Unwanted Artifacts

Authors: John Lachapelle

Abstract:

Introduction: Neural stimulation is increasingly targeted toward treatment of back pain, PTSD, Parkinson’s disease, and for sensory perception. Sensory recording during stimulation is important in order to examine neural response to stimulation. Most neural amplifiers (headstages) focus on noise efficiency factor (NEF). Conversely, neural headstages need to handle artifacts from several sources including power lines, movement (EMG), and neural stimulation itself. In this work a layered approach to artifact rejection is used to reduce corruption of the neural ENG signal by 60dBv, resulting in recovery of sensory signals in rats and primates that would previously not be possible. Methods: The approach combines analog techniques to reduce and handle unwanted signal amplitudes. The methods include optimized (1) sensory electrode placement, (2) amplifier configuration, and (3) artifact blanking when necessary. The techniques together are like concentric moats protecting a castle; only the wanted neural signal can penetrate. There are two conditions in which the headstage operates: unwanted artifact < 50mV, linear operation, and artifact > 50mV, fast-settle gain reduction signal limiting (covered in more detail in a separate paper). Unwanted Signals at the headstage input: Consider: (a) EMG signals are by nature < 10mV. (b) 60 Hz power line signals may be > 50mV with poor electrode cable conditions; with careful routing much of the signal is common to both reference and active electrode and rejected in the differential amplifier with <50mV remaining. (c) An unwanted (to the neural recorder) stimulation signal is attenuated from stimulation to sensory electrode. The voltage seen at the sensory electrode can be modeled Φ_m=I_o/4πσr. For a 1 mA stimulation signal, with 1 cm spacing between electrodes, the signal is <20mV at the headstage. Headstage ASIC design: The front end ASIC design is designed to produce < 1% THD at 50mV input; 50 times higher than typical headstage ASICs, with no increase in noise floor. This requires careful balance of amplifier stages in the headstage ASIC, as well as consideration of the electrodes effect on noise. The ASIC is designed to allow extremely small signal extraction on low impedance (< 10kohm) electrodes with configuration of the headstage ASIC noise floor to < 700nV/rt-Hz. Smaller high impedance electrodes (> 100kohm) are typically located closer to neural sources and transduce higher amplitude signals (> 10uV); the ASIC low-power mode conserves power with 2uV/rt-Hz noise. Findings: The enhanced neural processing ASIC has been compared with a commercial neural recording amplifier IC. Chronically implanted primates at MGH demonstrated the presence of commercial neural amplifier saturation as a result of large environmental artifacts. The enhanced artifact suppression headstage ASIC, in the same setup, was able to recover and process the wanted neural signal separately from the suppressed unwanted artifacts. Separately, the enhanced artifact suppression headstage ASIC was able to separate sensory neural signals from unwanted artifacts in mouse-implanted peripheral intrafascicular electrodes. Conclusion: Optimizing headstage ASICs allow observation of neural signals in the presence of large artifacts that will be present in real-life implanted applications, and are targeted toward human implantation in the DARPA HAPTIX program.

Keywords: ASIC, biosensors, biomedical signal processing, biomedical sensors

Procedia PDF Downloads 331
4638 Evaluation of Combined System of Constructed Wetland/Expended Clay Aggregate in Greywater Treatment

Authors: Eya Hentati, Mona Lamine, Jalel Bouzid

Abstract:

In this study, a laboratory-scale was designed and fabricated to treat single house greywater in the north of Tunisia with a combination of physical and natural treatments systems. The combined system includes a bio-filter composed of LECA® (lightweight expanded clay aggregate) followed by a vertical up-flow constructed wetland planted with Iris pseudacorus and Typha Latifolia. Applied two hydraulic retention times (HRTs) with two different plants types showed that a bio-filter planted with Typha Latifolia has an optimum removal efficiency for degradation of organic matter and transformation of nitrogen and phosphate at HRT of 30 h. The optimum removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), and suspended solids (SS) ranged between 48-65%, between while the nutrients removal was in the range of 70% to 90%. Fecal coliforms dropped by three to four orders of magnitude from their initial concentration, but this steel does not meet current regulations for unlimited irrigation. Hence further improvement procedures are suggested.

Keywords: constructed wetland, greywater treatment, nutriments, organics

Procedia PDF Downloads 169
4637 Numerical investigation of Hydrodynamic and Parietal Heat Transfer to Bingham Fluid Agitated in a Vessel by Helical Ribbon Impeller

Authors: Mounir Baccar, Amel Gammoudi, Abdelhak Ayadi

Abstract:

The efficient mixing of highly viscous fluids is required for many industries such as food, polymers or paints production. The homogeneity is a challenging operation for this fluids type since they operate at low Reynolds number to reduce the required power of the used impellers. Particularly, close-clearance impellers, mainly helical ribbons, are chosen for highly viscous fluids agitated in laminar regime which is currently heated through vessel wall. Indeed, they are characterized by high shear strains closer to the vessel wall, which causes a disturbing thermal boundary layer and ensures the homogenization of the bulk volume by axial and radial vortices. The hydrodynamic and thermal behaviors of Newtonian fluids in vessels agitated by helical ribbon impellers, has been mostly studied by many researchers. However, rarely researchers investigated numerically the agitation of yield stress fluid by means of helical ribbon impellers. This paper aims to study the effect of the Double Helical Ribbon (DHR) stirrers on both the hydrodynamic and the thermal behaviors of yield stress fluids treated in a cylindrical vessel by means of numerical simulation approach. For this purpose, continuity, momentum, and thermal equations were solved by means of 3D finite volume technique. The effect of Oldroyd (Od) and Reynolds (Re) numbers on the power (Po) and Nusselt (Nu) numbers for the mentioned stirrer type have been studied. Also, the velocity and thermal fields, the dissipation function and the apparent viscosity have been presented in different (r-z) and (r-θ) planes.

Keywords: Bingham fluid, Hydrodynamic and thermal behavior, helical ribbon, mixing, numerical modelling

Procedia PDF Downloads 307
4636 Measurement of Magnetic Properties of Grainoriented Electrical Steels at Low and High Fields Using a Novel Single

Authors: Nkwachukwu Chukwuchekwa, Joy Ulumma Chukwuchekwa

Abstract:

Magnetic characteristics of grain-oriented electrical steel (GOES) are usually measured at high flux densities suitable for its typical applications in power transformers. There are limited magnetic data at low flux densities which are relevant for the characterization of GOES for applications in metering instrument transformers and low frequency magnetic shielding in magnetic resonance imaging medical scanners. Magnetic properties such as coercivity, B-H loop, AC relative permeability and specific power loss of conventional grain oriented (CGO) and high permeability grain oriented (HGO) electrical steels were measured and compared at high and low flux densities at power magnetising frequency. 40 strips comprising 20 CGO and 20 HGO, 305 mm x 30 mm x 0.27 mm from a supplier were tested. The HGO and CGO strips had average grain sizes of 9 mm and 4 mm respectively. Each strip was singly magnetised under sinusoidal peak flux density from 8.0 mT to 1.5 T at a magnetising frequency of 50 Hz. The novel single sheet tester comprises a personal computer in which LabVIEW version 8.5 from National Instruments (NI) was installed, a NI 4461 data acquisition (DAQ) card, an impedance matching transformer, to match the 600  minimum load impedance of the DAQ card with the 5 to 20  low impedance of the magnetising circuit, and a 4.7 Ω shunt resistor. A double vertical yoke made of GOES which is 290 mm long and 32 mm wide is used. A 500-turn secondary winding, about 80 mm in length, was wound around a plastic former, 270 mm x 40 mm, housing the sample, while a 100-turn primary winding, covering the entire length of the plastic former was wound over the secondary winding. A standard Epstein strip to be tested is placed between the yokes. The magnetising voltage was generated by the LabVIEW program through a voltage output from the DAQ card. The voltage drop across the shunt resistor and the secondary voltage were acquired by the card for calculation of magnetic field strength and flux density respectively. A feedback control system implemented in LabVIEW was used to control the flux density and to make the induced secondary voltage waveforms sinusoidal to have repeatable and comparable measurements. The low noise NI4461 card with 24 bit resolution and a sampling rate of 204.8 KHz and 92 KHz bandwidth were chosen to take the measurements to minimize the influence of thermal noise. In order to reduce environmental noise, the yokes, sample and search coil carrier were placed in a noise shielding chamber. HGO was found to have better magnetic properties at both high and low magnetisation regimes. This is because of the higher grain size of HGO and higher grain-grain misorientation of CGO. HGO is better CGO in both low and high magnetic field applications.

Keywords: flux density, electrical steel, LabVIEW, magnetization

Procedia PDF Downloads 292
4635 Comparison of Antimicrobial Activity of Momordica cochinchinesis and Pinus kesiya Extracts

Authors: Pattaramon Pongjetpong

Abstract:

In recent years, infectious diseases have increased considerably, and they are amongst the most common leading causes of death all over the world. Several medicinal plants are well known to contain active constituents such as flavonoids, carotenoids, and phenolic compounds, which are plausible candidates for therapeutic purposes. This study aimed to examine the antimicrobial activities of M. cochinchinensis and P. kesiya extracts using the agar disk diffusion method and broth microdilution to determine the minimum inhibitory concentration (MIC) value. In this study, Momordica cochinchinensis and Pinus kesiya extracts are investigated for antibacterial activity against Staphylococcus aureus. The results showed that S. aureus was susceptible to P. kesiya extracts with an MIC value of 62.5 µg/ml, while M. cochinchinensis showed MIC against S. aureus was greater than 2000 µg/ml. In summary, P. kesiya extract showed potent antibacterial activity against S. aureus, which could greatly value developing as adjuvant therapy for infectious diseases. However, further investigation regarding purification of the active constituents as well as a determination of the mechanism of antimicrobial action of P. kesiya active compound should be performed to identify the molecular target of the active compounds.

Keywords: antimicrobial activity, Momordica cochinchinensis, Pinus kesiya, Staphylococcus aureus

Procedia PDF Downloads 206
4634 New Isolate of Cucumber Mosaic Virus Infecting Banana

Authors: Abdelsabour G. A. Khaled, Ahmed W. A. Abdalla And Sabry Y. M. Mahmoud

Abstract:

Banana plants showing typical mosaic and yellow stripes on leaves as symptoms were collected from Assiut Governorate in Egypt. The causal agent was identified as Cucumber mosaic virus (CMV) on the basis of symptoms, transmission, serology, transmission electron microscopy and reverse transcription polymerase chain reaction (RT-PCR). Coat protein (CP) gene was amplified using gene specific primers for coat protein (CP), followed by cloning into desired cloning vector for sequencing. In this study the CMV was transmitted into propagation host either by aphid or mechanically. The transmission was confirmed through Direct Antigen Coating Enzyme Linked Immuno Sorbent Assay (DAC-ELISA). Analysis of the 120 deduced amino acid sequence of the coat protein gene revealed that the EG-A strain of CMV shared from 97.50 to 98.33% with those strains belonging to subgroup IA. The cluster analysis grouped the Egyptian isolate with strains Fny and Ri8 belonging sub-group IA. It appears that there occurs a high incidence of CMV infecting banana belonging to IA subgroup in most parts of Egypt.

Keywords: banana, CMV, transmission, CP gene, RT-PCR

Procedia PDF Downloads 343
4633 Groundwater Treatment of Thailand's Mae Moh Lignite Mine

Authors: A. Laksanayothin, W. Ariyawong

Abstract:

Mae Moh Lignite Mine is the largest open-pit mine in Thailand. The mine serves coal to the power plant about 16 million tons per year. This amount of coal can produce electricity accounting for about 10% of Nation’s electric power generation. The mining area of Mae Moh Mine is about 28 km2. At present, the deepest area of the pit is about 280 m from ground level (+40 m. MSL) and in the future the depth of the pit can reach 520 m from ground level (-200 m.MSL). As the size of the pit is quite large, the stability of the pit is seriously important. Furthermore, the preliminary drilling and extended drilling in year 1989-1996 had found high pressure aquifer under the pit. As a result, the pressure of the underground water has to be released in order to control mine pit stability. The study by the consulting experts later found that 3-5 million m3 per year of the underground water is needed to be de-watered for the safety of mining. However, the quality of this discharged water should meet the standard. Therefore, the ground water treatment facility has been implemented, aiming to reduce the amount of naturally contaminated Arsenic (As) in discharged water lower than the standard limit of 10 ppb. The treatment system consists of coagulation and filtration process. The main components include rapid mixing tanks, slow mixing tanks, sedimentation tank, thickener tank and sludge drying bed. The treatment process uses 40% FeCl3 as a coagulant. The FeCl3 will adsorb with As(V), forming floc particles and separating from the water as precipitate. After that, the sludge is dried in the sand bed and then be disposed in the secured land fill. Since 2011, the treatment plant of 12,000 m3/day has been efficiently operated. The average removal efficiency of the process is about 95%.

Keywords: arsenic, coagulant, ferric chloride, groundwater, lignite, coal mine

Procedia PDF Downloads 312
4632 Assessing Household Energy Savings and Consumer Behavior in Padang City

Authors: Prima Fithri, Lusi Susanti, Karin Bestarina

Abstract:

Indonesia's electrification ratio is still around 80.1%, which means that approximately 19.9% of households in Indonesia have not been getting the flow of electrical energy. Household electricity consumptions in Indonesia are generally still dominated by the public urban. In the city of Padang, West Sumatera, Indonesia, about 94.10% are power users of government services (PLN). The most important thing of the issue is human resources efficient energy. Consumer behavior in utilizing electricity becomes significant. Intensive questioner survey, in-depth interview and statistical analysis are carried out to collect scientific evidences of the behavioral based changes instruments to reduce electricity consumption in household sector. The questioner was developed to include five factors assuming affect the electricity consumption pattern in household sector. They are: attitude, energy price, household income, knowledge and other determinants. The survey was carried out in Padang, West Sumatra Province Indonesia. About 210 questioner papers were proportionally distributed to households in 11 districts in Padang. Stratified sampling was used as a method to select respondents. The results show that the household size, income, payment methods and size of house are factors affecting electricity saving behavior in residential sector. Household expenses on electricity are strongly influenced by gender, type of job, level of education, size of house, income, payment method and level of installed power. These results provide a scientific evidence for stakeholders on the potential of controlling electricity consumption and designing energy policy by government in residential sector.

Keywords: electricity, energy saving, household, behavior, policy

Procedia PDF Downloads 528
4631 Antioxidant Defence Systems, Lipid Peroxidation, and Photosynthetic Variables in Salt-Sensitive and Salt-Tolerant Soybean Genotypes in Response to Salt Stress

Authors: Faheema Khan

Abstract:

We have investigated the effects of salt stress on the stability of plant growth, water relations, photosynthetic variables, lipid peroxidation and antioxidant system in salt-tolerant (PK-327) and salt-sensitive (PK-471) soybean genotypes. Ten-day-old salt-tolerant and salt-sensitive soybean plants were subjected to 0-150 mM NaCl for 15 days. While the growth of genotype PK-327 was not affected significantly up to 75 mM NaCl treatment, the growth of the PK-471 was reduced significantly beyond 25 mM NaCl treatments. Salt stress caused severe impairments in photosynthetic variables like photosynthetic rate, chlorophyll fluorescence and chlorophyll content, being more pronounced in salt-sensitive genotype than in salt-tolerant.The activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) were higher in PK-327 than in PK-471 at various levels of salt treatments.It is concluded that tolerance capacity of PK-327 against salinity can be associated with the ability of this genotype in keeping an active photosynthetic system and strong antioxidant defence system.

Keywords: salt stress, soybean, antioxidant, photosynthesis

Procedia PDF Downloads 386
4630 Integrated Simulation and Optimization for Carbon Capture and Storage System

Authors: Taekyoon Park, Seokgoo Lee, Sungho Kim, Ung Lee, Jong Min Lee, Chonghun Han

Abstract:

CO2 capture and storage/sequestration (CCS) is a key technology for addressing the global warming issue. This paper proposes an integrated model for the whole chain of CCS, from a power plant to a reservoir. The integrated model is further utilized to determine optimal operating conditions and study responses to various changes in input variables.

Keywords: CCS, caron dioxide, carbon capture and storage, simulation, optimization

Procedia PDF Downloads 353
4629 A Systematic Review on the Whole-Body Cryotherapy versus Control Interventions for Recovery of Muscle Function and Perceptions of Muscle Soreness Following Exercise-Induced Muscle Damage in Runners

Authors: Michael Nolte, Iwona Kasior, Kala Flagg, Spiro Karavatas

Abstract:

Background: Cryotherapy has been used as a post-exercise recovery modality for decades. Whole-body cryotherapy (WBC) is an intervention which involves brief exposures to extremely cold air in order to induce therapeutic effects. It is currently being investigated for its effectiveness in treating certain exercise-induced impairments. Purpose: The purpose of this systematic review was to determine whether WBC as a recovery intervention is more, less, or equally as effective as other interventions at reducing perceived levels of muscle soreness and promoting recovery of muscle function after exercise-induced muscle damage (EIMD) from running. Methods: A systematic review of the current literature was performed utilizing the following MeSH terms: cryotherapy, whole-body cryotherapy, exercise-induced muscle damage, muscle soreness, muscle recovery, and running. The databases utilized were PubMed, CINAHL, EBSCO Host, and Google Scholar. Articles were included if they were published within the last ten years, had a CEBM level of evidence of IIb or higher, had a PEDro scale score of 5 or higher, studied runners as primary subjects, and utilized both perceived levels of muscle soreness and recovery of muscle function as dependent variables. Articles were excluded if subjects did not include runners, if the interventions included PBC instead of WBC, and if both muscle performance and perceived muscle soreness were not assessed within the study. Results: Two of the four articles revealed that WBC was significantly more effective than treatment interventions such as far-infrared radiation and passive recovery at reducing perceived levels of muscle soreness and restoring muscle power and endurance following simulated trail runs and high-intensity interval running, respectively. One of the four articles revealed no significant difference between WBC and passive recovery in terms of reducing perceived muscle soreness and restoring muscle power following sprint intervals. One of the four articles revealed that WBC had a harmful effect compared to CWI and passive recovery on both perceived muscle soreness and recovery of muscle strength and power following a marathon. Discussion/Conclusion: Though there was no consensus in terms of WBC’s effectiveness at treating exercise-induced muscle damage following running compared to other interventions, it seems as though WBC may at least have a time-dependent positive effect on muscle soreness and recovery following high-intensity interval runs and endurance running, marathons excluded. More research needs to be conducted in order to determine the most effective way to implement WBC as a recovery method for exercise-induced muscle damage, including the optimal temperature, timing, duration, and frequency of treatment.

Keywords: cryotherapy, physical therapy intervention, physical therapy, whole body cryotherapy

Procedia PDF Downloads 241
4628 Assessing Genetic Variation of Dog Rose (Rosa Canina L.) in Caspian Climate

Authors: Aptin Rahnavard, Ghavamaldin Asadian, Khalil Pourshamsian, Mariamalsadat Taghavi

Abstract:

Dog rose is one of the important rose species in Iran that the distant past had been considered due to nutritional value and medicinal. Despite its long history of use, due to poor information on the genetic modification of plants has been done resources inheritance. In this study was to assess the genetic diversity. Total of 30 genotypes Dog rose from areas of northern Iran in the Caspian region (provinces of Guilan and Mazandaran) were evaluated using 25 RAPD primers. The number of bands produced total of 202 and for each primer were measured in a bands with an average 8-band .The number of polymorphic bands per primer ranged from 1 to 13 and the bands were in the range of 300 to 3000 bp. Based on the results OPA-04 primer with 13 bands and PRA-1, E-09 and A-04 with 5-band were created maximum and minimum number of amplified fragments. Molecular marker genotypes showed a high degree of polymorphism. Studied genotypes based on RAPD results were divided into 2 groups and 2 subgroups. Most similar in subgroups A2 and B group was the lowest.

Keywords: rosa canina spp., RAPD marker, genetic variation, caspian climate

Procedia PDF Downloads 571
4627 Analysis of the Detachment of Water Droplets from a Porous Fibrous Surface

Authors: Ibrahim Rassoul, E-K. Si Ahmed

Abstract:

The growth, deformation, and detachment of fluid droplets adherent to solid substrates is a problem of fundamental interest with numerous practical applications. Specific interest in this proposal is the problem of a droplet on a fibrous, hydrophobic substrate subjected to body or external forces (gravity, convection). The past decade has seen tremendous advances in proton exchange membrane fuel cell (PEMFC) technology. However, there remain many challenges to bring commercially viable stationary PEMFC products to the market. PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On the one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause 'flooding' (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The aim of this work is to investigate the stability of a liquid water droplet emerging form a GDL pore, to gain fundamental insight into the instability process leading to detachment. The approach will combine analytical and numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, water droplet, gas diffusion layer, contact angle, surface tension

Procedia PDF Downloads 255
4626 Evaluation of Physical Parameters and in-Vitro and in-Vivo Antidiabetic Activity of a Selected Combined Medicinal Plant Extracts Mixture

Authors: S. N. T. I. Sampath, J. M. S. Jayasinghe, A. P. Attanayake, V. Karunaratne

Abstract:

Diabetes mellitus is one of the major public health posers throughout the world today that incidence and associated with increasing mortality. Insufficient regulation of the blood glucose level might be serious effects for health and its necessity to identify new therapeutics that have ability to reduce hyperglycaemic condition in the human body. Even though synthetic antidiabetic drugs are more effective to control diabetes mellitus, there are considerable side effects have been reported. Thus, there is an increasing demand for searching new natural products having high antidiabetic activity with lesser side effects. The purposes of the present study were to evaluate different physical parameters and in-vitro and in-vivo antidiabetic potential of the selected combined medicinal plant extracts mixture composed of leaves of Murraya koenigii, cloves of Allium sativum, fruits of Garcinia queasita and seeds of Piper nigrum. The selected plants parts were mixed and ground together and extracted sequentially into the hexane, ethyl acetate and methanol. Solvents were evaporated and they were further dried by freeze-drying to obtain a fine powder of each extract. Various physical parameters such as moisture, total ash, acid insoluble ash and water soluble ash were evaluated using standard test procedures. In-vitro antidiabetic activity of combined plant extracts mixture was screened using enzyme assays such as α-amylase inhibition assay and α-glucosidase inhibition assay. The acute anti-hyperglycaemic activity was performed using oral glucose tolerance test for the streptozotocin induced diabetic Wistar rats to find out in-vivo antidiabetic activity of combined plant extracts mixture and it was assessed through total oral glucose tolerance curve (TAUC) values. The percentage of moisture content, total ash content, acid insoluble ash content and water soluble ash content were ranged of 7.6-17.8, 8.1-11.78, 0.019-0.134 and 6.2-9.2 respectively for the plant extracts and those values were less than standard values except the methanol extract. The hexane and ethyl acetate extracts exhibited highest α-amylase (IC50 = 25.7 ±0.6; 27.1 ±1.2 ppm) and α-glucosidase (IC50 = 22.4 ±0.1; 33.7 ±0.2 ppm) inhibitory activities than methanol extract (IC50 = 360.2 ±0.6; 179.6 ±0.9 ppm) when compared with the acarbose positive control (IC50 = 5.7 ±0.4; 17.1 ±0.6 ppm). The TAUC values for hexane, ethyl acetate, and methanol extracts and glibenclamide (positive control) treated rats were 8.01 ±0.66; 8.05 ±1.07; 8.40±0.50; 5.87 ±0.93 mmol/L.h respectively, whereas in diabetic control rats the TAUC value was 13.22 ±1.07 mmol/L.h. Administration of plant extracts treated rats significantly suppressed (p<0.05) the rise in plasma blood glucose levels compared to control rats but less significant than glibenclamide. The obtained results from in-vivo and in-vitro antidiabetic study showed that the hexane and ethyl acetate extracts of selected combined plant mixture might be considered as a potential source to isolate natural antidiabetic agents and physical parameters of hexane and ethyl acetate extracts will helpful to develop antidiabetic drug with further standardize properties.

Keywords: diabetes mellitus, in-vitro antidiabetic assays, medicinal plants, standardization

Procedia PDF Downloads 134
4625 Strained Channel Aluminum Nitride/Gallium Nitride Heterostructures Homoepitaxially Grown on Aluminum Nitride-On-Sapphire Template by Plasma-Assisted Molecular Beam Epitaxy

Authors: Jiajia Yao, GuanLin Wu, Fang liu, JunShuai Xue, JinCheng Zhang, Yue Hao

Abstract:

Due to its outstanding material properties like high thermal conductivity and ultra-wide bandgap, Aluminum nitride (AlN) has the promising potential to provide high breakdown voltage and high output power among III-nitrides for various applications in electronics and optoelectronics. This work presents material growth and characterization of strained channel Aluminum nitride/Gallium nitride (AlN/GaN) heterostructures grown by plasma-assisted molecular beam epitaxy (PA-MBE) on AlN-on-sapphire templates. To improve the crystal quality and manifest the ability of the PA-MBE approach, a thick AlN buffer with a thickness of 180 nm is first grown on AlN template, which acts as a back-barrier to enhance the breakdown characteristic and isolates the leakage path existing in the interface between AlN epilayer and AlN template, as well as improve the heat dissipation. The grown AlN buffer features a root-mean-square roughness of 0.2 nm over a scanned area of 2×2 µm2 measured by atomic force microscopy (AFM), and exhibits full-width at half-maximum of 95 and 407 arcsec for the (002) and (102) plane the X-ray rocking curve, respectively, tested by high resolution x-ray diffraction (HR-XRD). With a thin and strained GaN channel, the electron mobility of 294 cm2 /Vs. with a carrier concentration of 2.82×1013 cm-2 at room temperature is achieved in AlN/GaN double-channel heterostructures, and the depletion capacitance is as low as 14 pF resolved by the capacitance-voltage, which indicates the promising opportunities for future applications in next-generation high temperature, high-frequency and high-power electronics with a further increased electron mobility by optimization of heterointerface quality.

Keywords: AlN/GaN, HEMT, MBE, homoepitaxy

Procedia PDF Downloads 99
4624 Chemical and Electrochemical Syntheses of Two Organic Components of Ginger

Authors: Adrienn Kiss, Karoly Zauer, Gyorgy Keglevich, Rita Molnarne Bernath

Abstract:

Ginger (Zingiber officinale) is a perennial plant from Southeast Asia, widely used as a spice, herb, and medicine for many illnesses since its beneficial health effects were observed thousands of years ago. Among the compounds found in ginger, zingerone [4-hydroxy-3- methoxyphenyl-2-butanone] deserves special attention: it has an anti-inflammatory and antispasmodic effect, it can be used in case of diarrheal disease, helps to prevent the formation of blood clots, has antimicrobial properties, and can also play a role in preventing the Alzheimer's disease. Ferulic acid [(E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoic acid] is another cinnamic acid derivative in ginger, which has promising properties. Like many phenolic compounds, ferulic acid is also an antioxidant. Based on the results of animal experiments, it is assumed to have a direct antitumoral effect in lung and liver cancer. It also deactivates free radicals that can damage the cell membrane and the DNA and helps to protect the skin against UV radiation. The aim of this work was to synthesize these two compounds by new methods. A few of the reactions were based on the hydrogenation of dehydrozingerone [4-(4-Hydroxy-3-methoxyphenyl)-3-buten-2-one] to zingerone. Dehydrozingerone can be synthesized by a relatively simple method from acetone and vanillin with good yield (80%, melting point: 41 °C). Hydrogenation can be carried out chemically, for example by the reaction of zinc and acetic acid, or Grignard magnesium and ethyl alcohol. Another way to complete the reduction is the electrochemical pathway. The electrolysis of dehydrozingerone without diaphragm in aqueous media was attempted to produce ferulic acid in the presence of sodium carbonate and potassium iodide using platinum electrodes. The electrolysis of dehydrozingerone in the presence of potassium carbonate and acetic acid to prepare zingerone was carried out similarly. Ferulic acid was expected to be converted to dihydroferulic acid [3-(4-Hydroxy-3-methoxyphenyl)propanoic acid] in potassium hydroxide solution using iron electrodes, separating the anode and cathode space with a Soxhlet paper sheath impregnated with saturated magnesium chloride solution. For this reaction, ferulic acid was synthesized from vanillin and malonic acid in the presence of pyridine and piperidine (yield: 88.7%, melting point: 173°C). Unfortunately, in many cases, the expected transformations did not happen or took place in low conversions, although gas evolution occurred. Thus, a deeper understanding of these experiments and optimization are needed. Since both compounds are found in different plants, they can also be obtained by alkaline extraction or steam distillation from distinct plant parts (ferulic acid from ground bamboo shoots, zingerone from grated ginger root). The products of these reactions are rich in several other organic compounds as well; therefore, their separation must be solved to get the desired pure material. The products of the reactions described above were characterized by infrared spectral data and melting points. The use of these two simple methods may be informative for the formation of the products. In the future, we would like to study the ferulic acid and zingerone content of other plants and extract them efficiently. The optimization of electrochemical reactions and the use of other test methods are also among our plans.

Keywords: ferulic acid, ginger, synthesis, zingerone

Procedia PDF Downloads 177
4623 Software Development for Both Small Wind Performance Optimization and Structural Compliance Analysis with International Safety Regulations

Authors: K. M. Yoo, M. H. Kang

Abstract:

Conventional commercial wind turbine design software is limited to large wind turbines due to not incorporating with low Reynold’s Number aerodynamic characteristics typically for small wind turbines. To extract maximum annual energy product from an intermediately designed small wind turbine associated with measured wind data, numerous simulation is highly recommended to have a best fitting planform design with proper airfoil configuration. Since depending upon wind distribution with average wind speed, an optimal wind turbine planform design changes accordingly. It is theoretically not difficult, though, it is very inconveniently time-consuming design procedure to finalize conceptual layout of a desired small wind turbine. Thus, to help simulations easier and faster, a GUI software is developed to conveniently iterate and change airfoil types, wind data, and geometric blade data as well. With magnetic generator torque curve, peak power tracking simulation is also available to better match with the magnetic generator. Small wind turbine often lacks starting torque due to blade optimization. Thus this simulation is also embedded along with yaw design. This software provides various blade cross section details at user’s design convenience such as skin thickness control with fiber direction option, spar shape, and their material properties. Since small wind turbine is under international safety regulations with fatigue damage during normal operations and safety load analyses with ultimate excessive loads, load analyses are provided with each category mandated in the safety regulations.

Keywords: GUI software, Low Reynold’s number aerodynamics, peak power tracking, safety regulations, wind turbine performance optimization

Procedia PDF Downloads 308
4622 Potential of Two Pelargonium Species for EDTA-Assisted Phytoextraction of Cadmium

Authors: Iram Gul, Maria Manzoor, Muhammad Arshad

Abstract:

The enhanced phytoextraction techniques have been proposed for the remediation of heavy metals contaminated soil. Chelating agents enhance the availability of Cd, which is the main factor in the phytoremediation. This study was conducted to assessed the potential of two Pelargonium species (Pelargonium zonale, Pelargonium hortorum) in EDTA enhanced phytoextraction of Cd using pot experiment. Different doses of EDTA (0, 1, 2, 3, 4, 5 mmol kg-1) was used, and results showed that there was significant increase (approximately 2.1 folds) in the mobility of Cd at EDTA 5 mg kg-1 as compared to control. Both plants have TF and BCF more than 1 and have potential for the phytoextraction of Cd. However, the Pelargonium hortorum showed higher biomass and Cd uptake as compared to Pleragonium zonale. The maximum Cd accumulation in shoot and root of Pelargonium zonale was 484.4 and 264.41 mg kg-1 respectively at 2 mmol kg-1. However, the Pelargonium hortorum accumulate 996.9 and 350 mg kg-1 of Cd in shoot and root respectively at 4 mmol kg-1. Pelargonium hortorum uptake approximately 10.7 folds higher Cd concentration as compared to the Pelargonium zonale. Results revealed that P. hortorum performed better than P. zonal even at higher Cd and EDTA doses however toxicity and leaching potential of increased Cd and EDTA concentrations needs to be explored before field application.

Keywords: Cadmium, EDTA, Pelargonium, phytoextraction

Procedia PDF Downloads 304
4621 Sky Farming: The Alternative Concept of Green Building Using Vertical Landscape Model in Urban Area as an Effort to Achieve Sustainable Development

Authors: Nadiah Yola Putri, Nesia Putri Sharfina, Traviata Prakarti

Abstract:

This paper is a literature review presented descriptively to review the concept of green building to face the challenge of sustainable development and food in urban areas. In this paper, researchers initiated the concept of green building with sky farming method. Sky farming use vertical landscape system in order to realizing food self-sufficient green city. Sky farming relying on plantings and irrigation system efficiency in the building which is adopted the principles of green building. Planting system is done by applying hydroponic plants with Nutrient Film Technique (NFT) using energy source of solar cell and grey water from the processing of waste treatment plant. The application of sky farming in urban areas can be a recommendation for the design of environmental-friendly construction. In order to keep the land and distance efficiency, this system is a futuristic idea that would be the connector of human civilization in the future.

Keywords: green building, urban area, sky farming, vertical landscape

Procedia PDF Downloads 364
4620 Ground Short Circuit Contributions of a MV Distribution Line Equipped with PWMSC

Authors: Mohamed Zellagui, Heba Ahmed Hassan

Abstract:

This paper proposes a new approach for the calculation of short-circuit parameters in the presence of Pulse Width Modulated based Series Compensator (PWMSC). PWMSC is a newly Flexible Alternating Current Transmission System (FACTS) device that can modulate the impedance of a transmission line through applying a variation to the duty cycle (D) of a train of pulses with fixed frequency. This results in an improvement of the system performance as it provides virtual compensation of distribution line impedance by injecting controllable apparent reactance in series with the distribution line. This controllable reactance can operate in both capacitive and inductive modes and this makes PWMSC highly effective in controlling the power flow and increasing system stability in the system. The purpose of this work is to study the impact of fault resistance (RF) which varies between 0 to 30 Ω on the fault current calculations in case of a ground fault and a fixed fault location. The case study is for a medium voltage (MV) Algerian distribution line which is compensated by PWMSC in the 30 kV Algerian distribution power network. The analysis is based on symmetrical components method which involves the calculations of symmetrical components of currents and voltages, without and with PWMSC in both cases of maximum and minimum duty cycle value for capacitive and inductive modes. The paper presents simulation results which are verified by the theoretical analysis.

Keywords: pulse width modulated series compensator (pwmsc), duty cycle, distribution line, short-circuit calculations, ground fault, symmetrical components method

Procedia PDF Downloads 503
4619 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 245
4618 Effects of Matrix Properties on Surfactant Enhanced Oil Recovery in Fractured Reservoirs

Authors: Xiaoqian Cheng, Jon Kleppe, Ole Torsæter

Abstract:

The properties of rocks have effects on efficiency of surfactant. One objective of this study is to analyze the effects of rock properties (permeability, porosity, initial water saturation) on surfactant spontaneous imbibition at laboratory scale. The other objective is to evaluate existing upscaling methods and establish a modified upscaling method. A core is put in a container that is full of surfactant solution. Assume there is no space between the bottom of the core and the container. The core is modelled as a cuboid matrix with a length of 3.5 cm, a width of 3.5 cm, and a height of 5 cm. The initial matrix, brine and oil properties are set as the properties of Ekofisk Field. The simulation results of matrix permeability show that the oil recovery rate has a strong positive linear relationship with matrix permeability. Higher oil recovery is obtained from the matrix with higher permeability. One existing upscaling method is verified by this model. The study on matrix porosity shows that the relationship between oil recovery rate and matrix porosity is a negative power function. However, the relationship between ultimate oil recovery and matrix porosity is a positive power function. The initial water saturation of matrix has negative linear relationships with ultimate oil recovery and enhanced oil recovery. However, the relationship between oil recovery and initial water saturation is more complicated with the imbibition time because of the transition of dominating force from capillary force to gravity force. Modified upscaling methods are established. The work here could be used as a reference for the surfactant application in fractured reservoirs. And the description of the relationships between properties of matrix and the oil recovery rate and ultimate oil recovery helps to improve upscaling methods.

Keywords: initial water saturation, permeability, porosity, surfactant EOR

Procedia PDF Downloads 164
4617 Economic Evaluation of Varying Scenarios to Fulfill the Regional Electricity Demand in Pakistan

Authors: Muhammad Shahid, Kafait Ullah, Kashif Imran, Arshad Mahmood, Maarten Arentsen

Abstract:

Poor planning and governance in the power sector of Pakistan have generated several issues ranging from gradual reliance on thermal-based expensive energy mix, supply shortages, unrestricted demand, subsidization, inefficiencies at different levels of the value chain and resultantly, the circular debt. This situation in the power sector has also hampered the growth of allied economic sectors. This study uses the Long-range Energy Alternative Planning (LEAP) system for electricity modelling of Pakistan from the period of 2016 to 2040. The study has first time in Pakistan forecasted the electricity demand at the provincial level. At the supply side, five scenarios Business as Usual Scenario (BAUS), Coal Scenario (CS), Gas Scenario (GS), Nuclear Scenario (NS) and Renewable Scenario (RS) have been analyzed based on the techno-economic and environmental parameters. The study has also included environmental externality costs for evaluating the actual costs and benefits of different scenarios. Contrary to the expectations, RS has a lower output than even BAUS. The study has concluded that the generation from RS has five times lesser costs than BAUS, CS, and GS. NS can also be an alternative for the sustainable future of Pakistan. Generation from imported coal is not a good option, however, indigenous coal with clean coal technologies should be promoted. This paper proposes energy planners of the country to devise incentives for the utilization of indigenous energy resources including renewables on priority and then clean coal to reduce the energy crises of Pakistan.

Keywords: economic evaluation, externality cost, penetration of renewable energy, regional electricity supply-demand planning

Procedia PDF Downloads 118
4616 Evalutaion of the Surface Water Quality Using the Water Quality Index and Discriminant Analysis Method

Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni

Abstract:

Water resources present to the public order of the world a very important problem for the protection and management of water quality given the complexity of water quality data sets. In this study, the water quality index (WQI) and irrigation water quality index (IWQI) were calculated in order to evaluate the surface water quality for drinking and irrigation purposes based on nine hydrochemical parameters. In order to separate the variables that are the most responsible for the spatial differentiation, the discriminant analysis (DA) was applied. The results show that the surface water quality for drinking is poor quality and very poor quality based on WQI values, however, the values of IWQI reflect that this water is acceptable for irrigation with a restriction for sensitive plants. Consequently, the discriminant analysis DA method has shown that the following parameters pH, potassium, chloride, sulfate, and bicarbonate are significant discrimination between the different stations with the spatial variation of the surface water quality, therefore, the results obtained in this study provide very useful information to decision-makers

Keywords: surface water quality, drinking and irrigation purposes, water quality index, discriminant analysis

Procedia PDF Downloads 91
4615 Fabrication of Aluminum Nitride Thick Layers by Modified Reactive Plasma Spraying

Authors: Cécile Dufloux, Klaus Böttcher, Heike Oppermann, Jürgen Wollweber

Abstract:

Hexagonal aluminum nitride (AlN) is a promising candidate for several wide band gap semiconductor compound applications such as deep UV light emitting diodes (UVC LED) and fast power transistors (HEMTs). To date, bulk AlN single crystals are still commonly grown from the physical vapor transport (PVT). Single crystalline AlN wafers obtained from this process could offer suitable substrates for a defect-free growth of ultimately active AlGaN layers, however, these wafers still lack from small sizes, limited delivery quantities and high prices so far.Although there is already an increasing interest in the commercial availability of AlN wafers, comparatively cheap Si, SiC or sapphire are still predominantly used as substrate material for the deposition of active AlGaN layers. Nevertheless, due to a lattice mismatch up to 20%, the obtained material shows high defect densities and is, therefore, less suitable for high power devices as described above. Therefore, the use of AlN with specially adapted properties for optical and sensor applications could be promising for mass market products which seem to fulfill fewer requirements. To respond to the demand of suitable AlN target material for the growth of AlGaN layers, we have designed an innovative technology based on reactive plasma spraying. The goal is to produce coarse grained AlN boules with N-terminated columnar structure and high purity. In this process, aluminum is injected into a microwave stimulated nitrogen plasma. AlN, as the product of the reaction between aluminum powder and the plasma activated N2, is deposited onto the target. We used an aluminum filament as the initial material to minimize oxygen contamination during the process. The material was guided through the nitrogen plasma so that the mass turnover was 10g/h. To avoid any impurity contamination by an erosion of the electrodes, an electrode-less discharge was used for the plasma ignition. The pressure was maintained at 600-700 mbar, so the plasma reached a temperature high enough to vaporize the aluminum which subsequently was reacting with the surrounding plasma. The obtained products consist of thick polycrystalline AlN layers with a diameter of 2-3 cm. The crystallinity was determined by X-ray crystallography. The grain structure was systematically investigated by optical and scanning electron microscopy. Furthermore, we performed a Raman spectroscopy to provide evidence of stress in the layers. This paper will discuss the effects of process parameters such as microwave power and deposition geometry (specimen holder, radiation shields, ...) on the topography, crystallinity, and stress distribution of AlN.

Keywords: aluminum nitride, polycrystal, reactive plasma spraying, semiconductor

Procedia PDF Downloads 282
4614 A Study of the Understated Violence within Social Contexts against Adolescent Girls

Authors: Niranjana Soperna, Shivangi Nigam

Abstract:

Violence against women is linked to their disadvantageous position in the society. It is rooted in unequal power relationships between men and women in society and is a global problem which is not limited to a specific group of women in society. An adolescent girl’s life is often accustomed to the likelihood of violence, and acts of violence exert additional power over girls because the stigma of violence often attaches more to a girl than to her doer. The experience of violence is distressing at the individual emotional and physical level. The field of research and programs for adolescent girls has traditionally focused on sexuality, reproductive health, and behavior, neglecting the broader social issues that underpin adolescent girls’ human rights, overall development, health, and well-being. This paper is an endeavor to address the understated or disguised form of violence which the adolescent girls experience within the social contexts. The parameters exposed under this research had been ignored to a large extent when it came to studying the dimension of violence under the social domain. Hence, the researchers attempted to explore this camouflaged form of violence and discovered some specific parameters such as: Diminished Self Worth and Esteem, Verbal Abuse, Menstruation Taboo and Social Rigidity, Negligence of Medical and Health Facilities and Complexion- A Prime Parameter for Judging Beauty. The study was conducted in the districts of Haryana where personal interviews were taken from both urban and rural adolescent girls (aged 13 to 19 years) based on structured interview schedule. The results revealed that the adolescent girls, both in urban as well as rural areas were quite affected with the above mentioned issues. In urban areas, however, due to the higher literacy rate, which resulted in more rational thinking, the magnitude was comparatively smaller, but the difference was still negligible.

Keywords: adolescent girls, education, social contexts, understated violence

Procedia PDF Downloads 319
4613 Unitary Federalism in Nigeria: Implications for Continued Corporate Existence of Nigeria

Authors: Chukwudi S. Osondu

Abstract:

Currently, the two most economically viable states in Nigeria, Lagos State and Rivers, are challenging the National Government over the legality of the latter’s continued collection and disbursement of the Value Added Tax (VAT) in their respective states. These states recently enacted laws empowering their respective states agencies to collect and administer the Value Added Tax (VAT) in their states. Before now, it was the Federal Inland Revenue Service (FIRS) that is mandated by the National Government to collect VAT throughout the Federation, and have same administered by the Federal Revenue Mobilization Allocation and Fiscal Commission, another Federal agency. Most states in the South-South and South-West geopolitical zones and a handful of states in the South-East are supportive of the actions taken by Lagos and Rivers states and are ready to follow suit. This action is seen as the beginning of resistance by the states over the continued strangulating over-centralized systems operating in the country. The Nigeria Federation has over the years operated a unitary system with grave consequences for development and possible implosion of the polity. The Quota System, the Federal Character policy, the control of the natural resources, and the security infrastructure by the National Government have been in place for decades with the attendant misgivings by some sections in the Nigeria Project. This paper evaluates the impact of the over-centralization power on the National Government with reference to fiscal policies, security, resource exploitation, infrastructural development, and national cohesion. It concludes that “unitary federalism” scuttles national development, inflames disunity, and stokes dissatisfaction among states in the federation. The paper concludes by suggesting a federation where power is devolved to the states, with the states as the federating units allowed to, each develop at its own pace.

Keywords: peace, conflict, insecurity, corporate existence, sustainable development, peaceful coexistence

Procedia PDF Downloads 375
4612 Evaluation of the Effectiveness of a Sewage Treatment Plant in Oman: Samail Case Study

Authors: Azza Mohsin Al-Hashami, Reginald Victor

Abstract:

Treatment of wastewater involves physical, chemical, and biological processes to remove the pollutants from wastewater. This study evaluates of the effectiveness of sewage treatment plants (STP) in Samail, Oman. Samail STP has tertiary treatment using conventional activated sludge with surface aeration. The collection of wastewater is through a network with a total length of about 60 km and also by tankers for the areas outside the network. Treated wastewater from this STP is used for the irrigation of vegetation in the STP premises and as a backwash for sand filters. Some treated water is supplied to the Samail municipality, which uses it for the landscaping, road construction, and 'the Million Date Palms' project. In this study, homogenous samples were taken from eight different treatment stages along the treatment continuum for one year, at a frequency of once a month, to evaluate the physical, chemical, and biological parameters. All samples were analyzed using the standard methods for the examination of water and wastewater. The spatial variations in water quality along the continuum are discussed. Despite these variations, the treated wastewater from Samail STP was of good quality, and most of the parameters are within class A category in Oman Standards for wastewater reuse and discharge.

Keywords: wastewater, STP, treatment, processes

Procedia PDF Downloads 186