Search results for: key performance indicator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13527

Search results for: key performance indicator

9807 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material

Authors: Sukhbir Singh

Abstract:

This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.

Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector

Procedia PDF Downloads 120
9806 Study of Two Adsorbent-Refrigerant Pairs for the Application of Solar-Powered Adsorption Refrigeration System

Authors: Mohammed Ali Hadj Ammar, Fethi Bouras, Kamel Sahlaoui

Abstract:

This article presents a detailed study of two working pairs intended for use in solar adsorption refrigeration (SAR) system. The study was based on two indicators: the daily production and coefficient of performance (COP). The thermodynamic cycle of the system is based on the adsorption phenomena at a constant temperature. A computer simulation program has been developed for modeling and performance evaluation for the solar-powered adsorption refrigeration cycle. It was found that maximal cycled mass is obtained by S40/water (0.280kg/kg) followed by CarboTech C40/1/methanol (0.260kg/kg). At a condenser temperature of 30°C, with an adsorbent mass of 38.59 kg, and an integrated collector/bed configuration, the couple CarboTech C40/1/methanol for the ice-maker purpose can reach cycle COP of 0.63 and can produce about 13.6kg ice per day, while the couple S40/water for the air-conditioning can reach cycle COP of 0.66 and 212kg as daily cold-water production. Additionally, adequate indicators are evaluated addressing the economic and environmental associated with each working pair.

Keywords: solar adsorption, refrigeration, activated carbon, silica gel

Procedia PDF Downloads 131
9805 Supply Chain Management Strategies of the Private Residential Construction Sector in South Africa

Authors: R. Khoza, K. K. Govender

Abstract:

The aim of the study was to review and critically evaluate the supply chain management (SCM) strategies and challenges in the private residential construction sector in South Africa. The study was grounded in three theories, namely, theory of constraints, principal-agency theory, and stakeholder theory. A quantitative approach was used to survey 320 private residential construction companies which registered with the National Homebuilders Registration Council (NHBRC) within the Gauteng province. The data from 250 questionnaires returned were analysed using SPSS (Versions 23) and Smart PLS. It became evident that the SCM challenges included lack of trust between the supplier and the organization; lack of adoption of SCM system; lack of a sufficiently skilled SCM workforce; and poor implementation of contract management. The findings also indicate that there is a significant positive relationship between the performance of the private residential construction sector in South Africa and SCM challenges, SCM strategies and SCM processes. A framework is proposed comprising SCM practices and strategies of private residential construction sector in South Africa, which will enable them to enhance performance.

Keywords: management challenges, residential housing, South Africa, supply chain management

Procedia PDF Downloads 82
9804 Design of Sustainable Concrete Pavement by Incorporating RAP Aggregates

Authors: Selvam M., Vadthya Poornachandar, Surender Singh

Abstract:

These Reclaimed Asphalt Pavement (RAP) aggregates are generally dumped in the open area after the demolition of Asphalt Pavements. The utilization of RAP aggregates in cement concrete pavements may provide several socio-economic-environmental benefits and could embrace the circular economy. The cross recycling of RAP aggregates in the concrete pavement could reduce the consumption of virgin aggregates and saves the fertile land. However, the structural, as well as functional properties of RAP-concrete could be significantly lower than the conventional Pavement Quality Control (PQC) pavements. This warrants judicious selection of RAP fraction (coarse and fine aggregates) along with the accurate proportion of the same for PQC highways. Also, the selection of the RAP fraction and its proportion shall not be solely based on the mechanical properties of RAP-concrete specimens but also governed by the structural and functional behavior of the pavement system. In this study, an effort has been made to predict the optimum RAP fraction and its corresponding proportion for cement concrete pavements by considering the low-volume and high-volume roads. Initially, the effect of inclusions of RAP on the fresh and mechanical properties of concrete pavement mixes is mapped through an extensive literature survey. Almost all the studies available to date are considered for this study. Generally, Indian Roads Congress (IRC) methods are the most widely used design method in India for the analysis of concrete pavements, and the same has been considered for this study. Subsequently, fatigue damage analysis is performed to evaluate the required safe thickness of pavement slab for different fractions of RAP (coarse RAP). Consequently, the performance of RAP-concrete is predicted by employing the AASHTO-1993 model for the following distresses conditions: faulting, cracking, and smoothness. The performance prediction and total cost analysis of RAP aggregates depict that the optimum proportions of coarse RAP aggregates in the PQC mix are 35% and 50% for high volume and low volume roads, respectively.

Keywords: concrete pavement, RAP aggregate, performance prediction, pavement design

Procedia PDF Downloads 158
9803 Economic Cost of Malaria: A Threat to Household Income in Nigeria

Authors: Nsikan Affiah, Kayode Osungbade, Williams Uzoma

Abstract:

Malaria remains one of the major killers of humans worldwide, threatening the lives of more than one-third of the world’s population. Some people refers it to; a disease of poverty because it contributes towards national poverty through its impact on foreign direct investment, tourism, labour productivity, and trade. At the micro level, it may cause poverty through spending on health care, income losses, and premature deaths. Unfortunately, malaria is a disease that affects both low-income household and its high-income counterpart, but low-income households are still at greater risk because significant part of the available monthly income is dedicated to various preventive and treatment measures. The objective of this study is to estimate direct and indirect cost of malaria treatment in households in a section of South-South Region (Akwa Ibom State) of Nigeria. A cross-sectional study of Six Hundred and Forty (640) heads of households or any adult representative of households in three local government areas of Akwa Ibom State, Nigeria from May 1-31, 2015 were ascertained through interviewer-administered questionnaire adapted from Nigerian Malaria Indicator Survey Report. The clustering technique was used to select 640 households with the help of Primary Health Care (PHC) house numbering system. Using exchange rate of 197 Naira/USD, result shows that direct cost of malaria treatment was 8,894.44 USD while the indirect cost of malaria treatment was 11,012.81 USD. Total cost of treatment made up of 44.7% direct cost and 55.3% indirect cost, with average direct cost of malaria treatment per household estimated at 20.6 USD and the average indirect cost of treatment per household estimated at 25.1 USD. Average total cost for each episode (888) of malaria was estimated at 22.4 USD. While at household level, the average total cost was estimated at 45.5 USD. From the average total cost, low-income households would spend 36% of monthly household income on treating malaria and the impact could be said to be catastrophic, compared to high-income households where only 1.2% of monthly household income is spent on malaria treatment. It could be concluded that the cost of malaria treatment is well beyond the means of households and given the reality of repeated bouts of malaria and its contribution to the impoverishment of households, there is a need for urgent action.

Keywords: direct cost, indirect cost, low income households, malaria

Procedia PDF Downloads 258
9802 A Suggestive Framework for Measuring the Effectiveness of Social Media: An Irish Tourism Study

Authors: Colm Barcoe, Garvan Whelan

Abstract:

Over the past five years, visitations of American holidaymakers to Ireland have grown exponentially owing to the online strategies of Tourism Ireland, a Destination Marketer (DMO) with a meagre budget which is extended by their understanding of best practices to maximise their monetary allowance. This suggested framework incorporates a range of Key Performance Indicators (KPI’s) such as financial, marketing, and operational that offer a scale of measurement from which the Irish DMO can monitor the success of each promotional campaign when targeting the US and Canada. These are presented not as final solutions but rather as suggestions based on empirical evidence obtained from both primary and secondary sources. This research combines the wisdom extracted through qualitative methodologies with the objective of understanding the processes that drive both emergent and agile strategies. The Study extends the work relative to performance and examines the role of social media in the context of promoting Ireland to North America. There are two main themes that are identified and analysed in this investigation, these are the approach of the DMO when advocating Ireland as a brand and the benefits of digital platforms set against a proposed scale of KPIs, such as destination marketing, brand positioning, and identity development. The key narrative of this analysis is to focus on the power of social media when capitalising upon marketing opportunities, operating on a relatively small budget. This will always be a relevant theme of discussion due to the responsibility of an organisation like Tourism Ireland operating under the restraints imposed by government funding. The overall conclusions of this research may help inform those concerned with the implementing of social media strategies develop clearer models of measurement when promoting a destination to North America. The suggestions of this study will benefit small and medium enterprises particularly.

Keywords: destination marketing, framework, measure, performance

Procedia PDF Downloads 154
9801 Colonialism, Health and Women’s Print Culture in South Asia: A Study of Urdu Journals in Colonial India 1900-1930

Authors: Khanday Pervaiz Ahmad

Abstract:

It was in 19th century when the Indian educated class started to reform their socio-religious set up as an imperative to respond to the challenges put forward by the colonial empire. The colonial discourse on India from the very beginning was gendered, as the colonized society was feminized and its ‘effeminate’ character, as opposed to ‘colonial masculinity’ was held to be a justification for its loss of independence. The ‘women health figure’ is prominently in these gender discourses. The women’s health received a much place in the colonial discourse. Lack of health consciousness, illiteracy, and belief in myths, rituals and superstitions were deemed the main factors taken as an indicator of miserable condition of Indian women’s health. As the low position of women caused shame to the natives, reforming the condition of women, its health occupied a major place in their intellectual as well as activist engagements. Magazines (journals) for women began to appear in various Indian languages in the mid to late 19th century with Bengal leading the front. These sources (Magazines) like Harm, Tehzib un Niswan, Saheli, Khatoon etc. are essential for the study of the emergence of an ideology of respectable domesticity in Indian Muslim upper middle class. Similarly for the study of development of Women’s health consciousness, women’s magazines are very essential. These earliest women Urdu magazines were first started by men, and then followed by the women’s own magazines. Various health issues, like pregnancy, child-rearing, menstruation, midwives training, Pardah, and health etc. were discussed at a time when it was impossible to discuss them in public sphere. These women magazines were brave pioneers, expanding the frontiers of women’s roles, and consciousness at a time when those frontiers were severely limited. This paper will try to focus on how women responded to the question of colonial discourse about their bodies. How health consciousness developed among Indian Muslim women and in what way it contributed in the development of feminist consciousness in South Asian Muslim Women community.

Keywords: Ashraf class, khatoon, haram women, feminism

Procedia PDF Downloads 274
9800 Investigating the Impact of the Laundry and Sterilization Process on the Performance of Reusable Surgical Gowns

Authors: N. Khomarloo, F. Mousazadegan, M. Latifi, N. Hemmatinejad

Abstract:

Recently, the utilization of reusable surgical gowns in order to decrease costs, environmental protection and enhance surgeon’s comfort is considered. One of the concerns in applying this kind of medical protective clothing is reduction of their resistance to bacterial penetration especially in wet state, after repeated laundering and sterilizing process. The purpose of this study is to investigate the effect of the laundering and sterilizing process on the reusable surgical gown’s resistance against bacterial wet penetration. To this end, penetration of Staphylococcus aureus bacteria in wet state after 70 washing and sterilizing cycles was evaluated on the two single-layer and three-layer reusable gowns. The outcomes reveal that up to 20 laundering and sterilizing cycles, protective property of samples improves due to fabric shrinkage, after that because of the fabric’s construction opening, the bacterial penetration increase. However, the three-layer gown presents higher protective performance comparing to the single-layer one.

Keywords: laundry, porosity, reusable surgical gown, sterilization, wet bacterial penetration

Procedia PDF Downloads 277
9799 Microscopic Insights into Water Transport Through a Biomimetic Artificial Water Nano-Channels-Polyamide Membrane

Authors: Aziz Ghoufi, Ayman Kanaan

Abstract:

Clean water is ubiquitous from drinking to agriculture and from energy supply to industrial manufacturing. Since the conventional water sources are becoming increasingly rare, the development of new technologies for water supply is crucial to address the world’s clean water needs in the 21st century. Desalination is in many regards the most promising approach to long-term water supply since it potentially delivers an unlimited source of fresh water. Seawater desalination using reverse osmosis (RO) membranes has become over the past decade a standard approach to produce fresh water. While this technology has proven to be efficient, it remains however relatively costly in terms of energy input due to the use of high-pressure pumps resulting of the low water permeation through polymeric RO membranes. Recently, water channels incorporated in lipidic and polymeric membranes were demonstrated to provide a selective water translocation that enables to break permeability- selectivity trade-off. Biomimetic Artificial Water channels (AWCs) are becoming highly attractive systems to achieve a selective transport of water. The first developed AWCs formed from imidazole quartet (I-quartet) embedded in lipidic membranes exhibited an ion selectivity higher than AQPs however associated with a lower water flow performance. Recently it has been conducted pioneer work in this field with the fabrication of the first AWC@Polyamide(PA) composite membrane with outstanding desalination performance. However, the microscopic desalination mechanism in play is still unknown and its understanding represents the shortest way for a long-term conception and design of AWC@PA composite membranes with better performance. In this work we gain an unprecedented fundamental understanding and rationalization of the nanostructuration of the AWC@PA membranes and the microscopic mechanism at the origin of their water transport performance from advanced molecular simulations. Using osmotic molecular dynamics simulations and a non-equilibrium method with water slab control, we demonstrate an increase in porosity near the AWC@PA interfaces, enhancing water transport without compromising the rejection rate. Indeed, the water transport pathways exhibit a single-file structure connected by hydrogen bonds. Finally, by comparing AWC@PA and PA membranes, we show that the difference in water flux aligns well with experimental results, validating the model used.

Keywords: water desalination, biomimetic membranes, molecular simulation, nanochannels

Procedia PDF Downloads 19
9798 Eli-Twist Spun Yarn: An Alternative to Conventional Sewing Thread

Authors: Sujit Kumar Sinha, Madan Lal Regar

Abstract:

Sewing thread plays an important role in the transformation of a two-dimensional fabric into a three-dimensional garment. The interaction of the sewing thread with the fabric at the seam not only influences the appearance of a garment but also its performance. Careful selection of sewing thread and associated parameters can only help in improvement. Over the years, ring spinning has been dominating the yarn market. In the pursuit of improvement to challenge its dominance alternative technology has also been developed. But no real challenge has been posed by the any of the developed spinning systems. Eli-Twist spinning system can be a new method of yarn manufacture to provide a product with improved mechanical and physical properties with respect to the conventional ring spun yarn. The system, patented by Suessen has gained considerable attention in the recent times. The process of produces a two-ply compact yarn with improved fiber utilization. It produces a novel structure combining all advantages of condensing and doubling. In the present study, sewing threads of three different counts each from cotton, polyester and polyester/cotton (50/50) blend were produced on a ring and Eli-Twist systems. A twist multiplier of 4.2 was used to produce all the yarns. A comparison of hairiness, tensile strength and coefficient of friction with conventional ring yarn was made. Eli-Twist yarn has shown better frictional characteristics, better tensile strength and less hairiness. The performance of the Eli-Twist sewing thread has also been found to be better than the conventional 2-ply sewing thread. The performance was estimated through seam strength, seam elongation and seam efficiency of sewn fabric. Eli-Twist sewing thread has shown less friction, less hairiness, and higher tensile strength. Eli-Twist sewing thread resulted in better seam characteristics in comparison to conventional 2-ply sewing thread.

Keywords: ring spun yarn, Eli-Twist yarn, sewing thread, seam strength, seam elongation, seam efficiency

Procedia PDF Downloads 197
9797 Exploring the Biocompatibility and Performance of Metals and Ceramics as Biomaterials, A Comprehensive Study for Advanced Medical Applications

Authors: Ala Abobakr Abdulhafidh Al-Dubai

Abstract:

Biomaterials, specifically metals and ceramics, are indispensable components in the realm of medical science, shaping the landscape of implantology and prosthetics. This study delves into the intricate interplay between these materials and biological systems, aiming to scrutinize their suitability, performance, and biocompatibility. Employing a multi-faceted approach, a range of methodologies were meticulously employed to comprehensively characterize these biomaterials. Advanced material characterization techniques were paramount in this research, with scanning electron microscopy providing intricate insights into surface morphology, and X-ray diffraction unraveling the crystalline structures. These analyses were complemented by in vitro assessments, which gauged the biological response of cells to metals and ceramics, shedding light on their potential applications within the human body. A key facet of our investigation involved a comparative study, evaluating the corrosion resistance and osseointegration potential of both metals and ceramics. Through a series of experiments, we sought to understand how these biomaterials interacted with physiological environments, paving the way for informed decisions in medical applications

Keywords: metals, ceramics, biomaterials, biocompatibility, osseointegration

Procedia PDF Downloads 69
9796 The Closed Cavity Façade (CCF): Optimization of CCF for Enhancing Energy Efficiency and Indoor Environmental Quality in Office Buildings

Authors: Michalis Michael, Mauro Overend

Abstract:

Buildings, in which we spend 87-90% of our time, act as a shelter protecting us from environmental conditions and weather phenomena. The building's overall performance is significantly dependent on the envelope’s glazing part, which is particularly critical as it is the most vulnerable part to heat gain and heat loss. However, conventional glazing technologies have relatively low-performance thermo-optical characteristics. In this regard, during winter, the heat losses due to the glazing part of a building envelope are significantly increased as well as the heat gains during the summer period. In this study, the contribution of an innovative glazing technology, namely Closed Cavity Façade (CCF) in improving energy efficiency and IEQ in office buildings is examined, aiming to optimize various design configurations of CCF. Using Energy Plus and IDA ICE packages, the performance of several CCF configurations and geometries for various climate types were investigated, aiming to identify the optimum solution. The model used for the simulations and optimization process was MATELab, a recently constructed outdoor test facility at the University of Cambridge (UK). The model was previously experimentally calibrated. The study revealed that the use of CCF technology instead of conventional double or triple glazing leads to important benefits. Particularly, the replacement of the traditional glazing units, used as the baseline, with the optimal configuration of CCF led to a decrease in energy consumption in the range of 18-37% (depending on the location). This mainly occurs due to integrating shading devices in the cavity and applying proper glass coatings and control strategies, which lead to improvement of thermal transmittance and g-value of the glazing. Since the solar gain through the façade is the main contributor to energy consumption during cooling periods, it was observed that a higher energy improvement is achieved in cooling-dominated locations. Furthermore, it was shown that a suitable selection of the constituents of a closed cavity façade, such as the colour and type of shading devices and the type of coatings, leads to an additional improvement of its thermal performance, avoiding overheating phenomena and consequently ensuring temperatures in the glass cavity below the critical value, and reducing the radiant discomfort providing extra benefits in terms of Indoor Environmental Quality (IEQ).

Keywords: building energy efficiency, closed cavity façade, optimization, occupants comfort

Procedia PDF Downloads 65
9795 Exergy Analysis of a Vapor Absorption Refrigeration System Using Carbon Dioxide as Refrigerant

Authors: Samsher Gautam, Apoorva Roy, Bhuvan Aggarwal

Abstract:

Vapor absorption refrigeration systems can replace vapor compression systems in many applications as they can operate on a low-grade heat source and are environment-friendly. Widely used refrigerants such as CFCs and HFCs cause significant global warming. Natural refrigerants can be an alternative to them, among which carbon dioxide is promising for use in automotive air conditioning systems. Its inherent safety, ability to withstand high pressure and high heat transfer coefficient coupled with easy availability make it a likely choice for refrigerant. Various properties of the ionic liquid [bmim][PF₆], such as non-toxicity, stability over a wide temperature range and ability to dissolve gases like carbon dioxide, make it a suitable absorbent for a vapor absorption refrigeration system. In this paper, an absorption chiller consisting of a generator, condenser, evaporator and absorber was studied at an operating temperature of 70⁰C. A thermodynamic model was set up using the Peng-Robinson equations of state to predict the behavior of the refrigerant and absorbent pair at different points in the system. A MATLAB code was used to obtain the values of enthalpy and entropy at selected points in the system. The exergy destruction in each component and exergetic coefficient of performance (ECOP) of the system were calculated by performing an exergy analysis based on the second law of thermodynamics. Graphs were plotted between varying operating conditions and the ECOP obtained in each case. The effect of every component on the ECOP was examined. The exergetic coefficient of performance was found to be lesser than the coefficient of performance based on the first law of thermodynamics.

Keywords: [bmim][PF₆] as absorbent, carbon dioxide as refrigerant, exergy analysis, Peng-Robinson equations of state, vapor absorption refrigeration

Procedia PDF Downloads 288
9794 Temperature Control and Thermal Management of Cylindrical Lithium Batteries Using Phase Change Materials (PCMs)

Authors: S. M. Sadrameli, Y. Azizi

Abstract:

Lithium-ion batteries (LIBs) have shown to be one of the most reliable energy storage systems for electric cars in the recent years. Ambient temperature has a significant impact on the performance, lifetime, safety and cost of such batteries. Increasing the temperature degrade the lithium batteries more quickly while working at low-temperature environment results reducing the power and energy capability of the system. A thermal management system has been designed and setup in laboratory scale for controlling the temperature at optimum conditions using PEG-1000 with the melting point in the range of 33-40 oC as a phase change material. Aluminum plates have been installed in the PCM to increase the thermal conductivity and increasing the heat transfer rate. Experimental tests have been run at different discharge rates and ambient temperatures to investigate the effects of temperature on the efficiency of the batteries. The comparison has been made between the system of 6 batteries with and without PCM and the results show that PCM with aluminum plates decrease the surface temperature of the batteries that would result better performance and longer lifetime of the batteries.

Keywords: lithium-ion batteries, phase change materials, thermal management, temperature control

Procedia PDF Downloads 341
9793 Enhancement of Visual Comfort Using Parametric Double Skin Façade

Authors: Ahmed A. Khamis, Sherif A. Ibrahim, Mahmoud El Khatieb, Mohamed A. Barakat

Abstract:

Parametric design is an icon of the modern architectural that facilitate taking complex design decisions counting on altering various design parameters. Double skin facades are one of the parametric applications for using parametric designs. This paper opts to enhance different daylight parameters of a selected case study office building in Cairo using parametric double skin facade. First, the design and optimization process executed utilizing Grasshopper parametric design software which is a plugin in rhino. The daylighting performance of the base case building model was compared with the one used the double façade showing an enhancement in daylighting performance indicators like glare and task illuminance in the modified model, execution drawings are made for the optimized design to be executed through Revit, followed by computerized digital fabrication stages of the designed model with various scales to reach the final design decisions using Simplify 3D for mock-up digital fabrication

Keywords: parametric design, double skin facades, digital fabrication, grasshopper, simplify 3D

Procedia PDF Downloads 119
9792 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion

Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen

Abstract:

In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.

Keywords: adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm

Procedia PDF Downloads 445
9791 Numerical Simulation of Ultraviolet Disinfection in a Water Reactor

Authors: H. Shokouhmand, H. Sobhani, B. Sajadi, M. Degheh

Abstract:

In recent years, experimental and numerical investigation of water UV reactors has increased significantly. The main drawback of experimental methods is confined and expensive survey of UV reactors features. In this study, a CFD model utilizing the eulerian-lagrangian framework is applied to analysis the disinfection performance of a closed conduit reactor which contains four UV lamps perpendicular to the flow. A discrete ordinates (DO) model was employed to evaluate the UV irradiance field. To investigate the importance of each of lamps on the inactivation performance, in addition to the reference model (with 4 bright lamps), several models with one or two bright lamps in various arrangements were considered. All results were reported in three inactivation kinetics. The results showed that the log inactivation of the two central bright lamps model was between 88-99 percent, close to the reference model results. Also, whatever the lamps are closer to the main flow region, they have more effect on microbial inactivation. The effect of some operational parameters such as water flow rate, inlet water temperature, and lamps power were also studied.

Keywords: Eulerian-Lagrangian framework, inactivation kinetics, log inactivation, water UV reactor

Procedia PDF Downloads 251
9790 Bioinformatics High Performance Computation and Big Data

Authors: Javed Mohammed

Abstract:

Right now, bio-medical infrastructure lags well behind the curve. Our healthcare system is dispersed and disjointed; medical records are a bit of a mess; and we do not yet have the capacity to store and process the crazy amounts of data coming our way from widespread whole-genome sequencing. And then there are privacy issues. Despite these infrastructure challenges, some researchers are plunging into bio medical Big Data now, in hopes of extracting new and actionable knowledge. They are doing delving into molecular-level data to discover bio markers that help classify patients based on their response to existing treatments; and pushing their results out to physicians in novel and creative ways. Computer scientists and bio medical researchers are able to transform data into models and simulations that will enable scientists for the first time to gain a profound under-standing of the deepest biological functions. Solving biological problems may require High-Performance Computing HPC due either to the massive parallel computation required to solve a particular problem or to algorithmic complexity that may range from difficult to intractable. Many problems involve seemingly well-behaved polynomial time algorithms (such as all-to-all comparisons) but have massive computational requirements due to the large data sets that must be analyzed. High-throughput techniques for DNA sequencing and analysis of gene expression have led to exponential growth in the amount of publicly available genomic data. With the increased availability of genomic data traditional database approaches are no longer sufficient for rapidly performing life science queries involving the fusion of data types. Computing systems are now so powerful it is possible for researchers to consider modeling the folding of a protein or even the simulation of an entire human body. This research paper emphasizes the computational biology's growing need for high-performance computing and Big Data. It illustrates this article’s indispensability in meeting the scientific and engineering challenges of the twenty-first century, and how Protein Folding (the structure and function of proteins) and Phylogeny Reconstruction (evolutionary history of a group of genes) can use HPC that provides sufficient capability for evaluating or solving more limited but meaningful instances. This article also indicates solutions to optimization problems, and benefits Big Data and Computational Biology. The article illustrates the Current State-of-the-Art and Future-Generation Biology of HPC Computing with Big Data.

Keywords: high performance, big data, parallel computation, molecular data, computational biology

Procedia PDF Downloads 364
9789 Inhibition of Escherichia coli and Salmonella spp. By Traditional Phytomedicines That Are Commonly Used to Treat Gastroenteritis in Zimbabwe

Authors: Constance Chivengwa, Tinashe Mandimutsira, Jephris Gere, Charles Magogo, Irene Chikanza, Jerneja Vidmar, Walter Chingwaru

Abstract:

The use of traditional methods in the management of diarrhoea has remained a common practice among the indigenous African tribes of Southern Africa. Despite the widespread use of traditional medicines in Zimbabwe, very little research validating the activities of phytomedicines against diarrhoea, as claimed by the Shona people of Zimbabwe, has been reported. This study sought to determine the efficacies of the plants that are frequently used to treat stomach complaints, namely Dicoma anomala, Cassia abbreviata, Lannea edulis and Peltophorum africanum against Escherichia coli (an indicator of faecal contamination of water, and whose strains such as EHEC (O157), ETEC and EPEC, are responsible for a number of outbreaks of diarrhoea) and Salmonella spp. Ethanol and aqueous extracts from these plants were obtained, evaporated, dried and stored. The dried extracts were reconstituted and diluted 10-fold in nutrient broth (from 100 to 0.1 microgram/mL) and tested for inhibition against the bacteria. L. edulis exhibited the best antimicrobial effect (minimum inhibition concentration = 10 microgram/mL for both extracts and microorganisms). Runners up to L. edulis were C. abbreviata (20 microgram/mL for both microorganisms) and P. africanum (20 and 30 microgram/mL respectively). Interestingly, D. anomala, which is widely considered panacea in African medicinal practices, showed low antimicrobial activity (60 and 100 microgram/mL respectively). The high antimicrobial activity of L. edulis can be explained by its content of flavonoids, tannins, alkylphenols (cardonol 7 and cardonol 13) and dihydroalkylhexenones. The antimicrobial activities of C. abbreviata can be linked to its content of anthraquinones and triterpenoids. P. africanum is known to contain benzenoids, flavanols, flavonols, terpenes, xanthone and coumarins. This study therefore demonstrated that, among the plants that are used against diarrhoea in African traditional medicine, L. edulis is a clear winner against E. coli and Salmonella spp. Activity guided extraction is encouraged to establish the complement of compounds that have antimicrobial activities.

Keywords: diarrhoea, Escherichia coli, Salmonella, phytomedicine, MIC, Zimbabwe

Procedia PDF Downloads 375
9788 Design and Analysis of Universal Multifunctional Leaf Spring Main Landing Gear for Light Aircraft

Authors: Meiyuan Zheng, Jingwu He, Yuexi Xiong

Abstract:

A universal multi-function leaf spring main landing gear was designed for light aircraft. The main landing gear combined with the leaf spring, skidding, and wheels enables it to have a good takeoff and landing performance on various grounds such as the hard, snow, grass and sand grounds. Firstly, the characteristics of different landing sites were studied in this paper in order to analyze the load of the main landing gear on different types of grounds. Based on this analysis, the structural design optimization along with the strength and stiffness characteristics of the main landing gear has been done, which enables it to have good takeoff and landing performance on different types of grounds given the relevant regulations and standards. Additionally, the impact of the skidding on the aircraft during the flight was also taken into consideration. Finally, a universal multi-function leaf spring type of the main landing gear suitable for light aircraft has been developed.

Keywords: landing gear, multi-function, leaf spring, skidding

Procedia PDF Downloads 268
9787 Wind Interference Effects on Various Plan Shape Buildings Under Wind Load

Authors: Ritu Raj, Hrishikesh Dubey

Abstract:

This paper presents the results of the experimental investigations carried out on two intricate plan shaped buildings to evaluate aerodynamic performance of the building. The purpose is to study the associated environment arising due to wind forces in isolated and interference conditions on a model of scale 1:300 with a prototype having 180m height. Experimental tests were carried out at the boundary layer wind tunnel considering isolated conditions with 0° to 180° isolated wind directions and four interference conditions of twin building (separately for both the models). The research has been undertaken in Terrain Category-II, which is the most widely available terrain in India. A comparative assessment of the two models is performed out in an attempt to comprehend the various consequences of diverse conditions that may emerge in real-life situations, as well as the discrepancies amongst them. Experimental results of wind pressure coefficients of Model-1 and Model-2 shows good agreement with various wind incidence conditions with minute difference in the magnitudes of mean Cp. On the basis of wind tunnel studies, it is distinguished that the performance of Model-2 is better than Model-1in both isolated as well as interference conditions for all wind incidences and orientations respectively.

Keywords: interference factor, tall buildings, wind direction, mean pressure-coefficients

Procedia PDF Downloads 128
9786 Determination of Temperature Dependent Characteristic Material Properties of Commercial Thermoelectric Modules

Authors: Ahmet Koyuncu, Abdullah Berkan Erdogmus, Orkun Dogu, Sinan Uygur

Abstract:

Thermoelectric modules are integrated to electronic components to keep their temperature in specific values in electronic cooling applications. They can be used in different ambient temperatures. The cold side temperatures of thermoelectric modules depend on their hot side temperatures, operation currents, and heat loads. Performance curves of thermoelectric modules are given at most two different hot surface temperatures in product catalogs. Characteristic properties are required to select appropriate thermoelectric modules in thermal design phase of projects. Generally, manufacturers do not provide characteristic material property values of thermoelectric modules to customers for confidentiality. Common commercial software applied like ANSYS ICEPAK, FloEFD, etc., include thermoelectric modules in their libraries. Therefore, they can be easily used to predict the effect of thermoelectric usage in thermal design. Some software requires only the performance values in different temperatures. However, others like ICEPAK require three temperature-dependent equations for material properties (Seebeck coefficient (α), electrical resistivity (β), and thermal conductivity (γ)). Since the number and the variety of thermoelectric modules are limited in this software, definitions of characteristic material properties of thermoelectric modules could be required. In this manuscript, the method of derivation of characteristic material properties from the datasheet of thermoelectric modules is presented. Material characteristics were estimated from two different performance curves by experimentally and numerically in this study. Numerical calculations are accomplished in ICEPAK by using a thermoelectric module exists in the ICEPAK library. A new experimental setup was established to perform experimental study. Because of similar results of numerical and experimental studies, it can be said that proposed equations are approved. This approximation can be suggested for the analysis includes different type or brand of TEC modules.

Keywords: electrical resistivity, material characteristics, thermal conductivity, thermoelectric coolers, seebeck coefficient

Procedia PDF Downloads 179
9785 Practical Modelling of RC Structural Walls under Monotonic and Cyclic Loading

Authors: Reza E. Sedgh, Rajesh P. Dhakal

Abstract:

Shear walls have been used extensively as the main lateral force resisting systems in multi-storey buildings. The recent development in performance based design urges practicing engineers to conduct nonlinear static or dynamic analysis to evaluate seismic performance of multi-storey shear wall buildings by employing distinct analytical models suggested in the literature. For practical purpose, application of macroscopic models to simulate the global and local nonlinear behavior of structural walls outweighs the microscopic models. The skill level, computational time and limited access to RC specialized finite element packages prevents the general application of this method in performance based design or assessment of multi-storey shear wall buildings in design offices. Hence, this paper organized to verify capability of nonlinear shell element in commercially available package (Sap2000) in simulating results of some specimens under monotonic and cyclic loads with very oversimplified available cyclic material laws in the analytical tool. The selection of constitutive models, the determination of related parameters of the constituent material and appropriate nonlinear shear model are presented in detail. Adoption of proposed simple model demonstrated that the predicted results follow the overall trend of experimental force-displacement curve. Although, prediction of ultimate strength and the overall shape of hysteresis model agreed to some extent with experiment, the ultimate displacement(significant strength degradation point) prediction remains challenging in some cases.

Keywords: analytical model, nonlinear shell element, structural wall, shear behavior

Procedia PDF Downloads 404
9784 A Technical Solution for Micro Mixture with Micro Fluidic Oscillator in Chemistry

Authors: Brahim Dennai, Abdelhak Bentaleb, Rachid Khelfaoui, Asma Abdenbi

Abstract:

The diffusion flux given by the Fick’s law characterizethe mixing rate. A passive mixing strategy is proposed to enhance mixing of two fluids through perturbed jet low. A numerical study of passive mixers has been presented. This paper is focused on the modeling of a micro-injection systems composed of passive amplifier without mechanical part. The micro-system modeling is based on geometrical oscillators form. An asymmetric micro-oscillator design based on a monostable fluidic amplifier is proposed. The characteristic size of the channels is generally about a few hundred of microns. The numerical results indicate that the mixing performance can be as high as 99 % within a typical mixing chamber of 0.20 mm diameter inlet and 2.0 mm distance of nozzle - spliter. In addition, the results confirm that self-rotation in the circular mixer significantly enhances the mixing performance. The novel micro mixing method presented in this study provides a simple solution to mixing problems in microsystem for application in chemistry.

Keywords: micro oscillator, modeling, micro mixture, diffusion, size effect, chemical equation

Procedia PDF Downloads 430
9783 Learning Management System Technologies for Teaching Computer Science at a Distance Education Institution

Authors: Leila Goosen, Dalize van Heerden

Abstract:

The performance outcomes of first year Computer Science and Information Technology students across the world are of great concern, whether they are being taught in a face-to-face environment or via distance education. In the face-to-face environment, it is, however, somewhat easier to teach and support students than it is in a distance education environment. The face-to-face academic can more easily gauge the level of understanding and participation of students and implement interventions to address issues, which may arise. With the inroads that Web 2.0 and Web 3.0 technologies are making, the world of online teaching and learning are rapidly expanding, bringing about technologies, which allows for similar interactions between online academics and their students as available to their face-to-face counter parts. At the University of South Africa (UNISA), the Learning Management System (LMS) is called myUNISA and it is deployed on a SAKAI platform. In this paper, we will take a look at some of the myUNISA technologies implemented in the teaching of a first year programming course, how they are implemented and, in some cases, we will indicate how this affects the performance outcomes of students.

Keywords: computer science, Distance Education Technologies, Learning Management System, face-to-face environment

Procedia PDF Downloads 495
9782 Deep Reinforcement Learning and Generative Adversarial Networks Approach to Thwart Intrusions and Adversarial Attacks

Authors: Fabrice Setephin Atedjio, Jean-Pierre Lienou, Frederica F. Nelson, Sachin S. Shetty, Charles A. Kamhoua

Abstract:

Malicious users exploit vulnerabilities in computer systems, significantly disrupting their performance and revealing the inadequacies of existing protective solutions. Even machine learning-based approaches, designed to ensure reliability, can be compromised by adversarial attacks that undermine their robustness. This paper addresses two critical aspects of enhancing model reliability. First, we focus on improving model performance and robustness against adversarial threats. To achieve this, we propose a strategy by harnessing deep reinforcement learning. Second, we introduce an approach leveraging generative adversarial networks to counter adversarial attacks effectively. Our results demonstrate substantial improvements over previous works in the literature, with classifiers exhibiting enhanced accuracy in classification tasks, even in the presence of adversarial perturbations. These findings underscore the efficacy of the proposed model in mitigating intrusions and adversarial attacks within the machine-learning landscape.

Keywords: machine learning, reliability, adversarial attacks, deep-reinforcement learning, robustness

Procedia PDF Downloads 10
9781 The Effects of Training Load on Some Selected Fitness Variables in the Case of U-17 Female Volleyball Project Players, Central Ethiopia

Authors: Behailu Shigute Habtemariam

Abstract:

The aim of the study was to examine the effects of training load on some selected fitness performance variables of volleyball players in the case of U-17 female volleyball project players in the central Ethiopia region. Methods: In this study, quasi-experimental design was used. For the purpose of this study, twenty-three volleyball players were used as a subject from the two projects. The data collected through fitness performance assessment were analyzed and interpreted into a meaningful idea using manually as well as with computer in order to compare physical fitness variables and changes observed among participants. Those are taking part in the effects of training load on some selected physical fitness variables. The collected data were analyzed by means of the Statistical Package for Social Science version (SPSS V 20). The independent t-test was used to show the mean differences between the groups, and the paired T-test was used to compare the mean differences of the pre and post-training within each group. The level of significance will be set at Alfa 0.05. Results: The results are displayed using tables and figures. A significant difference was found in the mean differences of pre-test values (19.7 cm) and post-test values (37.5 cm) of the Durame city project on the flexibility test (MD =17.8 cm, P = 0.00). On the other hand, there was a significant difference in the mean difference of pre-test values of (18 cm) and post-test values (26.3 cm) of the Hosana city project on the flexibility test ( MD = 8.3 cm, P = 0.00). Conclusion: According to the results of the present studies, there were significant improvements from pre to post-test at Durame City and Hosana City projects on agility, flexibility, power, and speed fitness tests. On the other hand, a significant difference was not found before beginning the exercise between the two projects; however, a significant difference was found after 12 weeks of training.

Keywords: overload, performance, training, volleyball

Procedia PDF Downloads 97
9780 Computational Assistance of the Research, Using Dynamic Vector Logistics of Processes for Critical Infrastructure Subjects Continuity

Authors: Urbánek Jiří J., Krahulec Josef, Urbánek Jiří F., Johanidesová Jitka

Abstract:

These Computational assistance for the research and modelling of critical infrastructure subjects continuity deal with this paper. It enables us the using of prevailing operation system MS Office (SmartArt...) for mathematical models, using DYVELOP (Dynamic Vector Logistics of Processes) method. It serves for crisis situations investigation and modelling within the organizations of critical infrastructure. In the first part of the paper, it will be introduced entities, operators and actors of DYVELOP method. It uses just three operators of Boolean algebra and four types of the entities: the Environments, the Process Systems, the Cases and the Controlling. The Process Systems (PrS) have five “brothers”: Management PrS, Transformation PrS, Logistic PrS, Event PrS and Operation PrS. The Cases have three “sisters”: Process Cell Case, Use Case and Activity Case. They all need for the controlling of their functions special Ctrl actors, except ENV – it can do without Ctrl. Model´s maps are named the Blazons and they are able mathematically - graphically express the relationships among entities, actors and processes. In the second part of this paper, the rich blazons of DYVELOP method will be used for the discovering and modelling of the cycling cases and their phases. The blazons need live PowerPoint presentation for better comprehension of this paper mission. The crisis management of energetic crisis infrastructure organization is obliged to use the cycles for successful coping of crisis situations. Several times cycling of these cases is a necessary condition for the encompassment of the both the emergency event and the mitigation of organization´s damages. Uninterrupted and continuous cycling process bring for crisis management fruitfulness and it is a good indicator and controlling actor of organizational continuity and its sustainable development advanced possibilities. The research reliable rules are derived for the safety and reliable continuity of energetic critical infrastructure organization in the crisis situation.

Keywords: blazons, computational assistance, DYVELOP method, critical infrastructure

Procedia PDF Downloads 382
9779 Seismic Behavior of Concrete Filled Steel Tube Reinforced Concrete Column

Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian

Abstract:

Pseudo-dynamic test (PDT) method is an advanced seismic test method that combines loading technology with computer technology. Large-scale models or full scale seismic tests can be carried out by using this method. CFST-RC columns are used in civil engineering structures because of their better seismic performance. A CFST-RC column is composed of four CFST limbs which are connected with RC web in longitudinal direction and with steel tube in transverse direction. For this study, a CFST-RC pier is tested under Four different earthquake time histories having scaled PGA of 0.05g. From the experiment acceleration, velocity, displacement and load time histories are observed. The dynamic magnification factors for acceleration due to Elcentro, Chi-Chi, Imperial Valley and Kobe ground motions are observed as 15, 12, 17 and 14 respectively. The natural frequency of the pier is found to be 1.40 Hz. The result shows that this type of pier has excellent static and earthquake resistant properties.

Keywords: bridge pier, CFST-RC pier, pseudo dynamic test, seismic performance, time history

Procedia PDF Downloads 185
9778 The Impact of Demographic Profile on Strategic HRM Practices and its Challenges Faced by HR Managers in IT Firm, India: An Empirical Study

Authors: P. Saravanan, A. Vasumathi

Abstract:

Strategic Human Resource Management (SHRM) plays a vital role in formulating the policies and strategies for the company, in order to fulfill the employee’s requirement and to perform the job efficiently within the organisation. Human Resource Management (HRM) functions helps in attracting and motivating the talented workforce for the organisation and by increasing the performance of an individual, will result in achieving the defined goals and objectives for the company. HRM function plays an important role in managing the workers within organisation through a formal communication channel. Since HR functions acts as a mediatory role in between the employee as well as the employers within the organisation that helps in improving the efficacy and skills of the individuals employed within the company. HR manager acts as a change agent, enabling and driving the change management program with respect to business HR functions and its future requirements of the company. Due to change in the business environment, the focus of HR manager is shifting from administrative/personal functions in to a strategic business HR function. HR managers plays a strategic role in managing various HR functions such as recruitment and selection, human resource information system, manpower planning, performance management, conflict management, employee engagement, compensation management, policy formation and retention strategies followed within the industry. Major challenges faced by HR managers at work place are managing the level of engagement for the talented resources within the organisation, reducing the conflicts at workplace, mapping the talented resources through succession planning process, building the effective appraisal process and performance management system and mapping the compensation based on the skills and experience possed by the employee within the company. The authors conducted a study for the sample size of 75 HR managers from an Indian IT company through systematic sampling method. This study identifies that the female employees are facing lesser conflict than the male employees against their managers within the organisation and also the study determines the impact of demographic profile on strategic HRM practices and its challenges faced by HR managers in IT firm, India.

Keywords: strategic human resource management, change agent, employee engagement, performance management, succession planning and conflict management

Procedia PDF Downloads 298