Search results for: chemical laser
1564 Synthesis and Characterization of an Aerogel Based on Graphene Oxide and Polyethylene Glycol
Authors: Javiera Poblete, Fernando Gajardo, Katherina Fernandez
Abstract:
Graphene, and its derivatives such as graphene oxide (GO), are emerging nanoscopic materials, with interesting physical and chemical properties. From them, it is possible to develop three-dimensional macrostructures, such as aerogels, which are characterized by a low density, high porosity, and large surface area, having a promising structure for the development of materials. The use of GO as a precursor of these structures provides a wide variety of materials, which can be developed as a result of the functionalization of their oxygenated groups, with specific compounds such as polyethylene glycol (PEG). The synthesis of aerogels of GO-PEG for non-covalent interactions has not yet been widely reported, being of interest due to its feasible escalation and economic viability. Thus, this work aims to develop a non-covalently functionalized GO-PEG aerogels and characterize them physicochemically. In order to get this, the GO was synthesized from the modified hummers method and it was functionalized with the PEG by polymer-assisted GO gelation (crosslinker). The gelation was obtained for GO solutions (10 mg/mL) with the incorporation of PEG in different proportions by weight. The hydrogel resulting from the reaction was subsequently lyophilized, to obtain the respective aerogel. The material obtained was chemically characterized by analysis of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray diffraction (XRD), and its morphology by scanning electron microscopy (SEM) images; as well as water absorption tests. The results obtained showed the formation of a non-covalent aerogel (FTIR), whose structure was highly porous (SEM) and with a water absorption values greater than 50% g/g. Thus, a methodology of synthesis for GO-PEG was developed and validated.Keywords: aerogel, graphene oxide, polyethylene glycol, synthesis
Procedia PDF Downloads 1241563 The Rational Design of Original Anticancer Agents Using Computational Approach
Authors: Majid Farsadrooh, Mehran Feizi-Dehnayebi
Abstract:
Serum albumin is the most abundant protein that is present in the circulatory system of a wide variety of organisms. Although it is a significant macromolecule, it can contribute to osmotic blood pressure and also, plays a superior role in drug disposition and efficiency. Molecular docking simulation can improve in silico drug design and discovery procedures to propound a lead compound and develop it from the discovery step to the clinic. In this study, the molecular docking simulation was applied to select a lead molecule through an investigation of the interaction of the two anticancer drugs (Alitretinoin and Abemaciclib) with Human Serum Albumin (HSA). Then, a series of new compounds (a-e) were suggested using lead molecule modification. Density functional theory (DFT) including MEP map and HOMO-LUMO analysis were used for the newly proposed compounds to predict the reactivity zones on the molecules, stability, and chemical reactivity. DFT calculation illustrated that these new compounds were stable. The estimated binding free energy (ΔG) values for a-e compounds were obtained as -5.78, -5.81, -5.95, -5,98, and -6.11 kcal/mol, respectively. Finally, the pharmaceutical properties and toxicity of these new compounds were estimated through OSIRIS DataWarrior software. The results indicated no risk of tumorigenic, irritant, or reproductive effects and mutagenicity for compounds d and e. As a result, compounds d and e, could be selected for further study as potential therapeutic candidates. Moreover, employing molecular docking simulation with the prediction of pharmaceutical properties helps to discover new potential drug compounds.Keywords: drug design, anticancer, computational studies, DFT analysis
Procedia PDF Downloads 761562 A Moroccan Natural Solution for Treating Industrial Effluents: Evaluating the Effectiveness of Using Date Kernel Residues for Purification
Authors: Ahmed Salim, A. El Bouari, M. Tahiri, O. Tanane
Abstract:
This research aims to develop and comprehensively characterize a cost-effective activated carbon derived from date residues, with a focus on optimizing its physicochemical properties to achieve superior performance in a variety of applications. The samples were synthesized via a chemical activation process utilizing phosphoric acid (H₃PO₄) as the activating agent. Activated carbon, produced through this method, functions as a vital adsorbent for the removal of contaminants, with a specific focus on methylene blue, from industrial wastewater. This study meticulously examined the influence of various parameters, including carbonization temperature and duration, on both the combustion properties and adsorption efficiency of the resultant material. Through extensive analysis, the optimal conditions for synthesizing the activated carbon were identified as a carbonization temperature of 600°C and a duration of 2 hours. The activated carbon synthesized under optimized conditions demonstrated an exceptional carbonization yield and methylene blue adsorption efficiency of 99.71%. The produced carbon was subsequently characterized using X-ray diffraction (XRD) analysis. Its effectiveness in the adsorption of methylene blue from contaminated water was then evaluated. A comprehensive assessment of the adsorption capacity was conducted by varying parameters such as carbon dosage, contact time, initial methylene blue concentration, and pH levels.Keywords: environmental pollution, adsorbent, activated carbon, phosphoric acid, date Kernels, pollutants, adsorption
Procedia PDF Downloads 431561 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater
Authors: Abimbola M. Enitan, J. Adeyemo
Abstract:
Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (µmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (dˉ¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.Keywords: brewery wastewater, methane generation model, environment, anaerobic modeling
Procedia PDF Downloads 2681560 Prediction of Distillation Curve and Reid Vapor Pressure of Dual-Alcohol Gasoline Blends Using Artificial Neural Network for the Determination of Fuel Performance
Authors: Leonard D. Agana, Wendell Ace Dela Cruz, Arjan C. Lingaya, Bonifacio T. Doma Jr.
Abstract:
The purpose of this paper is to study the predict the fuel performance parameters, which include drivability index (DI), vapor lock index (VLI), and vapor lock potential using distillation curve and Reid vapor pressure (RVP) of dual alcohol-gasoline fuel blends. Distillation curve and Reid vapor pressure were predicted using artificial neural networks (ANN) with macroscopic properties such as boiling points, RVP, and molecular weights as the input layers. The ANN consists of 5 hidden layers and was trained using Bayesian regularization. The training mean square error (MSE) and R-value for the ANN of RVP are 91.4113 and 0.9151, respectively, while the training MSE and R-value for the distillation curve are 33.4867 and 0.9927. Fuel performance analysis of the dual alcohol–gasoline blends indicated that highly volatile gasoline blended with dual alcohols results in non-compliant fuel blends with D4814 standard. Mixtures of low-volatile gasoline and 10% methanol or 10% ethanol can still be blended with up to 10% C3 and C4 alcohols. Intermediate volatile gasoline containing 10% methanol or 10% ethanol can still be blended with C3 and C4 alcohols that have low RVPs, such as 1-propanol, 1-butanol, 2-butanol, and i-butanol. Biography: Graduate School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Muralla St., Intramuros, Manila, 1002, PhilippinesKeywords: dual alcohol-gasoline blends, distillation curve, machine learning, reid vapor pressure
Procedia PDF Downloads 991559 Large Scale Production of Polyhydroxyalkanoates (PHAs) from Waste Water: A Study of Techno-Economics, Energy Use, and Greenhouse Gas Emissions
Authors: Cora Fernandez Dacosta, John A. Posada, Andrea Ramirez
Abstract:
The biodegradable family of polymers polyhydroxyalkanoates are interesting substitutes for convectional fossil-based plastics. However, the manufacturing and environmental impacts associated with their production via intracellular bacterial fermentation are strongly dependent on the raw material used and on energy consumption during the extraction process, limiting their potential for commercialization. Industrial wastewater is studied in this paper as a promising alternative feedstock for waste valorization. Based on results from laboratory and pilot-scale experiments, a conceptual process design, techno-economic analysis and life cycle assessment are developed for the large-scale production of the most common type of polyhydroxyalkanoate, polyhydroxbutyrate. Intracellular polyhydroxybutyrate is obtained via fermentation of microbial community present in industrial wastewater and the downstream processing is based on chemical digestion with surfactant and hypochlorite. The economic potential and environmental performance results help identifying bottlenecks and best opportunities to scale-up the process prior to industrial implementation. The outcome of this research indicates that the fermentation of wastewater towards PHB presents advantages compared to traditional PHAs production from sugars because the null environmental burdens and financial costs of the raw material in the bioplastic production process. Nevertheless, process optimization is still required to compete with the petrochemicals counterparts.Keywords: circular economy, life cycle assessment, polyhydroxyalkanoates, waste valorization
Procedia PDF Downloads 4551558 Monitoring the Drying and Grinding Process during Production of Celitement through a NIR-Spectroscopy Based Approach
Authors: Carolin Lutz, Jörg Matthes, Patrick Waibel, Ulrich Precht, Krassimir Garbev, Günter Beuchle, Uwe Schweike, Peter Stemmermann, Hubert B. Keller
Abstract:
Online measurement of the product quality is a challenging task in cement production, especially in the production of Celitement, a novel environmentally friendly hydraulic binder. The mineralogy and chemical composition of clinker in ordinary Portland cement production is measured by X-ray diffraction (XRD) and X ray fluorescence (XRF), where only crystalline constituents can be detected. But only a small part of the Celitement components can be measured via XRD, because most constituents have an amorphous structure. This paper describes the development of algorithms suitable for an on-line monitoring of the final processing step of Celitement based on NIR-data. For calibration intermediate products were dried at different temperatures and ground for variable durations. The products were analyzed using XRD and thermogravimetric analyses together with NIR-spectroscopy to investigate the dependency between the drying and the milling processes on one and the NIR-signal on the other side. As a result, different characteristic parameters have been defined. A short overview of the Celitement process and the challenging tasks of the online measurement and evaluation of the product quality will be presented. Subsequently, methods for systematic development of near-infrared calibration models and the determination of the final calibration model will be introduced. The application of the model on experimental data illustrates that NIR-spectroscopy allows for a quick and sufficiently exact determination of crucial process parameters.Keywords: calibration model, celitement, cementitious material, NIR spectroscopy
Procedia PDF Downloads 4991557 Quality Management in Spice Paprika Production as a Synergy of Internal and External Quality Measures
Authors: É. Kónya, E. Szabó, I. Bata-Vidács, T. Deák, M. Ottucsák, N. Adányi, A. Székács
Abstract:
Spice paprika is a major spice commodity in the European Union (EU), produced locally and imported from non-EU countries, reported not only for chemical and microbiological contamination, but also for fraud. The effective interaction between producers’ quality management practices and government and EU activities is described on the example of spice paprika production and control in Hungary, a country of leading spice paprika producer and per capita consumer in Europe. To demonstrate the importance of various contamination factors in the Hungarian production and EU trade of spice paprika, several aspects concerning food safety of this commodity are presented. Alerts in the Rapid Alert System for Food and Feed (RASFF) of the EU between 2005 and 2013, as well as Hungarian state inspection results on spice paprika in 2004 are discussed, and quality non-compliance claims regarding spice paprika among EU member states are summarized in by means of network analysis. Quality assurance measures established along the spice paprika production technology chain at the leading Hungarian spice paprika manufacturer, Kalocsai Fűszerpaprika Zrt. are surveyed with main critical control points identified. The structure and operation of the Hungarian state food safety inspection system is described. Concerted performance of the latter two quality management systems illustrates the effective interaction between internal (manufacturer) and external (state) quality control measures.Keywords: spice paprika, quality control, reporting mechanisms, RASFF, vulnerable points, HACCP
Procedia PDF Downloads 2861556 Activity Anti-Motility Exstract Kedondong Leaf in Balb/C Strain Male Mice Invivo
Authors: Muhammad Abdul Latif, Edijanti Goenarwo , Intan Rahmania Eka
Abstract:
Diarrhea is one of the leading causes of morbidity and mortality in many countries, as well as responsible for the deaths of millions of people each year. Previous research showed that the leaves, bark, and root bark of kedondong contains saponins, tannins, and flavonoids. Tannins have anti-diarrheal effects that work as the freeze of protein / astrigen, and may inhibit the secretion of chloride over the tannate bonding between protein in the intestines. Chemical compounds of flavonoids also have an effect as anti-diarrheal block receptors Cl ˉ in intestinal thus reducing the secretion of Cl ˉ to the intestinal lume. This research aims to know the anti-diarrheal activity of extracts kedondong leaf in mice Balb/C strain males in vivo. This research also proves kedondong leaves as an anti-diarrhea through trial efficacy of kedondong leaves as antisekretori and antimotilitas. This research using post-test only controlled group design. Analysis of statistical data normality and homogenity were tested by Kolmogorov Smirnov. If the data obtained homogenous then using ANOVA test. This research using ethanolic extracts kedondong leaf 200, 400 and 800 mg/kg BW to prove there is anti-motility became five treatment groups. The result showed dose of ethanolic extracts kedondong leaf 800 mg/kg BW have significant value (p < 0.005). The conclusion from this extracts kedondong leaf research 800 mg/kg BW have pharmacological effects as antimotility on Balb/C strain male mice.Keywords: anti-diarrhea, anti-motility, castrol oil, kedondong leaf
Procedia PDF Downloads 4741555 Added Value of 3D Ultrasound Image Guided Hepatic Interventions by X Matrix Technology
Authors: Ahmed Abdel Sattar Khalil, Hazem Omar
Abstract:
Background: Image-guided hepatic interventions are integral to the management of infective and neoplastic liver lesions. Over the past decades, 2D ultrasound was used for guidance of hepatic interventions; with the recent advances in ultrasound technology, 3D ultrasound was used to guide hepatic interventions. The aim of this study was to illustrate the added value of 3D image guided hepatic interventions by x matrix technology. Patients and Methods: This prospective study was performed on 100 patients who were divided into two groups; group A included 50 patients who were managed by 2D ultrasonography probe guidance, and group B included 50 patients who were managed by 3D X matrix ultrasonography probe guidance. Thermal ablation was done for 70 patients, 40 RFA (20 by the 2D probe and 20 by the 3D x matrix probe), and 30 MWA (15 by the 2D probe and 15 by the 3D x matrix probe). Chemical ablation (PEI) was done on 20 patients (10 by the 2D probe and 10 by the 3D x matrix probe). Drainage of hepatic collections and biopsy from undiagnosed hepatic focal lesions was done on 10 patients (5 by the 2D probe and 5 by the 3D x matrix probe). Results: The efficacy of ultrasonography-guided hepatic interventions by 3D x matrix probe was higher than the 2D probe but not significantly higher, with a p-value of 0.705, 0.5428 for RFA, MWA respectively, 0.5312 for PEI, 0.2918 for drainage of hepatic collections and biopsy. The complications related to the use of the 3D X matrix probe were significantly lower than the 2D probe, with a p-value of 0.003. The timing of the procedure was shorter by the usage of 3D x matrix probe in comparison to the 2D probe with a p-value of 0.08,0.34 for RFA and PEI and significantly shorter for MWA, and drainage of hepatic collection, biopsy with a P-value of 0.02,0.001 respectively. Conclusions: 3D ultrasonography-guided hepatic interventions by  x matrix probe have better efficacy, less complication, and shorter time of procedure than the 2D ultrasonography-guided hepatic interventions.Keywords: 3D, X matrix, 2D, ultrasonography, MWA, RFA, PEI, drainage of hepatic collections, biopsy
Procedia PDF Downloads 931554 Solar Photovoltaic Pumping and Water Treatment Tools: A Case Study in Ethiopian Village
Authors: Corinna Barraco, Ornella Salimbene
Abstract:
This research involves the Ethiopian locality of Jeldi (North Africa), an area particularly affected by water shortage and in which the pumping and treatment of drinking water are extremely sensitive issues. The study aims to develop and apply low-cost tools for the design of solar water pumping and water purification systems in a not developed country. Consequently, two technical tools have been implemented in Excel i) Solar photovoltaic Pumping (Spv-P) ii) Water treatment (Wt). The Spv-P tool was applied to the existing well (depth 110 [m], dynamic water level 90 [m], static water level 53 [m], well yield 0.1728 [m³h⁻¹]) in the Jeldi area, where estimated water demand is about 50 [m3d-1]. Through the application of the tool, it was designed the water extraction system of the well, obtaining the number of pumps and solar panels necessary for water pumping from the well of Jeldi. Instead, the second tool Wt has been applied in the subsequent phase of extracted water treatment. According to the chemical-physical parameters of the water, Wt returns as output the type of purification treatment(s) necessary to potable the extracted water. In the case of the well of Jeldi, the tool identified a high criticality regarding the turbidity parameter (12 [NTU] vs 5 [NTU]), and a medium criticality regarding the exceeding limits of sodium concentration (234 [mg/L Na⁺] vs 200 [mg/L Na⁺]) and ammonia (0.64 [mg/L NH³-N] vs 0.5 [mg/L NH³-N]). To complete these tools, two specific manuals are provided for the users. The joint use of the two tools would help reduce problems related to access to water resources compared to the current situation and represents a simplified solution for the design of pumping systems and analysis of purification treatments to be performed in undeveloped countries.Keywords: drinking water, Ethiopia, treatments, water pumping
Procedia PDF Downloads 1541553 Development of an Auxetic Tissue Implant
Authors: Sukhwinder K. Bhullar, M. B. G. Jun
Abstract:
The developments in biomedical industry have demanded the development of biocompatible, high performance materials to meet higher engineering specifications. The general requirements of such materials are to provide a combination of high stiffness and strength with significant weight savings, resistance to corrosion, chemical resistance, low maintenance, and reduced costs. Auxetic materials which come under the category of smart materials offer huge potential through measured enhancements in mechanical properties. Unique deformation mechanism, providing cushioning on indentation, automatically adjustable with its strength and thickness in response to forces and having memory returns to its neutral state on dissipation of stresses make them good candidate in biomedical industry. As simple extension and compression of tissues is of fundamental importance in biomechanics, therefore, to study the elastic behaviour of auxetic soft tissues implant is targeted in this paper. Therefore development and characterization of auxetic soft tissue implant is studied in this paper. This represents a real life configuration where soft tissue such as meniscus in knee replacement, ligaments and tendons often are taken as transversely isotropic. Further, as composition of alternating polydisperse blocks of soft and stiff segments combined with excellent biocompatibility make polyurethanes one of the most promising synthetic biomaterials. Hence selecting auxetic polyurathylene foam functional characterization is performed and compared with conventional polyurathylene foam.Keywords: auxetic materials, deformation mechanism, enhanced mechanical properties, soft tissues
Procedia PDF Downloads 4581552 Two Antiplasmodial Compounds from Lauraceae: Actinodaphne macrophylla and Nectandra angustifolia
Authors: Tiah Rachmatiah, Subaryanti
Abstract:
Plants of Lauraceae family are known to contain many chemical compounds which have potential bioactivity such as alkaloids, flavonoids, lactones, terpenes, etc. Actinodaphne macrophylla and Nectandra angustifolia are two species from Lauraceae. A previous study on the crude alkaloidal extract from the bark of Act. macrophylla and n-hexane extract from the bark of N. angustifolia showed antiplasmodial activity against Plasmodium falciparum. The study was continued to find antiplasmodial active compounds from the two extracts. The materials were obtained from Bogor Botanical Garden, West Java, Indonesia. Crude alkaloidal extract of Act. macrophylla was prepared by maceration in dichloromethane after moistened with NH4OH 25% and n-hexane extract of N. angustifolia was prepared by maceration in n-hexane. A major compound was isolated by column chromatography using silica gel and a mixture of CH2Cl2 and methanol as a gradient solvent system for the alkaloidal extract and mixture of n-hexane and ethyl acetate for n-hexane extract. Fine white needle crystals were obtained from the alkaloidal extract and rod crystals from n-hexane extract. Molecular structure of the compounds was determined by analysis of spectra of NMR, IR, MS and compared by references. In vitro bioactivity test of the compound was performed against Plasmodium falciparum. The results showed that the bark of Act. macrophylla contained an aporphine alkaloid, actinodaphnine, that had activity against P. falciparum with IC50 value of 0.095 µg/mL and the bark of N. angustifolia contained a lignan compound, sesamine, with IC50 of 0.122 µg/mL.Keywords: actinodaphne macrophylla, alkaloid, antiplasmodial, lauraceae, lignan, nectandra angustifolia
Procedia PDF Downloads 4241551 Effect of Highway Construction on Soil Properties and Soil Organic Carbon (Soc) Along Lagos-Badagry Expressway, Lagos, Nigeria
Authors: Fatai Olakunle Ogundele
Abstract:
Road construction is increasingly common in today's world as human development expands and people increasingly rely on cars for transportation on a daily basis. The construction of a large network of roads has dramatically altered the landscape and impacted well-being in a number of deleterious ways. In addition, the road can also shift population demographics and be a source of pollution into the environment. Road construction activities normally result in changes in alteration of the soil's physical properties through soil compaction on the road itself and on adjacent areas and chemical and biological properties, among other effects. Understanding roadside soil properties that are influenced by road construction activities can serve as a basis for formulating conservation-based management strategies. Therefore, this study examined the effects of road construction on soil properties and soil organic carbon along Lagos Badagry Expressway, Lagos, Nigeria. The study adopted purposive sampling techniques and 40 soil samples were collected at a depth of 0 – 30cm from each of the identified road intersections and infrastructures using a soil auger. The soil samples collected were taken to the laboratory for soil properties and carbon stock analysis using standard methods. Both descriptive and inferential statistical techniques were applied to analyze the data obtained. The results revealed that soil compaction inhibits ecological succession on roadsides in that increased compaction suppresses plant growth as well as causes changes in soil quality.Keywords: highway, soil properties, organic carbon, road construction, land degradation
Procedia PDF Downloads 781550 Evaluation of Nematicidal Action of Some Botanicals on Plant-Parasitic Nematode
Authors: Lakshmi, Yakshita Awasthi, Deepika, Lovleen Jha, Archna Kumar
Abstract:
From the back of centuries, plant-parasitic nematodes (PPN) have been recognized as a major threat to agriculturalists globally. It causes 21.3% global food loss annually. The utilization of harmful chemical pesticides to minimize the nematode population may cause acute and delayed health hazards and harmful impacts on human health. In recent years, a variety of plants have been evaluated for their nematicidal properties and efficacy in the management of plant-parasitic nematodes. Several Phyto-nematicides are available, but most of them are incapable of sustainable management of PPN, especially Meloidogyne spp. Thus, there is a great need for a new eco-friendly, highly efficient, sustainable control measure for this nematode species. Keeping all these facts and after reviewing the literature, aqueous extract of Cymbopogon citratus, Tagetes erecta, and Azadirachta indica were prepared by adding distilled water (1 g sample mixed with 10ml of water). In vitro studies were conducted to evaluate the efficacious nature of targeted botanicals against PPN Meloidogyne spp. The mortality status of PPN was recorded by counting the live and dead individuals after applying 100μl of selected extract. The impact was observed at different time durations, i.e., 24h and 48h. The result showed that the highest 100% mortality was at 48h in all three extracts. Thus, these extracts, with the addition of a suitable shelf-life enhancer, may be exploited in different nematode control programs as an economical, sustainable measure.Keywords: Meloidogyne, Cymbopogon citratus, Tagetes erecta, Azadirachta indica, nematicidal
Procedia PDF Downloads 1631549 High Pressure Delignification Process for Nanocrystalline Cellulose Production from Agro-Waste Biomass
Authors: Sakinul Islam, Nhol Kao, Sati Bhattacharya, Rahul Gupta
Abstract:
Nanocrystalline cellulose (NCC) has been widely used for miscellaneous applications due to its superior properties over other nanomaterials. However, the major problems associated with the production of NCC are long reaction time, low production rate and inefficient process. The mass production of NCC within a short period of time is still a great challenge. The main objective of this study is to produce NCC from rice husk agro waste biomass from a high pressure delignification process (HPDP), followed by bleaching and hydrolysis processes. The HPDP has not been explored for NCC production from rice husk biomass (RHB) until now. In order to produce NCC, powder rice husk (PRH) was placed into a stainless steel reactor at 80 ˚C under 5 bars. Aqueous solution of NaOH (4M) was used for the dissolution of lignin and other amorphous impurities from PRH. After certain experimental times (1h, 3.5h and 6h), bleaching and hydrolysis were carried out on delignified samples. NaOCl (20%) and H2SO4 (4M) solutions were used for bleaching and hydrolysis processes, respectively. The NCC suspension from hydrolysis was sonicated and neutralized by buffer solution for various characterisations. Finally NCC suspension was dried and analyzed by FTIR, XRD, SEM, AFM and TEM. The chemical composition of NCC and PRH was estimated by TAPPI (Technical Association of Pulp and Paper Industry) standard methods to observe the product purity. It was found that, the 6h of the HPDP was more efficient to produce good quality NCC than that at 1h and 3.5h due to low separation of non-cellulosic components from RHB. The analyses indicated the crystallinity of NCC to be 71 %, particle size of 20-50 nm (diameter) and 100-200 nm in length.Keywords: nanocrystalline cellulose, NCC, high pressure delignification, bleaching, hydrolysis, agro-waste biomass
Procedia PDF Downloads 2631548 Catalytic Thermodynamics of Nanocluster Adsorbates from Informational Statistical Mechanics
Authors: Forrest Kaatz, Adhemar Bultheel
Abstract:
We use an informational statistical mechanics approach to study the catalytic thermodynamics of platinum and palladium cuboctahedral nanoclusters. Nanoclusters and their adatoms are viewed as chemical graphs with a nearest neighbor adjacency matrix. We use the Morse potential to determine bond energies between cluster atoms in a coordination type calculation. We use adsorbate energies calculated from density functional theory (DFT) to study the adatom effects on the thermodynamic quantities, which are derived from a Hamiltonian. Oxygen radical and molecular adsorbates are studied on platinum clusters and hydrogen on palladium clusters. We calculate the entropy, free energy, and total energy as the coverage of adsorbates increases from bridge and hollow sites on the surface. Thermodynamic behavior versus adatom coverage is related to the structural distribution of adatoms on the nanocluster surfaces. The thermodynamic functions are characterized using a simple adsorption model, with linear trends as the coverage of adatoms increases. The data exhibits size effects for the measured thermodynamic properties with cluster diameters between 2 and 5 nm. Entropy and enthalpy calculations of Pt-O2 compare well with previous theoretical data for Pt(111)-O2, and our Pd-H results show similar trends as experimental measurements for Pd-H2 nanoclusters. Our methods are general and may be applied to wide variety of nanocluster adsorbate systems.Keywords: catalytic thermodynamics, palladium nanocluster absorbates, platinum nanocluster absorbates, statistical mechanics
Procedia PDF Downloads 1651547 Two-Stage Anaerobic Digester for Biogas Production from Sewage Sludge: A Case Study in One of Kuwait’s Wastewater Treatment Plant
Authors: Abdullah Almatouq, Abdulla Abusam, Hussain Hussain, Mishari Khajah, Hussain Abdullah, Rashed Al-Yaseen, Mariam Al-Jumaa, Farah Al-Ajeel, Mohammad Aljassam
Abstract:
Due to the high demand for energy from unsustainable resources in Kuwait, the Kuwaiti government has focused recently on using sustainable resources for energy, such as solar and wind energy. In addition, sludge which is generated as a by-product of physical, chemical, and biological processes during wastewater treatment, can be used as a substrate to generate energy through anaerobic digestion. Kuwait’s wastewater treatment plants produce more than 1.7 million m3 of sludge per year, and this volume is accumulated in the treatment plants without any treatment. Therefore, a pilot-scale (3 m3) two-stage anaerobic digester was constructed in one of the largest treatment plants in Kuwait. The reactor was operated in batch mode, and the hydraulic retention time varied between 14 – 27 days. The main of this study is to evaluate the technical feasibility of a two-stage anaerobic digester for sludge treatability and energy generation in Kuwait. The anaerobic digester achieved a total biogas production of 37 m3, and the highest value of daily biogas production was 0.4 m3/day. The methane content ranged between 50 % and 66 %, and the other gases were as follows: CO2 20 %, H2S 13 %, and 1 % O2. The generated biogas was used on-site for cooking and lighting. In some batches, low C/N was noticed, and that lead to maintaining the concentration of CH4 between 50%-55%. In conclusion, an anaerobic digester is an environmentally friendly technology that can be applied in Kuwait, and the obtained results support the scale-up of the process in all the treatment plants.Keywords: wastewater, metahne, biogas production potential, anaerobic digestion
Procedia PDF Downloads 1121546 Studies on Toxicity and Mechanical Properties of Nonmetallic Printed Circuit Boards Waste in Recycled HDPE Composites
Authors: Shantha Kumari Muniyandi, Johan Sohaili, Siti Suhaila Mohamad
Abstract:
The aim of this study was to investigate the suitability of reusing nonmetallic printed circuit boards (PCBs) waste in recycled HDPE (rHDPE) in terms of toxicity and mechanical properties. A series of X-ray Fluorescence Spectrometry (XRF) analysis tests have been conducted on raw nonmetallic PCBs waste to determine the chemical compositions. It can be seen that the nonmetallic PCBs approximately 72% of glass fiber reinforced epoxy resin materials such as SiO2, Al2O3, CaO, MgO, BaO, Na2O, and SrO, 9.4% of metallic materials such as CuO, SnO2, and Fe2O3, and 6.53% of Br. Total Threshold Limit Concentration (TTLC) and Toxicity Characteristic Leaching Procedure (TCLP) tests also have been done to study the toxicity characteristics of raw nonmetallic PCB powders, rHDPE/PCB and virgin HDPE for comparison purposes. For both of the testing, Cu was identified as the highest metal element contained in raw PCBs with the concentration of 905 mg/kg and 59.09 mg/L for TTLC and TCLP, respectively. However, once the nonmetallic PCB was filled in rHDPE composites, the concentrations of Cu were reduced to 134 mg/kg for TTLC and to 3 mg/L for TCLP testing. For mechanical properties testing, incorporation of 40 wt% nonmetallic PCB into rHDPE has increased the flexural modulus and flexural strength by 140% and 36%, respectively. While, Izod Impact strength decreased steadily with incorporation of 10 – 40 wt% nonmetallic PCBs.Keywords: nonmetallic printed circuit board, recycled HDPE, composites, mechanical properties, total threshold limit concentration, toxicity characteristic leaching procedure
Procedia PDF Downloads 3351545 Formulation, Evaluation and Statistical Optimization of Transdermal Niosomal Gel of Atenolol
Authors: Lakshmi Sirisha Kotikalapudi
Abstract:
Atenolol, the widely used antihypertensive drug is ionisable and degrades in the acidic environment of the GIT lessening the bioavailability. Transdermal route may be selected as an alternative to enhance the bioavailability. Half-life of the drug is 6-7 hours suggesting the requirement of prolonged release of the drug. The present work of transdermal niosomal gel aims to extend release of the drug and increase the bioavailability. Ethanol injection method was used for the preparation of niosomes using span-60 and cholesterol at different molar ratios following central composite design. The prepared niosomes were characterized for size, zeta-potential, entrapment efficiency, drug content and in-vitro drug release. Optimized formulation was selected by statistically analyzing the results obtained using the software Stat-Ease Design Expert. The optimized formulation also showed high drug retention inside the vesicles over a period of three months at a temperature of 4 °C indicating stability. Niosomes separated as a pellet were dried and incorporated into the hydrogel prepared using chitosan a natural polymer as a gelling agent. The effect of various chemical permeation enhancers was also studied over the gel formulations. The prepared formulations were characterized for viscosity, pH, drug release using Franz diffusion cells, and skin irritation test as well as in-vivo pharmacological activities. Atenolol niosomal gel preparations showed the prolonged release of the drug and pronounced antihypertensive activity indicating the suitability of niosomal gel for topical and systemic delivery of atenolol.Keywords: atenolol, chitosan, niosomes, transdermal
Procedia PDF Downloads 2921544 Thermodynamic Analysis of Wet Compression Integrated with Air-Film Blade Cooling in Gas Turbine Power Plants
Authors: Hassan Athari, Alireza Ruhi Sales, Amin Pourafshar, Seyyed Mehdi Pestei, Marc. A. Rosen
Abstract:
In order to achieve high efficiency and high specific work with lower emissions, the use of advanced gas turbine cycles for power generation is useful and advantageous. Here, evaporative inlet air cooling is analyzed thermodynamically in the form of air film blade cooling of gas turbines. As the ambient temperature increases during summer months, the performance of gas turbines particularly the output power and energy efficiency are significantly decreased. The utilization of evaporative inlet cooling in gas turbine cycles increases gas turbine performance, which can assist to solve the problem in meeting the increasing demands for electrical power and offsetting shortages during peak load times. In the present research, because of the importance of turbine blade cooling, the turbine is investigated with cold compressed air used for cooling the turbine blades. The investigation of the basic and modified cycles shows that, by adding an evaporative cooler to a simple gas turbine cycle, for a turbine inlet temperature of 1400 °C, an ambient temperature of 45 °C and a relative humidity of 15%, the specific work can reach 331 (kJ/kg air), while the maximum specific work of a simple cycle for the same conditions is 273.7 (kJ/kg air). The exergy results reveal that the highest exergy destruction occurs in the combustion chamber, where the large temperature differences and highly exothermic chemical reactions are the main sources of the irreversibility.Keywords: energy, exergy, wet compression, air-film cooling blade, gas turbine
Procedia PDF Downloads 1511543 Phytoplankton Diversity and Abundance in Burullus Lagoon, Southern Mediterranean Coast, Egypt
Authors: Shymaa S. Zaher, Hesham M. Abd El-Fatah, Dina M. Ali
Abstract:
Burullus Lagoon is the second largest lake, along the Mediterranean seashore. It exposed to over nutrient enrichment from fish farming and agricultural drainage wastes. This study assesses the present status phytoplankton response to different flow events, including domestic, agricultural, industrial, and fish farms discharge in the three main sectors of Burullus Lagoon, to focus on the influence of environmental variables on phytoplankton species composition inhabiting the Lagoon. Twelve sites representing the eastern, central, and western basin were selected during winter and summer 2018. Among the most abundant group, Chlorophyceae came in the first rank by 37.9% of the total phytoplankton densities, Bacillariophyceae (29.31%), Cyanophyceae (20.7%), Euglenophyceae (8.63%) and Dinophyceae (3.4%). Cyclotella menenghiana was the most abundant diatoms, while Scenedesmus quadricauda, S. acuminatus, and S. bijuga were highly recorded nearby the drains (in the middle sector). Phytoplankton in Burullus Lagoon attained the lowest values during the winter season and the highest ones during the summer season. The total count of phytoplankton in the middle and western basin of the lake was higher than that of the eastern part. Excessive use of chemical fertilizers, pesticides, and washing out of nutrients loaded to the drainage water, leading to a significant pronounced decrease in community composition and standing crop of phytoplankton in Burullus Lake from year to year, hold the danger of shifting the lagoon ecosystem.Keywords: Burullus Lagoon, environmental variables, phytoplankton, water pollution
Procedia PDF Downloads 1231542 An Experimental Investigation on Banana and Pineapple Natural Fibers Reinforced with Polypropylene Composite by Impact Test and SEM Analysis
Authors: D. Karibasavaraja, Ramesh M.R., Sufiyan Ahmed, Noyonika M.R., Sameeksha A. V., Mamatha J., Samiksha S. Urs
Abstract:
This research paper gives an overview of the experimental analysis of natural fibers with polymer composite. The whole world is concerned about conserving the environment. Henceforth, the demand for natural and decomposable materials is increasing. The application of natural fibers is widely used in aerospace for manufacturing aircraft bodies, and ship construction in navy fields. Based on the literature review, researchers and scientists are replacing synthetic fibers with natural fibers. The selection of these fibers mainly depends on lightweight, easily available, and economical and has its own physical and chemical properties and many other properties that make them a fine quality fiber. The pineapple fiber has desirable properties of good mechanical strength, high cellulose content, and fiber length. Hybrid composite was prepared using different proportions of pineapple fiber and banana fiber, and their ratios were varied in 90% polypropylene mixed with 5% banana fiber and 5% pineapple fiber, 85% polypropylene mixed with 7.5% banana fiber and 7.5% pineapple fiber and 80% polypropylene mixed with 10% banana fiber and 10% pineapple fiber. By impact experimental analysis, we concluded that the combination of 90% polypropylene and 5% banana fiber and 5% pineapple fiber exhibits a higher toughness value with mechanical strength. We also conducted scanning electron microscopy (SEM) analysis which showed better fiber orientation bonding between the banana and pineapple fibers with polypropylene composites. The main aim of the present research is to evaluate the properties of pineapple fiber and banana fiber reinforced with hybrid polypropylene composites.Keywords: toughness, fracture, impact strength, banana fibers, pineapple fibers, tensile strength, SEM analysis
Procedia PDF Downloads 1551541 Grating Assisted Surface Plasmon Resonance Sensor for Monitoring of Hazardous Toxic Chemicals and Gases in an Underground Mines
Authors: Sanjeev Kumar Raghuwanshi, Yadvendra Singh
Abstract:
The objective of this paper is to develop and optimize the Fiber Bragg (FBG) grating based Surface Plasmon Resonance (SPR) sensor for monitoring the hazardous toxic chemicals and gases in underground mines or any industrial area. A fully cladded telecommunication standard FBG is proposed to develop to produce surface plasmon resonance. A thin few nm gold/silver film (subject to optimization) is proposed to apply over the FBG sensing head using e-beam deposition method. Sensitivity enhancement of the sensor will be done by adding a composite nanostructured Graphene Oxide (GO) sensing layer using the spin coating method. Both sensor configurations suppose to demonstrate high responsiveness towards the changes in resonance wavelength. The GO enhanced sensor may show increased sensitivity of many fold compared to the gold coated traditional fibre optic sensor. Our work is focused on to optimize GO, multilayer structure and to develop fibre coating techniques that will serve well for sensitive and multifunctional detection of hazardous chemicals. This research proposal shows great potential towards future development of optical fiber sensors using readily available components such as Bragg gratings as highly sensitive chemical sensors in areas such as environmental sensing.Keywords: surface plasmon resonance, fibre Bragg grating, sensitivity, toxic gases, MATRIX method
Procedia PDF Downloads 2651540 Study of the Middle and Upper Atmosphere during Sudden Stratospheric Warming Episodes
Authors: Jinee Gogoi, Som K. Sharma, Kalyan Bhuyan
Abstract:
The atmospheric layers are coupled to each other with the different dynamical, electrical, radiative and chemical processes. A large scale thermodynamical phenomenon in winter polar regions which affects the middle atmosphere vigorously is Sudden Stratospheric Warming (SSW). Two major SSW events were occurred during 1998-1999; one in December 1998 which is associated with vortex displacement and another in February- March 1999 associated with vortex splitting. Lidar study of these two major events from Mt. Abu (24.36⁰N, 72.45⁰E, ~1670 m amsl) has shown that though SSWs are mostly observed over high and mid latitudes, their effects can also be seen over India. We have studied ionospheric variations (primarily fₒF₂, h’F and hpF₂) over Ahmedabad (23.1⁰N, 72.58⁰E) during these events. Ionospheric disturbances have been found after four-five days of peak temperature. An increase (decrease) in critical frequency (fₒF₂) during morning (afternoon) has been noticed which may be in response to the updrift (down drift). Effects are stronger during displacement event (1998) than during the splitting event (1999). We have also studied some recent events occurred during 2006 (January), 2009 (January) and 2013 (January) using temperature data from Sounding of Atmosphere using Broadband Emission Radiometry (SABER) satellite. Though some modeling work supports the hypothesis that planetary waves are responsible for atmosphere-ionosphere coupling, there is still more significant works to do to understand how exactly the coupling can take place.Keywords: sudden stratospheric warming (SSW), polar vortex, ionosphere, critical frequency
Procedia PDF Downloads 2471539 Study of Cathodic Protection for Trunk Pipeline of Al-Garraf Oil Field
Authors: Maysoon Khalil Askar
Abstract:
The delineation of possible areas of corrosion along the external face of an underground oil pipeline in Trunk line of Al- Garraf oil field was investigated using the horizontal electrical resistivity profiling technique and study the contribution of pH, Moisture Content in Soil and Presence chlorides, sulfates and total dissolve salts in soil and water. The test sites represent a physical and chemical properties of soils. The hydrogen-ion concentration of soil and groundwater range from 7.2 to 9.6, and the resistivity values of the soil along the pipeline were obtained using the YH302B model resistivity meter having values between 1588 and 720 Ohm-cm. the chloride concentration in soil and groundwater is high (more than 1000 ppm), total soulable salt is more than 5000 ppm, and sulphate range from 0.17% and 0.98% in soil and more than 600 ppm in groundwater. The soil is poor aeration, the soil texture is fine (clay and silt soil), the water content is high (the groundwater is close to surface), the chloride and sulphate is high in the soil and groundwater, the total soulable salt is high in ground water and finally the soil electric resistivity is low that the soil is very corrosive and there is the possibility of the pipeline failure. These methods applied in the study are quick, economic and efficient for detecting along buried pipelines which need to be protected. Routine electrical geophysical investigations along buried oil pipelines should be undertaken for the early detection and prevention of pipeline failure with its attendant environmental, human and economic consequences.Keywords: soil resistivity, corrosion, cathodic protection, chloride concentration, water content
Procedia PDF Downloads 4361538 Magnetic Field Effects on Seed Germination of Phaseolus Vulgaris, Early Seedling Growth, and Chemical Composition
Authors: Farzad Tofigh, Saeideh Najafi, Reza Heidari, Rashid Jamei
Abstract:
In order to study the effects of magnetic field on the root system and growth of Phaseolus vulgaris, an experiment was conducted in 2012. The possible involvement of magnetic field (MF) pretreatment in physiological factors of Phaseolus vulgaris was investigated. Seeds were subjected to 10 days with 1.8 mT of magnetic field for 1h per day. MF pretreatment decreased the plant height, fresh and dry weight, length of root and length of shoot, Chlorophyll a, Chlorophyll b and carotenoid in 10 days old seedling. In addition, activity of enzymes such as Catalase and Guaiacol peroxidase was decreased due to MF exposure. Also, the total Protein and DPPH content of the treated by magnetic field was not significantly changed in compare to control groups, while the flavonoid, Phenol and prolin content of the treated of the treated by magnetic field was significantly changed in compare to control groups. Lateral branches of roots and secondary roots increased with MF. The results suggest that pretreatment of this MF plays important roles in changes in crop productivity. In all cases there was observed a slight stimulating effect of the factors examined. The growth dynamics were weakened. The plants were shorter. Moreover, the effect of a magnetic field on the crop of Phaseolus vulgaris and its structure was small.Keywords: carotenoid, chlorophyll a, chlorophyll b, DPPH, enzymes, flavonoid, germination, growth, phenol, proline, protein, magnetic field
Procedia PDF Downloads 5011537 Role of Interleukin 6 on Cell Differentiations in Stem Cells Isolated from Human Exfoliated Deciduous Teeth
Authors: Nunthawan Nowwarote, Waleerat Sukarawan, Prasit Pavasant, Thanaphum Osathanon
Abstract:
Interleukin 6 (IL-6) is a multifunctional cytokine, regulating various biological responses in several tissues. A Recent study shows that IL-6 plays a role in stemness maintenance in stem cells isolated from human exfoliated deciduous teeth (SHEDs). However, the role of IL-6 on cell differentiation in SHEDs remains unknown. The present study investigated the effect of IL-6 on SHEDs differentiation. Cells were isolated from dental pulp tissues of human deciduous teeth. Flow cytometry was used to determined mesenchymal stem cell marker expression, and the multipotential differentiation (osteogenic, adipogenic and neurogenic lineage ) was also determined. The mRNA was determined using real-time quantitative polymerase chain reaction, and the phenotypes were confirmed by chemical and immunofluorescence staining. Results demonstrated that SHEDs expressed CD44, CD73, CD90, CD105 but not CD45. Further, the up-regulation of osteogenic, adipogenic and neurogenic marker genes was observed upon maintaining cells in osteogenic, adipogenic and neurogenic induction medium, respectively. The addition of IL-6 induced osteogenic by up-regulated osteogenic marker gene also increased in vitro mineralization. Under neurogenic medium supplement with IL-6, up-regulated neurogenic marker. Whereas, an addition of IL-6 attenuated adipogenic differentiation by SHEDs. In conclusion, this evidence implies that IL-6 may participate in cells differentiation ability of SHEDs.Keywords: SHEDs, IL-6, cell differentiations, dental pulp
Procedia PDF Downloads 1791536 Chemical Analysis and Sensory Evaluation of 'Domiati Cheese' Using Strains Isolated from Algerian Goat's Milk
Authors: A. Cheriguene, F. Chougrani
Abstract:
A total of 120 wild lactic acid bacteria were isolated from goat’s milk collected from different areas in Western Algeria. The strains were screened for production and technological properties such as acid production, aminopeptidase activity, autolytic properties, antimicrobial activity, and exopolysaccharide production. In general most tested isolates showed a good biomass separation when collected by centrifugation; as for the production of the lactic acid, results revealed that our strains are weakly acidifying; nevertheless, lactococci showed a best acidifying activity compared to lactobacilli. Aminopeptidase activity was also weak in most strains; but, it was generally higher for lactobacilli compared to lactococci. Autolytic activity was generally higher for most strains, more particularly lactobacilli. Antimicrobial activity was detected in 50% of the isolates, particularly in lactobacilli where 80% of strains tested were able to inhibit the growth of other strains. The survey of the profile of the texture, the proteolysis as well as the development of the flavor in the Domiati cheese made on the basis of our isolated strains have been led during the ripening. The sensory assessment shows that the cheese salted in milk received the best scores in relation to cheese salted after drainage. Textural characteristics, such as hardness, cohesiveness, gumminess, and chewiness decreased in the two treatments during the 60 days of ripening. Otherwise, it has been noted that adhesiveness and adhesive force increased in the cheese salted in milk.Keywords: lactic acid bacteria, technological properties, acidification, exopolysaccharide, bacteriocin, textural properties
Procedia PDF Downloads 1591535 Non-Burn Treatment of Health Care Risk Waste
Authors: Jefrey Pilusa, Tumisang Seodigeng
Abstract:
This research discusses a South African case study for the potential of utilizing refuse-derived fuel (RDF) obtained from non-burn treatment of health care risk waste (HCRW) as potential feedstock for green energy production. This specific waste stream can be destroyed via non-burn treatment technology involving high-speed mechanical shredding followed by steam or chemical injection to disinfect the final product. The RDF obtained from this process is characterised by a low moisture, low ash, and high calorific value which means it can be potentially used as high-value solid fuel. Due to the raw feed of this RDF being classified as hazardous, the final RDF has been reported to be non-infectious and can blend with other combustible wastes such as rubber and plastic for waste to energy applications. This study evaluated non-burn treatment technology as a possible solution for on-site destruction of HCRW in South African private and public health care centres. Waste generation quantities were estimated based on the number of registered patient beds, theoretical bed occupancy. Time and motion study was conducted to evaluate the logistics viability of on-site treatment. Non-burn treatment technology for HCRW is a promising option for South Africa, and successful implementation of this method depends upon the initial capital investment, operational cost and environmental permitting of such technology; there are other influencing factors such as the size of the waste stream, product off-take price as well as product demand.Keywords: autoclave, disposal, fuel, incineration, medical waste
Procedia PDF Downloads 176