Search results for: planting density
83 Lean Comic GAN (LC-GAN): a Light-Weight GAN Architecture Leveraging Factorized Convolution and Teacher Forcing Distillation Style Loss Aimed to Capture Two Dimensional Animated Filtered Still Shots Using Mobile Phone Camera and Edge Devices
Authors: Kaustav Mukherjee
Abstract:
In this paper we propose a Neural Style Transfer solution whereby we have created a Lightweight Separable Convolution Kernel Based GAN Architecture (SC-GAN) which will very useful for designing filter for Mobile Phone Cameras and also Edge Devices which will convert any image to its 2D ANIMATED COMIC STYLE Movies like HEMAN, SUPERMAN, JUNGLE-BOOK. This will help the 2D animation artist by relieving to create new characters from real life person's images without having to go for endless hours of manual labour drawing each and every pose of a cartoon. It can even be used to create scenes from real life images.This will reduce a huge amount of turn around time to make 2D animated movies and decrease cost in terms of manpower and time. In addition to that being extreme light-weight it can be used as camera filters capable of taking Comic Style Shots using mobile phone camera or edge device cameras like Raspberry Pi 4,NVIDIA Jetson NANO etc. Existing Methods like CartoonGAN with the model size close to 170 MB is too heavy weight for mobile phones and edge devices due to their scarcity in resources. Compared to the current state of the art our proposed method which has a total model size of 31 MB which clearly makes it ideal and ultra-efficient for designing of camera filters on low resource devices like mobile phones, tablets and edge devices running OS or RTOS. .Owing to use of high resolution input and usage of bigger convolution kernel size it produces richer resolution Comic-Style Pictures implementation with 6 times lesser number of parameters and with just 25 extra epoch trained on a dataset of less than 1000 which breaks the myth that all GAN need mammoth amount of data. Our network reduces the density of the Gan architecture by using Depthwise Separable Convolution which does the convolution operation on each of the RGB channels separately then we use a Point-Wise Convolution to bring back the network into required channel number using 1 by 1 kernel.This reduces the number of parameters substantially and makes it extreme light-weight and suitable for mobile phones and edge devices. The architecture mentioned in the present paper make use of Parameterised Batch Normalization Goodfellow etc al. (Deep Learning OPTIMIZATION FOR TRAINING DEEP MODELS page 320) which makes the network to use the advantage of Batch Norm for easier training while maintaining the non-linear feature capture by inducing the learnable parametersKeywords: comic stylisation from camera image using GAN, creating 2D animated movie style custom stickers from images, depth-wise separable convolutional neural network for light-weight GAN architecture for EDGE devices, GAN architecture for 2D animated cartoonizing neural style, neural style transfer for edge, model distilation, perceptual loss
Procedia PDF Downloads 13382 Genome-Wide Analysis Identifies Locus Associated with Parathyroid Hormone Levels
Authors: Antonela Matana, Dubravka Brdar, Vesela Torlak, Marijana Popovic, Ivana Gunjaca, Ozren Polasek, Vesna Boraska Perica, Maja Barbalic, Ante Punda, Caroline Hayward, Tatijana Zemunik
Abstract:
Parathyroid hormone (PTH) plays a critical role in the regulation of bone mineral metabolism and calcium homeostasis. Higher PTH levels are associated with heart failure, hypertension, coronary artery disease, cardiovascular mortality and poorer bone health. A twin study estimated that 60% of the variation in PTH concentrations is genetically determined. Only one GWAS of PTH concentration has been reported to date. Identified loci explained 4.5% of the variance in circulating PTH, suggesting that additional genetic variants remain undiscovered. Therefore, the aim of this study was to identify novel genetic variants associated with PTH levels in a general population. We have performed a GWAS meta-analysis on 2596 individuals originating from three Croatian cohorts: City of Split and the Islands of Korčula and Vis, within a large-scale project of “10,001 Dalmatians”. A total of 7 411 206 variants, imputed using the 1000 Genomes reference panel, with minor allele frequency ≥ 1% and Rsq ≥ 0.5 were analyzed for the association. GWAS within each data set was performed under an additive model, controlling for age, gender and relatedness. Meta-analysis was conducted using the inverse-variance fixed-effects method. Furthermore, to identify sex-specific effects, we have conducted GWAS meta-analyses analyzing males and females separately. In addition, we have performed biological pathway analysis. Four SNPs, representing one locus, reached genome-wide significance. The most significant SNP was rs11099476 on chromosome 4 (P=1.15x10-8), which explained 1.14 % of the variance in PTH. The SNP is located near the protein-coding gene RASGEF1B. Additionally, we detected suggestive association with SNPs, rs77178854 located on chromosome 2 in the DPP10 gene (P=2.46x10-7) and rs481121 located on chromosome 1 (P=3.58x10-7) near the GRIK1 gene. One of the top hits detected in the main meta-analysis, intron variant rs77178854 located within DPP10 gene, reached genome-wide significance in females (P=2.21x10-9). No single locus was identified in the meta-analysis in males. Fifteen biological pathways were functionally enriched at a P<0.01, including muscle contraction, ion homeostasis and cardiac conduction as the most significant pathways. RASGEF1B is the guanine nucleotide exchange factor, known to be associated with height, bone density, and hip. DPP10 encodes a membrane protein that is a member of the serine proteases family, which binds specific voltage-gated potassium channels and alters their expression and biophysical properties. In conclusion, we identified 2 novel loci associated with PTH levels in a general population, providing us with further insights into the genetics of this complex trait.Keywords: general population, genome-wide association analysis, parathyroid hormone, single nucleotide polymorphisms.
Procedia PDF Downloads 22681 Acceleration and Deceleration Behavior in the Vicinity of a Speed Camera, and Speed Section Control
Authors: Jean Felix Tuyisingize
Abstract:
Speeding or inappropriate speed is a major problem worldwide, contributing to 10-15% of road crashes and 30% of fatal injury crashes. The consequences of speeding put the driver's life at risk and the lives of other road users like motorists, cyclists, and pedestrians. To control vehicle speeds, governments, and traffic authorities enforced speed regulations through speed cameras and speed section control, which monitor all vehicle speeds and detect plate numbers to levy penalties. However, speed limit violations are prevalent, even on motorways with speed cameras. The problem with speed cameras is that they alter driver behaviors, and their effect declines with increasing distance from the speed camera location. Drivers decelerate short distances before the camera and vigorously accelerate above the speed limit just after passing by the camera. The sudden decelerating near cameras causes the drivers to try to make up for lost time after passing it, and they do this by speeding up, resulting in a phenomenon known as the "Kangaroo jump" or "V-profile" around camera/ASSC areas. This study investigated the impact of speed enforcement devices, specifically Average Speed Section Control (ASSCs) and fixed cameras, on acceleration and deceleration events within their vicinity. The research employed advanced statistical and Geographic Information System (GIS) analysis on naturalistic driving data, to uncover speeding patterns near the speed enforcement systems. The study revealed a notable concentration of events within a 600-meter radius of enforcement devices, suggesting their influence on driver behaviors within a specific range. However, most of these events are of low severity, suggesting that drivers may not significantly alter their speed upon encountering these devices. This behavior could be attributed to several reasons, such as consistently maintaining safe speeds or using real-time in-vehicle intervention systems. The complexity of driver behavior is also highlighted, indicating the potential influence of factors like traffic density, road conditions, weather, time of day, and driver characteristics. Further, the study highlighted that high-severity events often occurred outside speed enforcement zones, particularly around intersections, indicating these as potential hotspots for drastic speed changes. These findings call for a broader perspective on traffic safety interventions beyond reliance on speed enforcement devices. However, the study acknowledges certain limitations, such as its reliance on a specific geographical focus, which may impact the broad applicability of the findings. Additionally, the severity of speed modification events was categorized into low, medium, and high, which could oversimplify the continuum of speed changes and potentially mask trends within each category. This research contributes valuable insights to traffic safety and driver behavior literature, illuminating the complexity of driver behavior and the potential influence of factors beyond the presence of speed enforcement devices. Future research directions may employ various categories of event severity. They may also explore the role of in-vehicle technologies, driver characteristics, and a broader set of environmental variables in driving behavior and traffic safety.Keywords: acceleration, deceleration, speeding, inappropriate speed, speed enforcement cameras
Procedia PDF Downloads 3580 Increased Stability of Rubber-Modified Asphalt Mixtures to Swelling, Expansion and Rebound Effect during Post-Compaction
Authors: Fernando Martinez Soto, Gaetano Di Mino
Abstract:
The application of rubber into bituminous mixtures requires attention and care during mixing and compaction. Rubber modifies the properties because it reacts in the internal structure of bitumen at high temperatures changing the performance of the mixture (interaction process of solvents with binder-rubber aggregate). The main change is the increasing of the viscosity and elasticity of the binder due to the larger sizes of the rubber particles by dry process but, this positive effect is counteracted by short mixing times, compared to wet technology, and due to the transport processes, curing time and post-compaction of the mixtures. Therefore, negative effects as swelling of rubber particles, rebounding effect of the specimens and thermal changes by different expansion of the structure inside the mixtures, can change the mechanical properties of the rubberized blends. Based on the dry technology, different asphalt-rubber binders using devulcanized or natural rubber (truck and bus tread rubber), have served to demonstrate these effects and how to solve them into two dense-gap graded rubber modified asphalt concrete mixes (RUMAC) to enhance the stability, workability and durability of the compacted samples by Superpave gyratory compactor method. This paper specifies the procedures developed in the Department of Civil Engineering of the University of Palermo during September 2016 to March 2017, for characterizing the post-compaction and mix-stability of the one conventional mixture (hot mix asphalt without rubber) and two gap-graded rubberized asphalt mixes according granulometry for rail sub-ballast layers with nominal size of Ø22.4mm of aggregates according European standard. Thus, the main purpose of this laboratory research is the application of ambient ground rubber from scrap tires processed at conventional temperature (20ºC) inside hot bituminous mixtures (160-220ºC) as a substitute for 1.5%, 2% and 3% by weight of the total aggregates (3.2%, 4.2% and, 6.2% respectively by volumetric part of the limestone aggregates of bulk density equal to 2.81g/cm³) considered, not as a part of the asphalt binder. The reference bituminous mixture was designed with 4% of binder and ± 3% of air voids, manufactured for a conventional bitumen B50/70 at 160ºC-145ºC mix-compaction temperatures to guarantee the workability of the mixes. The proportions of rubber proposed are #60-40% for mixtures with 1.5 to 2% of rubber and, #20-80% for mixture with 3% of rubber (as example, a 60% of Ø0.4-2mm and 40% of Ø2-4mm). The temperature of the asphalt cement is between 160-180 ºC for mixing and 145-160 ºC for compaction, according to the optimal values for viscosity using Brookfield viscometer and 'ring and ball' - penetration tests. These crumb rubber particles act as a rubber-aggregate into the mixture, varying sizes between 0.4mm to 2mm in a first fraction, and 2-4mm as second proportion. Ambient ground rubber with a specific gravity of 1.154g/cm³ is used. The rubber is free of loose fabric, wire, and other contaminants. It was found optimal results in real beams and cylindrical specimens with each HMA mixture reducing the swelling effect. Different factors as temperature, particle sizes of rubber, number of cycles and pressures of compaction that affect the interaction process are explained.Keywords: crumb-rubber, gyratory compactor, rebounding effect, superpave mix-design, swelling, sub-ballast railway
Procedia PDF Downloads 24479 Plasma Collagen XVIII in Response to Intensive Aerobic Running and Aqueous Extraction of Black Crataegus Elbursensis in Male Rats
Authors: A. Abdi, A. Abbasi Daloee, A. Barari
Abstract:
Aim: The adaptations that occur in human body after doing exercises training are a factor to help healthy people stay away from certain diseases. One of the main adaptations is a change in blood circulation, especially in vessels. The increase of capillary density is dependent on the balance between angiogenic and angiostatic factors. Most studies show that the changes made to angiogenic developmental factors resulted from physical exercises indicate the low level of stimulators compared with inhibitors. It is believed that the plasma level of VEGF-A, the important angiogenic factor, is reduced after physical exercise. Findings indicate that the extract of crataegus plant reduces the platelet-derived growth factor receptor (PDGFR) autophosphorylation in human's fibroblast. More importantly, crataegus (1 to 100 mg in liter) clearly leads to the inhibition of PDGFR autophosphorylation in vascular smooth muscle cells (VSMCs). Angiogenesis is a process that can be classified into physiological and pathophysiological forms. collagen XVIII is a part of extracellular protein and heparan sulfate proteoglycans in vascular epithelial and endothelial basement membrane cause the release of endostatin from noncollagenous collagen XVIII. Endostatin inhibits the growth of endothelial cells, inhibits angiogenesis, weakens different types of cancer, and the growth of tumors. The purpose of the current study was to investigate the effect of intensive aerobic running with or without aqueous extraction of black Crataegus elbursensis on Collagen XVIII in male rats. Design: Thirty-two Wistar male rats (4-6 weeks old, 125-135 gr weight) were acquired from the Pasteur's Institute (Amol, Mazandaran), and randomly assigned into control (n = 16) and training (n = 16) groups. Rats were further divided into saline-control (SC) (n=8), saline-training (ST) (n=8), crataegus pentaegyna extraction -control (CPEC) (n=8), and crataegus pentaegyna extraction - training (CPET) (n=8). The control (SC and CPEC) groups remained sedentary; whereas the training groups underwent a high running exercise program. plasma were excised and immediately frozen in liquid nitrogen. Statistical analysis was performed using a one way analysis of variance and Tukey test. Significance was accepted at P = 0.05. Results: The results show that aerobic exercise group had the highest concentration collagen XVIII compared to other groups and then respectively black crataegus, training-crataegus and control groups. Conclusion: In general, researchers in this study concluded that the increase of collagen XVIII (albeit insignificant) as a result of physical activity and consumption of black crataegus extract could possibly serve as a regional inhibitor of angiogenesis and another evidence for the anti-cancer effects of physical activities. Since the research has not managed in this study to measure the amount of plasma endostatin, it is suggested that both indices are measured with important angiogenic factors so that we can have a more accurate interpretation of changes to angiogenic and angiostatic factors resulted from physical exercises.Keywords: aerobic running, Crataegus elbursensis, Collagen XVIII
Procedia PDF Downloads 32578 Fibroblast Compatibility of Core-Shell Coaxially Electrospun Hybrid Poly(ε-Caprolactone)/Chitosan Scaffolds
Authors: Hilal Turkoglu Sasmazel, Ozan Ozkan, Seda Surucu
Abstract:
Tissue engineering is the field of treating defects caused by injuries, trauma or acute/chronic diseases by using artificial scaffolds that mimic the extracellular matrix (ECM), the natural biological support for the tissues and cells within the body. The main aspects of a successful artificial scaffold are (i) large surface area in order to provide multiple anchorage points for cells to attach, (ii) suitable porosity in order to achieve 3 dimensional growth of the cells within the scaffold as well as proper transport of nutrition, biosignals and waste and (iii) physical, chemical and biological compatibility of the material in order to obtain viability throughout the healing process. By hybrid scaffolds where two or more different materials were combined with advanced fabrication techniques into complex structures, it is possible to combine the advantages of individual materials into one single structure while eliminating the disadvantages of each. Adding this to the complex structure provided by advanced fabrication techniques enables obtaining the desired aspects of a successful artificial tissue scaffold. In this study, fibroblast compatibility of poly(ε-caprolactone) (PCL)/chitosan core-shell electrospun hybrid scaffolds with proper mechanical, chemical and physical properties successfully developed in our previous study was investigated. Standard 7-day cell culture was carried out with L929 fibroblast cell line. The viability of the cells cultured with the scaffolds was monitored with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay for every 48 h starting with 24 h after the initial seeding. In this assay, blank commercial tissue culture polystyrene (TCPS) Petri dishes, single electrospun PCL and single electrospun chitosan mats were used as control in order to compare and contrast the performance of the hybrid scaffolds. The adhesion, proliferation, spread and growth of the cells on/within the scaffolds were observed visually on the 3rd and the 7th days of the culture period with confocal laser scanning microscopy (CSLM) and scanning electron microscopy (SEM). The viability assay showed that the hybrid scaffolds caused no toxicity for fibroblast cells and provided a steady increase in cell viability, effectively doubling the cell density for every 48 h for the course of 7 days, as compared to TCPS, single electrospun PCL or chitosan mats. The cell viability on the hybrid scaffold was ~2 fold better compared to TCPS because of its 3D ECM-like structure compared to 2D flat surface of commercially cell compatible TCPS, and the performance was ~2 fold and ~10 fold better compared to single PCL and single chitosan mats, respectively, even though both fabricated similarly with electrospinning as non-woven fibrous structures, because single PCL and chitosan mats were either too hydrophobic or too hydrophilic to maintain cell attachment points. The viability results were verified with visual images obtained with CSLM and SEM, in which cells found to achieve characteristic spindle-like fibroblast shape and spread on the surface as well within the pores successfully at high densities.Keywords: chitosan, core-shell, fibroblast, electrospinning, PCL
Procedia PDF Downloads 17777 Characterizing the Spatially Distributed Differences in the Operational Performance of Solar Power Plants Considering Input Volatility: Evidence from China
Authors: Bai-Chen Xie, Xian-Peng Chen
Abstract:
China has become the world's largest energy producer and consumer, and its development of renewable energy is of great significance to global energy governance and the fight against climate change. The rapid growth of solar power in China could help achieve its ambitious carbon peak and carbon neutrality targets early. However, the non-technical costs of solar power in China are much higher than at international levels, meaning that inefficiencies are rooted in poor management and improper policy design and that efficiency distortions have become a serious challenge to the sustainable development of the renewable energy industry. Unlike fossil energy generation technologies, the output of solar power is closely related to the volatile solar resource, and the spatial unevenness of solar resource distribution leads to potential efficiency spatial distribution differences. It is necessary to develop an efficiency evaluation method that considers the volatility of solar resources and explores the mechanism of the influence of natural geography and social environment on the spatially varying characteristics of efficiency distribution to uncover the root causes of managing inefficiencies. The study sets solar resources as stochastic inputs, introduces a chance-constrained data envelopment analysis model combined with the directional distance function, and measures the solar resource utilization efficiency of 222 solar power plants in representative photovoltaic bases in northwestern China. By the meta-frontier analysis, we measured the characteristics of different power plant clusters and compared the differences among groups, discussed the mechanism of environmental factors influencing inefficiencies, and performed statistical tests through the system generalized method of moments. Rational localization of power plants is a systematic project that requires careful consideration of the full utilization of solar resources, low transmission costs, and power consumption guarantee. Suitable temperature, precipitation, and wind speed can improve the working performance of photovoltaic modules, reasonable terrain inclination can reduce land cost, and the proximity to cities strongly guarantees the consumption of electricity. The density of electricity demand and high-tech industries is more important than resource abundance because they trigger the clustering of power plants to result in a good demonstration and competitive effect. To ensure renewable energy consumption, increased support for rural grids and encouraging direct trading between generators and neighboring users will provide solutions. The study will provide proposals for improving the full life-cycle operational activities of solar power plants in China to reduce high non-technical costs and improve competitiveness against fossil energy sources.Keywords: solar power plants, environmental factors, data envelopment analysis, efficiency evaluation
Procedia PDF Downloads 9276 Theoretical Study of the Photophysical Properties and Potential Use of Pseudo-Hemi-Indigo Derivatives as Molecular Logic Gates
Authors: Christina Eleftheria Tzeliou, Demeter Tzeli
Abstract:
Introduction: Molecular Logic Gates (MLGs) are molecular machines that can perform complex work, such as solving logic operations. Molecular switches, which are molecules that can experience chemical changes are examples of successful types of MLGs. Recently, Quintana-Romero and Ariza-Castolo studied experimentally six stable pseudo-hemi-indigo-derived MLGs capable of solving complex logic operations. The MLG design relies on a molecular switch that experiences Z and E isomerism, thus the molecular switch's axis has to be a double bond. The hemi-indigo structure was preferred for the assembly of molecular switches due to its interaction with visible light. Z and E pseudo-hemi-indigo isomers can also be utilized for selective isomerization as they have distinct absorption spectra. Methodology: Here, the photophysical properties of pseudo-hemi-indigo derivatives are examined, i.e., derivatives of molecule 1 with anthracene, naphthalene, phenanthrene, pyrene, and pyrrole. In conjunction with some trials that were conducted, the level of theory mentioned subsequently was determined. The structures under study were optimized in both cis and trans conformations at the PBE0/6-31G(d,p) level of theory. The absorption spectra of the structures were calculated at PBE0/DEF2TZVP. In all cases, the absorption spectra of the studied systems were calculated including up to 50 singlet- and triplet-spin excited electronic states. Transition states (cis → cis, cis → trans, and trans → trans) were obtained in cases where it was possible, with PBE0/6-31G(d,p) for the optimization of the transition states and PBE0/DEF2TZVP for the respective absorption spectra. Emission spectra were obtained for the first singlet state of each molecule in cis both and trans conformations in PBE0/DEF2TZVP as well. All studies were performed in chloroform solvent that was added as a dielectric constant and the polarizable continuum model was also employed. Findings: Shifts of up to 25 nm are observed in the absorption spectra due to cis-trans isomerization, while the transition state is shifted up to about 150 nm. The electron density distribution is also examined, where charge transfer and electron transfer phenomena are observed regarding the three excitations of interest, i.e., H-1 → L, H → L and H → L+1. Emission spectra calculations were also carried out at PBE0/DEF2TZVP for the complete investigation of these molecules. Using protonation as input, selected molecules act as MLGs. Conclusion: Theoretical data so far indicate that both cis-trans isomerization, and cis-cis and trans-trans conformer isomerization affect the UV-visible absorption and emission spectra. Specifically, shifts of up to 30 nm are observed, while the transition state is shifted up to about 150 nm in cis-cis isomerization. The computational data obtained are in agreement with available experimental data, which have predicted that the pyrrole derivative is a MLG at 445 nm and 400 nm using protonation as input, while the anthracene derivative is a MLG that operates at 445 nm using protonation as input. Finally, it was found that selected molecules are candidates as MLG using protonation and light as inputs. These MLGs could be used as chemical sensors or as particular intracellular indicators, among several other applications. Acknowledgements: The author acknowledges the Hellenic Foundation for Research and Innovation for the financial support of this project (Fellowship Number: 21006).Keywords: absorption spectra, DFT calculations, isomerization, molecular logic gates
Procedia PDF Downloads 2875 Low-carbon Footprint Diluents in Solvent Extraction for Lithium-ion Battery Recycling
Authors: Abdoulaye Maihatchi Ahamed, Zubin Arora, Benjamin Swobada, Jean-yves Lansot, Alexandre Chagnes
Abstract:
Lithium-ion battery (LiB) is the technology of choice in the development of electric vehicles. But there are still many challenges, including the development of positive electrode materials exhibiting high cycle ability, high energy density, and low environmental impact. For this latter, LiBs must be manufactured in a circular approach by developing the appropriate strategies to reuse and recycle them. Presently, the recycling of LiBs is carried out by the pyrometallurgical route, but more and more processes implement or will implement the hydrometallurgical route or a combination of pyrometallurgical and hydrometallurgical operations. After producing the black mass by mineral processing, the hydrometallurgical process consists in leaching the black mass in order to uptake the metals contained in the cathodic material. Then, these metals are extracted selectively by liquid-liquid extraction, solid-liquid extraction, and/or precipitation stages. However, liquid-liquid extraction combined with precipitation/crystallization steps is the most implemented operation in the LiB recycling process to selectively extract copper, aluminum, cobalt, nickel, manganese, and lithium from the leaching solution and precipitate these metals as high-grade sulfate or carbonate salts. Liquid-liquid extraction consists in contacting an organic solvent and an aqueous feed solution containing several metals, including the targeted metal(s) to extract. The organic phase is non-miscible with the aqueous phase. It is composed of an extractant to extract the target metals and a diluent, which is usually aliphatic kerosene produced from the petroleum industry. Sometimes, a phase modifier is added in the formulation of the extraction solvent to avoid the third phase formation. The extraction properties of the diluent do not depend only on the chemical structure of the extractant, but it may also depend on the nature of the diluent. Indeed, the interactions between the diluent can influence more or less the interactions between extractant molecules besides the extractant-diluent interactions. Only a few studies in the literature addressed the influence of the diluent on the extraction properties, while many studies focused on the effect of the extractants. Recently, new low-carbon footprint aliphatic diluents were produced by catalytic dearomatisation and distillation of bio-based oil. This study aims at investigating the influence of the nature of the diluent on the extraction properties of three extractants towards cobalt, nickel, manganese, copper, aluminum, and lithium: Cyanex®272 for nickel-cobalt separation, DEHPA for manganese extraction, and Acorga M5640 for copper extraction. The diluents used in the formulation of the extraction solvents are (i) low-odor aliphatic kerosene produced from the petroleum industry (ELIXORE 180, ELIXORE 230, ELIXORE 205, and ISANE IP 175) and (ii) bio-sourced aliphatic diluents (DEV 2138, DEV 2139, DEV 1763, DEV 2160, DEV 2161 and DEV 2063). After discussing the effect of the diluents on the extraction properties, this conference will address the development of a low carbon footprint process based on the use of the best bio-sourced diluent for the production of high-grade cobalt sulfate, nickel sulfate, manganese sulfate, and lithium carbonate, as well as metal copper.Keywords: diluent, hydrometallurgy, lithium-ion battery, recycling
Procedia PDF Downloads 8874 Peculiarities of Absorption near the Edge of the Fundamental Band of Irradiated InAs-InP Solid Solutions
Authors: Nodar Kekelidze, David Kekelidze, Elza Khutsishvili, Bela Kvirkvelia
Abstract:
The semiconductor devices are irreplaceable elements for investigations in Space (artificial Earth satellite, interplanetary space craft, probes, rockets) and for investigation of elementary particles on accelerators, for atomic power stations, nuclear reactors, robots operating on heavily radiation contaminated territories (Chernobyl, Fukushima). Unfortunately, the most important parameters of semiconductors dramatically worsen under irradiation. So creation of radiation-resistant semiconductor materials for opto and microelectronic devices is actual problem, as well as investigation of complicated processes developed in irradiated solid states. Homogeneous single crystals of InP-InAs solid solutions were grown with zone melting method. There has been studied the dependence of the optical absorption coefficient vs photon energy near fundamental absorption edge. This dependence changes dramatically with irradiation. The experiments were performed on InP, InAs and InP-InAs solid solutions before and after irradiation with electrons and fast neutrons. The investigations of optical properties were carried out on infrared spectrophotometer in temperature range of 10K-300K and 1mkm-50mkm spectral area. Radiation fluencies of fast neutrons was equal to 2·1018neutron/cm2 and electrons with 3MeV, 50MeV up to fluxes of 6·1017electron/cm2. Under irradiation, there has been revealed the exponential type of the dependence of the optical absorption coefficient vs photon energy with energy deficiency. The indicated phenomenon takes place at high and low temperatures as well at impurity different concentration and practically in all cases of irradiation by various energy electrons and fast neutrons. We have developed the common mechanism of this phenomenon for unirradiated materials and implemented the quantitative calculations of distinctive parameter; this is in a satisfactory agreement with experimental data. For the irradiated crystals picture get complicated. In the work, the corresponding analysis is carried out. It has been shown, that in the case of InP, irradiated with electrons (Ф=1·1017el/cm2), the curve of optical absorption is shifted to lower energies. This is caused by appearance of the tails of density of states in forbidden band due to local fluctuations of ionized impurity (defect) concentration. Situation is more complicated in the case of InAs and for solid solutions with composition near to InAs when besides noticeable phenomenon there takes place Burstein effect caused by increase of electrons concentration as a result of irradiation. We have shown, that in certain conditions it is possible the prevalence of Burstein effect. This causes the opposite effect: the shift of the optical absorption edge to higher energies. So in given solid solutions there take place two different opposite directed processes. By selection of solid solutions composition and doping impurity we obtained such InP-InAs, solid solution in which under radiation mutual compensation of optical absorption curves displacement occurs. Obtained result let create on the base of InP-InAs, solid solution radiation-resistant optical materials. Conclusion: It was established the nature of optical absorption near fundamental edge in semiconductor materials and it was created radiation-resistant optical material.Keywords: InAs-InP, electrons concentration, irradiation, solid solutions
Procedia PDF Downloads 20273 Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing
Authors: Vladimir Smirnov, Roman Tominov, Vadim Avilov, Oleg Ageev
Abstract:
The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University.Keywords: nanotechnology, nanocomposites, neuromorphic systems, RRAM, pulsed laser deposition, resistive switching effect
Procedia PDF Downloads 13272 Genomic and Proteomic Variability in Glycine Max Genotypes in Response to Salt Stress
Authors: Faheema Khan
Abstract:
To investigate the ability of sensitive and tolerant genotype of Glycine max to adapt to a saline environment in a field, we examined the growth performance, water relation and activities of antioxidant enzymes in relation to photosynthetic rate, chlorophyll a fluorescence, photosynthetic pigment concentration, protein and proline in plants exposed to salt stress. Ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) were selected and grown hydroponically. After 3 days of proper germination, the seedlings were transferred to Hoagland’s solution (Hoagland and Arnon 1950). The growth chamber was maintained at a photosynthetic photon flux density of 430 μmol m−2 s−1, 14 h of light, 10 h of dark and a relative humidity of 60%. The nutrient solution was bubbled with sterile air and changed on alternate days. Ten-day-old seedlings were given seven levels of salt in the form of NaCl viz., T1 = 0 mM NaCl, T2=25 mM NaCl, T3=50 mM NaCl, T4=75 mM NaCl, T5=100 mM NaCl, T6=125 mM NaCl, T7=150 mM NaCl. The investigation showed that genotype Pusa-24, PK-416 and Pusa-20 appeared to be the most salt-sensitive. genotypes as inferred from their significantly reduced length, fresh weight and dry weight in response to the NaCl exposure. Pusa-37 appeared to be the most tolerant genotype since no significant effect of NaCl treatment on growth was found. We observed a greater decline in the photosynthetic variables like photosynthetic rate, chlorophyll fluorescence and chlorophyll content, in salt-sensitive (Pusa-24) genotype than in salt-tolerant Pusa-37 under high salinity. Numerous primers were verified on ten soybean genotypes obtained from Operon technologies among which 30 RAPD primers shown high polymorphism and genetic variation. The Jaccard’s similarity coefficient values for each pairwise comparison between cultivars were calculated and similarity coefficient matrix was constructed. The closer varieties in the cluster behaved similar in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings.Salt tolerant genotype Pusa-37, was further analysed by 2-Dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the Present study, 173 protein spots were identified. Of these, 40 proteins responsive to salinity were either up- or down-regulated in Pusa-37. Proteomic analysis in salt-tolerant genotype (Pusa-37) led to the detection of proteins involved in a variety of biological processes, such as protein synthesis (12 %), redox regulation (19 %), primary and secondary metabolism (25 %), or disease- and defence-related processes (32 %). In conclusion, the soybean plants in our study responded to salt stress by changing their protein expression pattern. The photosynthetic, biochemical and molecular study showed that there is variability in salt tolerance behaviour in soybean genotypes. Pusa-24 is the salt-sensitive and Pusa-37 is the salt-tolerant genotype. Moreover this study gives new insights into the salt-stress response in soybean and demonstrates the power of genomic and proteomic approach in plant biology studies which finally could help us in identifying the possible regulatory switches (gene/s) controlling the salt tolerant genotype of the crop plants and their possible role in defence mechanism.Keywords: glycine max, salt stress, RAPD, genomic and proteomic variability
Procedia PDF Downloads 42371 A Corpus-Based Study on the Lexical, Syntactic and Sequential Features across Interpreting Types
Authors: Qianxi Lv, Junying Liang
Abstract:
Among the various modes of interpreting, simultaneous interpreting (SI) is regarded as a ‘complex’ and ‘extreme condition’ of cognitive tasks while consecutive interpreters (CI) do not have to share processing capacity between tasks. Given that SI exerts great cognitive demand, it makes sense to posit that the output of SI may be more compromised than that of CI in the linguistic features. The bulk of the research has stressed the varying cognitive demand and processes involved in different modes of interpreting; however, related empirical research is sparse. In keeping with our interest in investigating the quantitative linguistic factors discriminating between SI and CI, the current study seeks to examine the potential lexical simplification, syntactic complexity and sequential organization mechanism with a self-made inter-model corpus of transcribed simultaneous and consecutive interpretation, translated speech and original speech texts with a total running word of 321960. The lexical features are extracted in terms of the lexical density, list head coverage, hapax legomena, and type-token ratio, as well as core vocabulary percentage. Dependency distance, an index for syntactic complexity and reflective of processing demand is employed. Frequency motif is a non-grammatically-bound sequential unit and is also used to visualize the local function distribution of interpreting the output. While SI is generally regarded as multitasking with high cognitive load, our findings evidently show that CI may impose heavier or taxing cognitive resource differently and hence yields more lexically and syntactically simplified output. In addition, the sequential features manifest that SI and CI organize the sequences from the source text in different ways into the output, to minimize the cognitive load respectively. We reasoned the results in the framework that cognitive demand is exerted both on maintaining and coordinating component of Working Memory. On the one hand, the information maintained in CI is inherently larger in volume compared to SI. On the other hand, time constraints directly influence the sentence reformulation process. The temporal pressure from the input in SI makes the interpreters only keep a small chunk of information in the focus of attention. Thus, SI interpreters usually produce the output by largely retaining the source structure so as to relieve the information from the working memory immediately after formulated in the target language. Conversely, CI interpreters receive at least a few sentences before reformulation, when they are more self-paced. CI interpreters may thus tend to retain and generate the information in a way to lessen the demand. In other words, interpreters cope with the high demand in the reformulation phase of CI by generating output with densely distributed function words, more content words of higher frequency values and fewer variations, simpler structures and more frequently used language sequences. We consequently propose a revised effort model based on the result for a better illustration of cognitive demand during both interpreting types.Keywords: cognitive demand, corpus-based, dependency distance, frequency motif, interpreting types, lexical simplification, sequential units distribution, syntactic complexity
Procedia PDF Downloads 18170 Hydraulic Headloss in Plastic Drainage Pipes at Full and Partially Full Flow
Authors: Velitchko G. Tzatchkov, Petronilo E. Cortes-Mejia, J. Manuel Rodriguez-Varela, Jesus Figueroa-Vazquez
Abstract:
Hydraulic headloss, expressed by the values of friction factor f and Manning’s coefficient n, is an important parameter in designing drainage pipes. Their values normally are taken from manufacturer recommendations, many times without sufficient experimental support. To our knowledge, currently there is no standard procedure for hydraulically testing such pipes. As a result of research carried out at the Mexican Institute of Water Technology, a laboratory testing procedure was proposed and applied on 6 and 12 inches diameter polyvinyl chloride (PVC) and high-density dual wall polyethylene pipe (HDPE) drainage pipes. While the PVC pipe is characterized by naturally smooth interior and exterior walls, the dual wall HDPE pipe has corrugated exterior wall and, although considered smooth, a slightly wavy interior wall. The pipes were tested at full and partially full pipe flow conditions. The tests for full pipe flow were carried out on a 31.47 m long pipe at flow velocities between 0.11 and 4.61 m/s. Water was supplied by gravity from a 10 m-high tank in some of the tests, and from a 3.20 m-high tank in the rest of the tests. Pressure was measured independently with piezometer readings and pressure transducers. The flow rate was measured by an ultrasonic meter. For the partially full pipe flow the pipe was placed inside an existing 49.63 m long zero slope (horizontal) channel. The flow depth was measured by piezometers located along the pipe, for flow rates between 2.84 and 35.65 L/s, measured by a rectangular weir. The observed flow profiles were then compared to computer generated theoretical gradually varied flow profiles for different Manning’s n values. It was found that Manning’s n, that normally is assumed constant for a given pipe material, is in fact dependent on flow velocity and pipe diameter for full pipe flow, and on flow depth for partially full pipe flow. Contrary to the expected higher values of n and f for the HDPE pipe, virtually the same values were obtained for the smooth interior wall PVC pipe and the slightly wavy interior wall HDPE pipe. The explanation of this fact was found in Henry Morris’ theory for smooth turbulent conduit flow over isolated roughness elements. Following Morris, three categories of the flow regimes are possible in a rough conduit: isolated roughness (or semi smooth turbulent) flow, wake interference (or hyper turbulent) flow, and skimming (or quasi-smooth) flow. Isolated roughness flow is characterized by friction drag turbulence over the wall between the roughness elements, independent vortex generation, and dissipation around each roughness element. In this regime, the wake and vortex generation zones at each element develop and dissipate before attaining the next element. The longitudinal spacing of the roughness elements and their height are important influencing agents. Given the slightly wavy form of the HDPE pipe interior wall, the flow for this type of pipe belongs to this category. Based on that theory, an equation for the hydraulic friction factor was obtained. The obtained coefficient values are going to be used in the Mexican design standards.Keywords: drainage plastic pipes, hydraulic headloss, hydraulic friction factor, Manning’s n
Procedia PDF Downloads 28369 Zinc Oxide Varistor Performance: A 3D Network Model
Authors: Benjamin Kaufmann, Michael Hofstätter, Nadine Raidl, Peter Supancic
Abstract:
ZnO varistors are the leading overvoltage protection elements in today’s electronic industry. Their highly non-linear current-voltage characteristics, very fast response times, good reliability and attractive cost of production are unique in this field. There are challenges and questions unsolved. Especially, the urge to create even smaller, versatile and reliable parts, that fit industry’s demands, brings manufacturers to the limits of their abilities. Although, the varistor effect of sintered ZnO is known since the 1960’s, and a lot of work was done on this field to explain the sudden exponential increase of conductivity, the strict dependency on sinter parameters, as well as the influence of the complex microstructure, is not sufficiently understood. For further enhancement and down-scaling of varistors, a better understanding of the microscopic processes is needed. This work attempts a microscopic approach to investigate ZnO varistor performance. In order to cope with the polycrystalline varistor ceramic and in order to account for all possible current paths through the material, a preferably realistic model of the microstructure was set up in the form of three-dimensional networks where every grain has a constant electric potential, and voltage drop occurs only at the grain boundaries. The electro-thermal workload, depending on different grain size distributions, was investigated as well as the influence of the metal-semiconductor contact between the electrodes and the ZnO grains. A number of experimental methods are used, firstly, to feed the simulations with realistic parameters and, secondly, to verify the obtained results. These methods are: a micro 4-point probes method system (M4PPS) to investigate the current-voltage characteristics between single ZnO grains and between ZnO grains and the metal electrode inside the varistor, micro lock-in infrared thermography (MLIRT) to detect current paths, electron back scattering diffraction and piezoresponse force microscopy to determine grain orientations, atom probe to determine atomic substituents, Kelvin probe force microscopy for investigating grain surface potentials. The simulations showed that, within a critical voltage range, the current flow is localized along paths which represent only a tiny part of the available volume. This effect could be observed via MLIRT. Furthermore, the simulations exhibit that the electric power density, which is inversely proportional to the number of active current paths, since this number determines the electrical active volume, is dependent on the grain size distribution. M4PPS measurements showed that the electrode-grain contacts behave like Schottky diodes and are crucial for asymmetric current path development. Furthermore, evaluation of actual data suggests that current flow is influenced by grain orientations. The present results deepen the knowledge of influencing microscopic factors on ZnO varistor performance and can give some recommendations on fabrication for obtaining more reliable ZnO varistors.Keywords: metal-semiconductor contact, Schottky diode, varistor, zinc oxide
Procedia PDF Downloads 28368 Microplastics in Urban Environment – Coimbra City Case Study
Authors: Inês Amorim Leitão, Loes van Shaick, António Dinis Ferreira, Violette Geissen
Abstract:
Plastic pollution is a growing concern worldwide: plastics are commercialized in large quantities and it takes a long time for them to degrade. When in the environment, plastic is fragmented into microplastics (<5mm), which have been found in all environmental compartments at different locations. Microplastics contribute to the environmental pollution in water, air and soil and are linked to human health problems. The progressive increase of population living in cities led to the aggravation of the pollution problem worldwide, especially in urban environments. Urban areas represent a strong source of pollution, through the roads, industrial production, wastewater, landfills, etc. It is expected that pollutants such as microplastics are transported diffusely from the sources through different pathways such as wind and rain. Therefore, it is very complex to quantify, control and treat these pollutants, designated current problematic issues by the European Commission. Green areas are pointed out by experts as natural filters for contaminants in cities, through their capacity of retention by vegetation. These spaces have thus the capacity to control the load of pollutants transported. This study investigates the spatial distribution of microplastics in urban soils of different land uses, their transport through atmospheric deposition, wind erosion, runoff and streams, as well as their deposition in vegetation like grass and tree leaves in urban environment. Coimbra, a medium large city located in the central Portugal, is the case-study. All the soil, sediments, water and vegetation samples were collected in Coimbra and were later analyzed in the Wageningen University & Research laboratory. Microplastics were extracted through the density separation using Sodium Phosphate as solution (~1.4 g cm−3) and filtration methods, visualized under a stereo microscope and identified using the u-FTIR method. Microplastic particles were found in all the different samples. In terms of soils, higher concentrations of microplastics were found in green parks, followed by landfills and industrial places, and the lowest concentrations in forests and pasture land-uses. Atmospheric deposition and streams after rainfall events seems to represent the strongest pathways of microplastics. Tree leaves can retain microplastics on their surfaces. Small leaves such as needle leaves seem to present higher amounts of microplastics per leaf area than bigger leaves. Rainfall episodes seem to reduce the concentration of microplastics on leaves surface, which suggests the wash of microplastics down to lower levels of the tree or to the soil. When in soil, different types of microplastics could be transported to the atmosphere through wind erosion. Grass seems to present high concentrations of microplastics, and the enlargement of the grass cover leads to a reduction of the amount of microplastics in soil, but also of the microplastics moved from the ground to the atmosphere by wind erosion. This study proof that vegetation can help to control the transport and dispersion of microplastics. In order to control the entry and the concentration of microplastics in the environment, especially in cities, it is essential to defining and evaluating nature-based land-use scenarios, considering the role of green urban areas in filtering small particles.Keywords: microplastics, cities, sources, pathways, vegetation
Procedia PDF Downloads 6067 Guiding Urban Development in a Traditional Neighbourhood: Case Application of Kolkata
Authors: Nabamita Nath, Sanghamitra Sarkar
Abstract:
Urban development in traditional neighbourhoods of cities is undergoing a sea change due to imposition of irregular development patterns on a predominantly inclusive urban fabric. In recent times, traditional neighbourhoods of Kolkata have experienced irregular urban development which has resulted in transformation of its immediate urban character. The goal is to study and analyse impact of new urban developments within traditional neighbourhoods of Kolkata and establish development guidelines to balance the old with the new. Various cities predominantly in third world countries are also experiencing similar development patterns in their traditional neighbourhoods. Existing literature surveys of development patterns in such neighbourhoods have established 9 major parameters viz. edge, movement, node, landmark, size-density, pattern-grain-texture, open spaces, urban spaces, urban form and views-vistas of the neighbourhood. To evaluate impact of urban development in traditional neighbourhoods of Kolkata, 3 different areas have been chronologically selected based on their settlement patterns. Parameters established through literature surveys have been applied to the selected areas to study and analyse the existing patterns of development. The main sources of this study included extensive on-site surveys, academic archive, census data, organisational records and informational websites. Applying the established parameters, 5 major conclusions were derived. Firstly, it was found that pedestrian friendly neighbourhoods of the city were becoming more car-centric. This has resulted in loss of interactive and social spaces which defined the cultural heritage of Kolkata. Secondly, the urban pattern which was composed of dense and compact fabric is gradually losing its character due to incorporation of new building typologies. Thirdly, the new building typologies include gated communities with private open spaces which is a stark departure from the existing built typology. However, these open spaces have not contributed in creation of inclusive public places for the community which are a significant part of such heritage neighbourhood precincts. Fourthly, commercial zones that primarily developed along major access routes have now infiltrated within these neighbourhoods. Gated communities do not favour formation of on-street commercial activities generating haphazard development patterns. Lastly, individual residential buildings that reflected Indo-saracenic and Neo-gothic architectural styles are converting into multi-storeyed residential apartments. As a result, the axis that created a definite visual identity for a neighbourhood is progressively following an irregular pattern. Thus, uniformity of the old skyline is gradually becoming inconsistent. The major issue currently is threat caused by irregular urban development to heritage zones and buildings of traditional neighbourhoods. Streets, lanes, courtyards, open spaces and buildings of old neighbourhoods imparted a unique cultural identity to the city that is disappearing with emerging urban development patterns. It has been concluded that specific guidelines for urban development should be regulated primarily based on existing urban form of traditional neighbourhoods. Such neighbourhood development strategies should be formulated for various cities of third world countries to control irregular developments thereby balancing heritage and development.Keywords: heritage, Kolkata, traditional neighbourhood, urban development
Procedia PDF Downloads 18266 Solid Polymer Electrolyte Membranes Based on Siloxane Matrix
Authors: Natia Jalagonia, Tinatin Kuchukhidze
Abstract:
Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculatedKeywords: synthesis, PMHS, membrane, electrolyte
Procedia PDF Downloads 25865 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products
Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet
Abstract:
All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis
Procedia PDF Downloads 18964 Analysis of the Interests, Conflicts and Power Resources in the Urban Development in the Megacity of Sao Paulo
Authors: A. G. Back
Abstract:
Urban planning is a relevant tool to address, in a systemic way, several sectoral policies capable of linking the urban agenda with the reduction of socio-environmental risks. The Sao Paulo’s master plan (2014) presents innovations capable of promoting the transition to sustainability in the urban space, with a view to its regulatory instruments related to i) promotion of density in the axes of mass transport involving the mixture of commercial, residential, services, and leisure uses (principles related to the compact city); ii) vulnerabilities reduction based on housing policies including regular sources of funds for social housing and land reservation in urbanized areas; iii) reserve of green areas in the city to create parks and environmental regulations for new buildings focused on reducing the effects of heat island and improving urban drainage. However, its long-term implementation involves distributive conflicts and can undergo changes in different political, economic, and social contexts over time. Thus, the main objective of this paper is to identify and analyze the dynamics of conflicts of interest between social groups in the implementation of Sao Paulo’s urban development policy, particularly in relation to recent attempts at a (re) interpretation of the Master Plan guidelines, in view of the proposals for revision of the urban zoning law. In this sense, we seek to identify the demands, narratives of urban actors, including the real estate market, middle-class neighborhood associations ('not in my backyard' movements), and social housing rights movements. And we seek to analyze the power resources that these actors mobilize to influence the decision-making process, involving five categories: social capital, political access; discursive resource; media, juridical resource. The major findings of this research suggest that the interests and demands of the real estate market do not always prevail in urban regulation. After all, other actors also press for the definition of urban law with interests opposite to those of the real estate market. This is the case of associations of middle-class neighborhoods, which work to protect the characteristics of the locality, acting, in general, to prevent constructive and population densification in neighborhoods well located near the center, in São Paulo. One of the main demands of these “not in my backyard” movements is the delimitation of exclusively residential areas in the central region of the city, which is not only contrary to the interests of the real state market but also contrary to the principles of the compact city. On the other hand, social housing rights movements have also made progress in delimiting special areas of social interest in well-located and valued areas in the city dedicated to building social housing, also contrary to the interests of the real estate market. An urban development that follows the principles of the compact city must take into account the insertion of low-income populations in well-located regions; otherwise, such a development model may continue to push the less favored to the peripheries towards the preservation areas and/or risk areas.Keywords: interest groups, Sao Paulo, sustainable urban development, urban policies implementation
Procedia PDF Downloads 11163 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry
Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood
Abstract:
The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.Keywords: ADV, experimental data, multiple Reynolds number, post-processing
Procedia PDF Downloads 14962 Climate Change Adaptation Success in a Low Income Country Setting, Bangladesh
Authors: Tanveer Ahmed Choudhury
Abstract:
Background: Bangladesh is one of the largest deltas in the world, with high population density and high rates of poverty and illiteracy. 80% of the country is on low-lying floodplains, leaving the country one of the most vulnerable to the adverse effects of climate change: sea level rise, cyclones and storms, salinity intrusion, rising temperatures and heavy monsoon downpours. Such climatic events already limit Economic Development in the country. Although Bangladesh has had little responsibility in contributing to global climatic change, it is vulnerable to both its direct and indirect impacts. Real threats include reduced agricultural production, worsening food security, increased incidence of flooding and drought, spreading disease and an increased risk of conflict over scarce land and water resources. Currently, 8.3 million Bangladeshis live in cyclone high risk areas. However, by 2050 this is expected to grow to 20.3 million people, if proper adaptive actions are not taken. Under a high emissions scenario, an additional 7.6 million people will be exposed to very high salinity by 2050 compared to current levels. It is also projected that, an average of 7.2 million people will be affected by flooding due to sea level rise every year between 2070-2100 and If global emissions decrease rapidly and adaptation interventions are taken, the population affected by flooding could be limited to only about 14,000 people. To combat the climate change adverse effects, Bangladesh government has initiated many adaptive measures specially in infrastructure and renewable energy sector. Government is investing huge money and initiated many projects which have been proved very success full. Objectives: The objective of this paper is to describe some successful measures initiated by Bangladesh government in its effort to make the country a Climate Resilient. Methodology: Review of operation plan and activities of different relevant Ministries of Bangladesh government. Result: The following initiative projects, programs and activities are considered as best practices for Climate Change adaptation successes for Bangladesh: 1. The Infrastructure Development Company Limited (IDCOL); 2. Climate Change and Health Promotion Unit (CCHPU); 3. The Climate Change Trust Fund (CCTF); 4. Community Climate Change Project (CCCP); 5. Health, Population, Nutrition Sector Development Program (HPNSDP, 2011-2016)- "Climate Change and Environmental Issues"; 6. Ministry of Health and Family Welfare, Bangladesh and WHO Collaboration; - National Adaptation Plan. -"Building adaptation to climate change in health in least developed countries through resilient WASH". 7. COP-21 “Climate and health country profile -2015 Bangladesh. Conclusion: Due to a vast coastline, low-lying land and abundance of rivers, Bangladesh is highly vulnerable to climate change. Having extensive experience with facing natural disasters, Bangladesh has developed a successful adaptation program, which led to a significant reduction in casualties from extreme weather events. In a low income country setting, Bangladesh had successfully adapted various projects and initiatives to combat future Climate Change challenges.Keywords: climate, change, success, Bangladesh
Procedia PDF Downloads 25061 Influence of Water Physicochemical Properties and Vegetation Type on the Distribution of Schistosomiasis Intermediate Host Snails in Nelson Mandela Bay
Authors: Prince S. Campbell, Janine B. Adams, Melusi Thwala, Opeoluwa Oyedele, Paula E. Melariri
Abstract:
Schistosomiasis is an infectious water-borne disease that holds substantial medical and veterinary importance and is transmitted by Schistosoma flatworms. The transmission and spread of the disease are geographically and temporally confined to water bodies (rivers, lakes, lagoons, dams, etc.) inhabited by its obligate intermediate host snails and human water contact. Human infection with the parasite occurs via skin penetration subsequent to exposure to water infested with schistosome cercariae. Environmental factors play a crucial role in the spread of the disease, as the survival of intermediate host snails is dependent on favourable conditions. These factors include physical and chemical components of water, including pH, salinity, temperature, electrical conductivity, dissolved oxygen, turbidity, water hardness, total dissolved solids, and velocity, as well as biological factors such as predator-prey interactions, competition, food availability, and the presence and density of aquatic vegetation. This study evaluated the physicochemical properties of the water bodies, vegetation type, distribution, and habitat presence of the snail intermediate host. A quantitative cross-sectional research design approach was employed in this study. Eight sampling sites were selected based on their proximity to residential areas. Snails and water physicochemical properties were collected over different seasons for 9 months. A simple dip method was used for surface water samples and measurements were done using multiparameter meters. Snails captured using a 300 µm mesh scoop net and predominant plant species were gathered and transported to experts for identification. Vegetation composition and cover were visually estimated and recorded at each sampling point. Data was analysed using R software (version 4.3.1). A total of 844 freshwater snails were collected, with Physa genera accounting for 95.9% of the snails. Bulinus and Biomphalaria snails, which serve as intermediate hosts for the disease, accounted for (0.9%) and (0.6%) respectively. Indicator macrophytes such as Eicchornia crassipes, Stuckenia pectinate, Typha capensis, and floating macroalgae were found in several water bodies. A negative and weak correlation existed between the number of snails and physicochemical properties such as electrical conductivity (r=-0.240), dissolved oxygen (r=-0.185), hardness (r=-0.210), pH (r=-0.235), salinity (r=-0.242), temperature (r=-0.273), and total dissolved solids (r=-0.236). There was no correlation between the number of snails and turbidity (r=-0.070). Moreover, there was a negative and weak correlation between snails and vegetation coverage (r=-0.127). Findings indicated that snail abundance marginally declined with rising physicochemical concentrations, and the majority of snails were located in regions with less vegetation cover. The reduction in Bulinus and Biomphalaria snail populations may also be attributed to other factors, such as competition among the snails. Snails of the Physa genus were abundant due to their noteworthy resilience in difficult environments. These snails have the potential to function as biological control agents in areas where the disease is endemic, as they outcompete other snails, including schistosomiasis intermediate host snails.Keywords: intermediate host snails, physicochemical properties, schistosomiasis, vegetation type
Procedia PDF Downloads 2560 Optical Imaging Based Detection of Solder Paste in Printed Circuit Board Jet-Printing Inspection
Authors: D. Heinemann, S. Schramm, S. Knabner, D. Baumgarten
Abstract:
Purpose: Applying solder paste to printed circuit boards (PCB) with stencils has been the method of choice over the past years. A new method uses a jet printer to deposit tiny droplets of solder paste through an ejector mechanism onto the board. This allows for more flexible PCB layouts with smaller components. Due to the viscosity of the solder paste, air blisters can be trapped in the cartridge. This can lead to missing solder joints or deviations in the applied solder volume. Therefore, a built-in and real-time inspection of the printing process is needed to minimize uncertainties and increase the efficiency of the process by immediate correction. The objective of the current study is the design of an optimal imaging system and the development of an automatic algorithm for the detection of applied solder joints from optical from the captured images. Methods: In a first approach, a camera module connected to a microcomputer and LED strips are employed to capture images of the printed circuit board under four different illuminations (white, red, green and blue). Subsequently, an improved system including a ring light, an objective lens, and a monochromatic camera was set up to acquire higher quality images. The obtained images can be divided into three main components: the PCB itself (i.e., the background), the reflections induced by unsoldered positions or screw holes and the solder joints. Non-uniform illumination is corrected by estimating the background using a morphological opening and subtraction from the input image. Image sharpening is applied in order to prevent error pixels in the subsequent segmentation. The intensity thresholds which divide the main components are obtained from the multimodal histogram using three probability density functions. Determining the intersections delivers proper thresholds for the segmentation. Remaining edge gradients produces small error areas which are removed by another morphological opening. For quantitative analysis of the segmentation results, the dice coefficient is used. Results: The obtained PCB images show a significant gradient in all RGB channels, resulting from ambient light. Using different lightings and color channels 12 images of a single PCB are available. A visual inspection and the investigation of 27 specific points show the best differentiation between those points using a red lighting and a green color channel. Estimating two thresholds from analyzing the multimodal histogram of the corrected images and using them for segmentation precisely extracts the solder joints. The comparison of the results to manually segmented images yield high sensitivity and specificity values. Analyzing the overall result delivers a Dice coefficient of 0.89 which varies for single object segmentations between 0.96 for a good segmented solder joints and 0.25 for single negative outliers. Conclusion: Our results demonstrate that the presented optical imaging system and the developed algorithm can robustly detect solder joints on printed circuit boards. Future work will comprise a modified lighting system which allows for more precise segmentation results using structure analysis.Keywords: printed circuit board jet-printing, inspection, segmentation, solder paste detection
Procedia PDF Downloads 33659 Chemical, Biochemical and Sensory Evaluation of a Quadrimix Complementary Food Developed from Sorghum, Groundnut, Crayfish and Pawpaw Blends
Authors: Ogechi Nzeagwu, Assumpta Osuagwu, Charlse Nkwoala
Abstract:
Malnutrition in infants due to poverty, poor feeding practices, and high cost of commercial complementary foods among others is a concern in developing countries. The study evaluated the proximate, vitamin and mineral compositions, antinutrients and functional properties, biochemical, haematological and sensory evaluation of complementary food made from sorghum, groundnut, crayfish and paw-paw flour blends using standard procedures. The blends were formulated on protein requirement of infants (18 g/day) using Nutrisurvey linear programming software in ratio of sorghum(S), groundnut(G), crayfish(C) and pawpaw(P) flours as 50:25:10:15(SGCP1), 60:20:10:10 (SGCP2), 60:15:15:10 (SGCP3) and 60:10:20:10 (SGCP4). Plain-pap (fermented maize flour)(TCF) and cerelac (commercial complementary food) served as basal and control diets. Thirty weanling male albino rats aged 28-35 days weighing 33-60 g were purchased and used for the study. The rats after acclimatization were fed with gruel produced with the experimental diets and the control with water ad libitum daily for 35days. Effect of the blends on lipid profile, blood glucose, haematological (RBC, HB, PCV, MCV), liver and kidney function and weight gain of the rats were assessed. Acceptability of the gruel was conducted at the end of rat feeding on forty mothers of infants’ ≥ 6 months who gave their informed consent to participate using a 9 point hedonic scale. Data was analyzed for means and standard deviation, analysis of variance and means were separated using Duncan multiple range test and significance judged at 0.05, all using SPSS version 22.0. The results indicated that crude protein, fibre, ash and carbohydrate of the formulated diets were either comparable or higher than values in cerelac. The formulated diets (SGCP1- SGCP4) were significantly (P>0.05) higher in vitamin A and thiamin compared to cerelac. The iron content of the formulated diets SGCP1- SGCP4 (4.23-6.36 mg/100) were within the recommended iron intake of infants (0.55 mg/day). Phytate (1.56-2.55 mg/100g) and oxalate (0.23-0.35 mg/100g) contents of the formulated diets were within the permissible limits of 0-5%. In functional properties, bulk density, swelling index, % dispersibility and water absorption capacity significantly (P<0.05) increased and compared favourably with cerelac. The essential amino acids of the formulated blends were within the amino acid profile of the FAO/WHO/UNU reference protein for children 0.5 -2 years of age. Urea concentration of rats fed with SGCP1-SGCP4 (19.48 mmol/L),(23.76 mmol/L),(24.07 mmol/L),(23.65 mmol/L) respectively was significantly higher than that of rat fed cerelac (16.98 mmol/L); however, plain pap had the least value (9.15 mmol/L). Rats fed with SGCP1-SGCP4 (116 mg/dl), (119 mg/dl), (115 mg/dl), (117 mg/dl) respectively had significantly higher glucose levels those fed with cerelac (108 mg/dl). Liver function parameters (AST, ALP and ALT), lipid profile (triglyceride, HDL, LDL, VLDL) and hematological parameters of rats fed with formulated diets were within normal range. Rats fed SGCP1 gained more weight (90.45 g) than other rats fed with SGCP2-SGCP4 (71.65 g, 79.76 g, 75.68 g), TCF (20.13 g) and cerelac (59.06 g). In all the sensory attributes, the control was preferred with respect to the formulated diets. The formulated diets were generally adequate and may likely have potentials to meet nutrient requirements of infants as complementary food.Keywords: biochemical, chemical evaluation, complementary food, quadrimix
Procedia PDF Downloads 17258 Development of One-Pot Sequential Cyclizations and Photocatalyzed Decarboxylative Radical Cyclization: Application Towards Aspidospermatan Alkaloids
Authors: Guillaume Bélanger, Jean-Philippe Fontaine, Clémence Hauduc
Abstract:
There is an undeniable thirst from organic chemists and from the pharmaceutical industry to access complex alkaloids with short syntheses. While medicinal chemists are interested in the fascinating wide range of biological properties of alkaloids, synthetic chemists are rather interested in finding new routes to access these challenging natural products of often low availability from nature. To synthesize complex polycyclic cores of natural products, reaction cascades or sequences performed one-pot offer a neat advantage over classical methods for their rapid increase in molecular complexity in a single operation. In counterpart, reaction cascades need to be run on substrates bearing all the required functional groups necessary for the key cyclizations. Chemoselectivity is thus a major issue associated with such a strategy, in addition to diastereocontrol and regiocontrol for the overall transformation. In the pursuit of synthetic efficiency, our research group developed an innovative one-pot transformation of linear substrates into bi- and tricyclic adducts applied to the construction of Aspidospermatan-type alkaloids. The latter is a rich class of indole alkaloids bearing a unique bridged azatricyclic core. Despite many efforts toward the synthesis of members of this family, efficient and versatile synthetic routes are still coveted. Indeed, very short, non-racemic approaches are rather scarce: for example, in the cases of aspidospermidine and aspidospermine, syntheses are all fifteen steps and over. We envisaged a unified approach to access several members of the Aspidospermatan alkaloids family. The key sequence features a highly chemoselective formamide activation that triggers a Vilsmeier-Haack cyclization, followed by an azomethine ylide generation and intramolecular cycloaddition. Despite the high density and variety of functional groups on the substrates (electron-rich and electron-poor alkenes, nitrile, amide, ester, enol ether), the sequence generated three new carbon-carbon bonds and three rings in a single operation with good yield and high chemoselectivity. A detailed study of amide, nucleophile, and dipolarophile variations to finally get to the successful combination required for the key transformation will be presented. To complete the indoline fragment of the natural products, we developed an original approach. Indeed, all reported routes to Aspidospermatan alkaloids introduce the indoline or indole early in the synthesis. In our work, the indoline needs to be installed on the azatricyclic core after the key cyclization sequence. As a result, typical Fischer indolization is not suited since this reaction is known to fail on such substrates. We thus envisaged a unique photocatalyzed decarboxylative radical cyclization. The development of this reaction as well as the scope and limitations of the methodology, will also be presented. The original Vilsmeier-Haack and azomethine ylide cyclization sequence as well as the new photocatalyzed decarboxylative radical cyclization will undoubtedly open access to new routes toward polycyclic indole alkaloids and derivatives of pharmaceutical interest in general.Keywords: Aspidospermatan alkaloids, azomethine ylide cycloaddition, decarboxylative radical cyclization, indole and indoline synthesis, one-pot sequential cyclizations, photocatalysis, Vilsmeier-Haack Cyclization
Procedia PDF Downloads 8157 Environmental Forensic Analysis of the Shoreline Microplastics Debris on the Limbe Coastline, Cameroon
Authors: Ndumbe Eric Esongami, Manga Veronica Ebot, Foba Josepha Tendo, Yengong Fabrice Lamfu, Tiku David Tambe
Abstract:
The prevalence and unpleasant nature of plastics pollution constantly observed on beach shore on stormy events has prompt researchers worldwide to thesis on sustainable economic and environmental designs on plastics, especially in Cameroon, a major touristic destination in the Central Africa Region. The inconsistent protocols develop by researchers has added to this burden, thus the morphological nature of microplastic remediation is a call for concerns. The prime aim of the study is to morphologically identify, quantify and forensically understands the distribution of each plastics polymer composition. Duplicates of 2×2 m (4m2) quadrants were sampled in each beach/month over 8 months period across five purposive beaches along the Limbe – Idenau coastline, Cameroon. Collected plastic samples were thoroughly washed and separation done using a 2 mm sieve. Only particles of size, < 2 mm, were considered and forward follow the microplastics laboratory analytical processes. Established step by step methodological procedures of particle filtration, organic matter digestion, density separation, particle extraction and polymer identification including microscope and were applied for the beach microplastics samples. Microplastics were observed in each sample/beach/month with an overall abundance of 241 particles/number weighs 89.15 g in total and with a mean abundance of 2 particles/m2 (0.69 g/m2) and 6 particles/month (2.0 g/m2). The accumulation of beach shoreline MPs rose dramatically towards decreasing size with microbeads and fiber only found in the < 1 mm size fraction. Approximately 75% of beach MPs contamination were found in LDB 2, LDB 1 and IDN beaches/average particles/number while the most dominant polymer type frequently observed also were PP, PE, and PS in all morphologically parameters analysed. Beach MPs accumulation significantly varied temporally and spatially at p = 0.05. ANOVA and Spearman’s rank correlation used shows linear relationships between the sizes categories considered in this study. In terms of polymer MPs analysis, the colour class recorded that white coloured MPs was dominant, 50 particles/number (22.25 g) with recorded abundance/number in PP (25), PE (15) and PS (5). The shape class also revealed that irregularly shaped MPs was dominant, 98 particles/number (30.5 g) with higher abundance/number in PP (39), PE (33), and PS (11). Similarly, MPs type class shows that fragmented MPs type was also dominant, 80 particles/number (25.25 g) with higher abundance/number in PP (30), PE (28) and PS (15). Equally, the sized class forward revealed that 1.5 – 1.99 mm sized ranged MPs had the highest abundance of 102 particles/number (51.77 g) with higher concentration observed in PP (47), PE (41), and PS (7) as well and finally, the weight class also show that 0.01 g weighs MPs was dominated by 98 particles/number (56.57 g) with varied numeric abundance seen in PP (49), PE (29) and PS (13). The forensic investigation of the pollution indicated that majority of the beach microplastic is sourced from the site/nearby area. The investigation could draw useful conclusions regarding the pathways of pollution. The fragmented microplastic, a significant component in the sample, was found to be sourced from recreational activities and partly from fishing boat installations and repairs activities carried out close to the shore.Keywords: forensic analysis, beach MPs, particle/number, polymer composition, cameroon
Procedia PDF Downloads 7956 Urban Heat Islands Analysis of Matera, Italy Based on the Change of Land Cover Using Satellite Landsat Images from 2000 to 2017
Authors: Giuseppina Anna Giorgio, Angela Lorusso, Maria Ragosta, Vito Telesca
Abstract:
Climate change is a major public health threat due to the effects of extreme weather events on human health and on quality of life in general. In this context, mean temperatures are increasing, in particular, extreme temperatures, with heat waves becoming more frequent, more intense, and longer lasting. In many cities, extreme heat waves have drastically increased, giving rise to so-called Urban Heat Island (UHI) phenomenon. In an urban centre, maximum temperatures may be up to 10° C warmer, due to different local atmospheric conditions. UHI occurs in the metropolitan areas as function of the population size and density of a city. It consists of a significant difference in temperature compared to the rural/suburban areas. Increasing industrialization and urbanization have increased this phenomenon and it has recently also been detected in small cities. Weather conditions and land use are one of the key parameters in the formation of UHI. In particular surface urban heat island is directly related to temperatures, to land surface types and surface modifications. The present study concern a UHI analysis of Matera city (Italy) based on the analysis of temperature, change in land use and land cover, using Corine Land Cover maps and satellite Landsat images. Matera, located in Southern Italy, has a typical Mediterranean climate with mild winters and hot and humid summers. Moreover, Matera has been awarded the international title of the 2019 European Capital of Culture. Matera represents a significant example of vernacular architecture. The structure of the city is articulated by a vertical succession of dug layers sometimes excavated or partly excavated and partly built, according to the original shape and height of the calcarenitic slope. In this study, two meteorological stations were selected: MTA (MaTera Alsia, in industrial zone) and MTCP (MaTera Civil Protection, suburban area located in a green zone). In order to evaluate the increase in temperatures (in terms of UHI occurrences) over time, and evaluating the effect of land use on weather conditions, the climate variability of temperatures for both stations was explored. Results show that UHI phenomena is growing in Matera city, with an increase of maximum temperature values at a local scale. Subsequently, spatial analysis was conducted by Landsat satellite images. Four years was selected in the summer period (27/08/2000, 27/07/2006, 11/07/2012, 02/08/2017). In Particular, Landsat 7 ETM+ for 2000, 2006 and 2012 years; Landsat 8 OLI/TIRS for 2017. In order to estimate the LST, Mono Window Algorithm was applied. Therefore, the increase of LST values spatial scale trend has been verified, in according to results obtained at local scale. Finally, the analysis of land use maps over the years by the LST and/or the maximum temperatures measured, show that the development of industrialized area produces a corresponding increase in temperatures and consequently a growth in UHI.Keywords: climate variability, land surface temperature, LANDSAT images, urban heat island
Procedia PDF Downloads 12655 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field
Authors: Yana Snegireva
Abstract:
Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model
Procedia PDF Downloads 7654 Diffusion MRI: Clinical Application in Radiotherapy Planning of Intracranial Pathology
Authors: Pomozova Kseniia, Gorlachev Gennadiy, Chernyaev Aleksandr, Golanov Andrey
Abstract:
In clinical practice, and especially in stereotactic radiosurgery planning, the significance of diffusion-weighted imaging (DWI) is growing. This makes the existence of software capable of quickly processing and reliably visualizing diffusion data, as well as equipped with tools for their analysis in terms of different tasks. We are developing the «MRDiffusionImaging» software on the standard C++ language. The subject part has been moved to separate class libraries and can be used on various platforms. The user interface is Windows WPF (Windows Presentation Foundation), which is a technology for managing Windows applications with access to all components of the .NET 5 or .NET Framework platform ecosystem. One of the important features is the use of a declarative markup language, XAML (eXtensible Application Markup Language), with which you can conveniently create, initialize and set properties of objects with hierarchical relationships. Graphics are generated using the DirectX environment. The MRDiffusionImaging software package has been implemented for processing diffusion magnetic resonance imaging (dMRI), which allows loading and viewing images sorted by series. An algorithm for "masking" dMRI series based on T2-weighted images was developed using a deformable surface model to exclude tissues that are not related to the area of interest from the analysis. An algorithm of distortion correction using deformable image registration based on autocorrelation of local structure has been developed. Maximum voxel dimension was 1,03 ± 0,12 mm. In an elementary brain's volume, the diffusion tensor is geometrically interpreted using an ellipsoid, which is an isosurface of the probability density of a molecule's diffusion. For the first time, non-parametric intensity distributions, neighborhood correlations, and inhomogeneities are combined in one segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) algorithm. A tool for calculating the coefficient of average diffusion and fractional anisotropy has been created, on the basis of which it is possible to build quantitative maps for solving various clinical problems. Functionality has been created that allows clustering and segmenting images to individualize the clinical volume of radiation treatment and further assess the response (Median Dice Score = 0.963 ± 0,137). White matter tracts of the brain were visualized using two algorithms: deterministic (fiber assignment by continuous tracking) and probabilistic using the Hough transform. The proposed algorithms test candidate curves in the voxel, assigning to each one a score computed from the diffusion data, and then selects the curves with the highest scores as the potential anatomical connections. White matter fibers were visualized using a Hough transform tractography algorithm. In the context of functional radiosurgery, it is possible to reduce the irradiation volume of the internal capsule receiving 12 Gy from 0,402 cc to 0,254 cc. The «MRDiffusionImaging» will improve the efficiency and accuracy of diagnostics and stereotactic radiotherapy of intracranial pathology. We develop software with integrated, intuitive support for processing, analysis, and inclusion in the process of radiotherapy planning and evaluating its results.Keywords: diffusion-weighted imaging, medical imaging, stereotactic radiosurgery, tractography
Procedia PDF Downloads 85