Search results for: carbon nanotubes network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7780

Search results for: carbon nanotubes network

4150 Variance-Aware Routing and Authentication Scheme for Harvesting Data in Cloud-Centric Wireless Sensor Networks

Authors: Olakanmi Oladayo Olufemi, Bamifewe Olusegun James, Badmus Yaya Opeyemi, Adegoke Kayode

Abstract:

The wireless sensor network (WSN) has made a significant contribution to the emergence of various intelligent services or cloud-based applications. Most of the time, these data are stored on a cloud platform for efficient management and sharing among different services or users. However, the sensitivity of the data makes them prone to various confidentiality and performance-related attacks during and after harvesting. Various security schemes have been developed to ensure the integrity and confidentiality of the WSNs' data. However, their specificity towards particular attacks and the resource constraint and heterogeneity of WSNs make most of these schemes imperfect. In this paper, we propose a secure variance-aware routing and authentication scheme with two-tier verification to collect, share, and manage WSN data. The scheme is capable of classifying WSN into different subnets, detecting any attempt of wormhole and black hole attack during harvesting, and enforcing access control on the harvested data stored in the cloud. The results of the analysis showed that the proposed scheme has more security functionalities than other related schemes, solves most of the WSNs and cloud security issues, prevents wormhole and black hole attacks, identifies the attackers during data harvesting, and enforces access control on the harvested data stored in the cloud at low computational, storage, and communication overheads.

Keywords: data block, heterogeneous IoT network, data harvesting, wormhole attack, blackhole attack access control

Procedia PDF Downloads 86
4149 Accessibility to Urban Parks for Low-income Residents in Chongqing, China: Perspective from Relative Deprivation

Authors: Junhang Luo

Abstract:

With the transformation of spatial structure and the deepening of urban development, the demand for a better life and the concerns for social resources equities of residents are increasing. As an important social resource, park plays an essential role in building environmentally sustainable cities. Thus, it is important to examine park accessibility for low-income and how it works in relative deprivation, so as to provide all residents with equitable services. Using the network and buffer methods of GIS, this paper analyzes urban park accessibility for low-income residents in Chongqing, China. And then conduct a satisfaction evaluation of park resource accessibility with low-incomes through questionnaire surveys from deprivation dimensions. Results show that the level of park accessibility in Chongqing varies significantly and the degree of relative deprivation is relatively high. Public transportation convenience improves and the number of community park increases contribute positively to improving park accessibility and alleviating the relative deprivation of public resources. Combined with the innovation pattern of social governance in China, it suggests that urban park accessibility needs to be jointly governed and optimized by multiple social resources from the government to the public, and the service efficiency needs the index system and planning standards according to local conditions to improve quality and promote equity. At the same time, building a perfect park system and complete legislation assurance system will also play a positive role in ensuring that all residents can enjoy the urban public space more fairly, especially low-income groups.

Keywords: urban park, accessibility, relative deprivation, GIS network analysis, chongqing

Procedia PDF Downloads 160
4148 Research on Spatial Distribution of Service Facilities Based on Innovation Function: A Case Study of Zhejiang University Zijin Co-Maker Town

Authors: Zhang Yuqi

Abstract:

Service facilities are the boosters for the cultivation and development of innovative functions in innovative cluster areas. At the same time, reasonable service facilities planning can better link the internal functional blocks. This paper takes Zhejiang University Zijin Co-Maker Town as the research object, based on the combination of network data mining and field research and verification, combined with the needs of its internal innovative groups. It studies the distribution characteristics and existing problems of service facilities and then proposes a targeted planning suggestion. The main conclusions are as follows: (1) From the perspective of view, the town is rich in general life-supporting services, but lacking of provision targeted and distinctive service facilities for innovative groups; (2) From the perspective of scale structure, small-scale street shops are the main business form, lack of large-scale service center; (3) From the perspective of spatial structure, service facilities layout of each functional block is too fragile to fit the characteristics of 2aggregation- distribution' of innovation and entrepreneurial activities; (4) The goal of optimizing service facilities planning should be guided for fostering function of innovation and entrepreneurship and meet the actual needs of the innovation and entrepreneurial groups.

Keywords: the cultivation of innovative function, Zhejiang University Zijin Co-Maker Town, service facilities, network data mining, space optimization advice

Procedia PDF Downloads 118
4147 Monte Carlo Risk Analysis of a Carbon Abatement Technology

Authors: Hameed Rukayat Opeyemi, Pericles Pilidis, Pagone Emanuele

Abstract:

Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5 cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbo machinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50 % cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low temperature heat exchanger LTHX (referred to by some authors as air pre-heater the mixed conductive membrane responsible for oxygen transfer and the high temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. This paper discusses techno-economic analysis of four possible layouts of the AZEP cycle. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout) – AZEP 85 % (85 % CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine– AZEP 85 % (85 % CO2 capture). This paper discusses Montecarlo risk analysis of four possible layouts of the AZEP cycle.

Keywords: gas turbine, global warming, green house gases, power plants

Procedia PDF Downloads 473
4146 Evaluation of Redundancy Architectures Based on System on Chip Internal Interfaces for Future Unmanned Aerial Vehicles Flight Control Computer

Authors: Sebastian Hiergeist

Abstract:

It is a common view that Unmanned Aerial Vehicles (UAV) tend to migrate into the civil airspace. This trend is challenging UAV manufacturer in plenty ways, as there come up a lot of new requirements and functional aspects. On the higher application levels, this might be collision detection and avoidance and similar features, whereas all these functions only act as input for the flight control components of the aircraft. The flight control computer (FCC) is the central component when it comes up to ensure a continuous safe flight and landing. As these systems are flight critical, they have to be built up redundantly to be able to provide a Fail-Operational behavior. Recent architectural approaches of FCCs used in UAV systems are often based on very simple microprocessors in combination with proprietary Application-Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA) extensions implementing the whole redundancy functionality. In the future, such simple microprocessors may not be available anymore as they are more and more replaced by higher sophisticated System on Chip (SoC). As the avionic industry cannot provide enough market power to significantly influence the development of new semiconductor products, the use of solutions from foreign markets is almost inevitable. Products stemming from the industrial market developed according to IEC 61508, or automotive SoCs, according to ISO 26262, can be seen as candidates as they have been developed for similar environments. Current available SoC from the industrial or automotive sector provides quite a broad selection of interfaces like, i.e., Ethernet, SPI or FlexRay, that might come into account for the implementation of a redundancy network. In this context, possible network architectures shall be investigated which could be established by using the interfaces stated above. Of importance here is the avoidance of any single point of failures, as well as a proper segregation in distinct fault containment regions. The performed analysis is supported by the use of guidelines, published by the aviation authorities (FAA and EASA), on the reliability of data networks. The main focus clearly lies on the reachable level of safety, but also other aspects like performance and determinism play an important role and are considered in the research. Due to the further increase in design complexity of recent and future SoCs, also the risk of design errors, which might lead to common mode faults, increases. Thus in the context of this work also the aspect of dissimilarity will be considered to limit the effect of design errors. To achieve this, the work is limited to broadly available interfaces available in products from the most common silicon manufacturer. The resulting work shall support the design of future UAV FCCs by giving a guideline on building up a redundancy network between SoCs, solely using on board interfaces. Therefore the author will provide a detailed usability analysis on available interfaces provided by recent SoC solutions, suggestions on possible redundancy architectures based on these interfaces and an assessment of the most relevant characteristics of the suggested network architectures, like e.g. safety or performance.

Keywords: redundancy, System-on-Chip, UAV, flight control computer (FCC)

Procedia PDF Downloads 221
4145 Internal Combustion Engine Fuel Composition Detection by Analysing Vibration Signals Using ANFIS Network

Authors: M. N. Khajavi, S. Nasiri, E. Farokhi, M. R. Bavir

Abstract:

Alcohol fuels are renewable, have low pollution and have high octane number; therefore, they are important as fuel in internal combustion engines. Percentage detection of these alcoholic fuels with gasoline is a complicated, time consuming, and expensive process. Nowadays, these processes are done in equipped laboratories, based on international standards. The aim of this research is to determine percentage detection of different fuels based on vibration analysis of engine block signals. By doing, so considerable saving in time and cost can be achieved. Five different fuels consisted of pure gasoline (G) as base fuel and combination of this fuel with different percent of ethanol and methanol are prepared. For example, volumetric combination of pure gasoline with 10 percent ethanol is called E10. By this convention, we made M10 (10% methanol plus 90% pure gasoline), E30 (30% ethanol plus 70% pure gasoline), and M30 (30% Methanol plus 70% pure gasoline) were prepared. To simulate real working condition for this experiment, the vehicle was mounted on a chassis dynamometer and run under 1900 rpm and 30 KW load. To measure the engine block vibration, a three axis accelerometer was mounted between cylinder 2 and 3. After acquisition of vibration signal, eight time feature of these signals were used as inputs to an Adaptive Neuro Fuzzy Inference System (ANFIS). The designed ANFIS was trained for classifying these five different fuels. The results show suitable classification ability of the designed ANFIS network with 96.3 percent of correct classification.

Keywords: internal combustion engine, vibration signal, fuel composition, classification, ANFIS

Procedia PDF Downloads 404
4144 Historical Tree Height Growth Associated with Climate Change in Western North America

Authors: Yassine Messaoud, Gordon Nigh, Faouzi Messaoud, Han Chen

Abstract:

The effect of climate change on tree growth in boreal and temperate forests has received increased interest in the context of global warming. However, most studies were conducted in small areas and with a limited number of tree species. Here, we examined the height growth responses of seventeen tree species to climate change in Western North America. 37009 stands from forest inventory databases in Canada and USA with varying establishment date were selected. Dominant and co-dominant trees from each stand were sampled to determine top tree height at 50 years breast height age. Height was related to historical mean annual and summer temperatures, annual and summer Palmer Drought Severity Index, tree establishment date, slope, aspect, soil fertility as determined by the rate of carbon organic matter decomposition (carbon/nitrogen), geographic locations (latitude, longitude, and elevation), species range (coastal, interior, and both ranges), shade tolerance and leaf form (needle leaves, deciduous needle leaves, and broadleaves). Climate change had mostly a positive effect on tree height growth. The results explained 62.4% of the height growth variance. Since 1880, height growth increase was greater for coastal, high shade tolerant, and broadleaf species. Height growth increased more on steep slopes and high soil fertility soils. Greater height growth was mostly observed at the leading range and upward. Conversely, some species showed the opposite pattern probably due to the increase of drought (coastal Mediterranean area), precipitation and cloudiness (Alaska and British Columbia) and peculiarity (higher latitudes-lower elevations and vice versa) of western North America topography. This study highlights the role of the species ecological amplitude and traits, and geographic locations as the main factors determining the growth response and its magnitude to the recent global climate change.

Keywords: Height growth, global climate change, species range, species characteristics, species ecological amplitude, geographic locations, western North America

Procedia PDF Downloads 189
4143 Biologically Synthesized Palladium Nanoparticles Impregnated Porous Aluminium Catalyst in CO2 Detection

Authors: I. B. Patel, K. A. Mistry, A. H. Prajapati

Abstract:

Biologically synthesized colloidal Pd nanoparticles were impregnated on porous aluminium. In this paper, the obtained Pd/Al2O3 catalysts were characterized by XRD, SEM, and TEM. The effects of deposited films on the performances of Pd/Al2O3 in adsorption, reduction, and catalytic reaction of CO2 were investigated. The results showed that the deposited films can remarkably improve the dispersion of active components and enhance the reactivity of Pd/Al2O3 catalyst. The catalytic performance of Pd/Al2O3 in term of surface reaction is also enhanced in terms of sensitivity (SF = 850) obtained through conventional CBD method.

Keywords: palladium nanoparticles, Pd/Al2O3, carbon dioxide, aluminium catalyst

Procedia PDF Downloads 447
4142 Glasshouse Experiment to Improve Phytomanagement Solutions for Cu-Polluted Mine Soils

Authors: Marc Romero-Estonllo, Judith Ramos-Castro, Yaiza San Miguel, Beatriz Rodríguez-Garrido, Carmela Monterroso

Abstract:

Mining activity is among the main sources of trace and heavy metal(loid) pollution worldwide, which is a hazard to human and environmental health. That is why several projects have been emerging for the remediation of such polluted places. Phytomanagement strategies draw good performances besides big side benefits. In this work, a glasshouse assay with trace element polluted soils from an old Cu mine ore (NW of Spain) which forms part of the PhytoSUDOE network of phytomanaged contaminated field sites (PhytoSUDOE Project (SOE1/P5/E0189)) was set. The objective was to evaluate improvements induced by the following phytoremediation-related treatments. Three increasingly complex amendments alone or together with plant growth (Populus nigra L. alone and together with Tripholium repens L.) were tested. And three different rhizosphere bioinocula were applied (Plant Growth Promoting Bacteria (PGP), mycorrhiza (MYC), or mixed (PGP+MYC)). After 110 days of growth, plants were collected, biomass was weighed, and tree length was measured. Physical-chemical analyses were carried out to determine pH, effective Cation Exchange Capacity, carbon and nitrogen contents, bioavailable phosphorous (Olsen bicarbonate method), pseudo total element content (microwave acid digested fraction), EDTA extractable metals (complexed fraction), and NH4NO3 extractable metals (easily bioavailable fraction). On plant material, nitrogen content and acid digestion elements were determined. Amendment usage, plant growth, and bioinoculation were demonstrated to improve soil fertility and/or plant health within the time span of this study. Particularly, pH levels increased from 3 (highly acidic) to 5 (acidic) in the worst-case scenario, even reaching 7 (neutrality) in the best plots. Organic matter and pH increments were related to polluting metals’ bioavailability decrements. Plants grew better both with the most complex amendment and the middle one, with few differences due to bioinoculation. Using the less complex amendment (just compost) beneficial effects of bioinoculants were more observable, although plants didn’t thrive very well. On unamended soils, plants neither sprouted nor bloomed. The scheme assayed in this study is suitable for phytomanagement of these kinds of soils affected by mining activity. These findings should be tested now on a larger scale.

Keywords: aided phytoremediation, mine pollution, phytostabilization, soil pollution, trace elements

Procedia PDF Downloads 67
4141 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models

Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai

Abstract:

Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.

Keywords: plant identification, CNN, image processing, vision transformer, classification

Procedia PDF Downloads 105
4140 Digital Forensic Exploration Framework for Email and Instant Messaging Applications

Authors: T. Manesh, Abdalla A. Alameen, M. Mohemmed Sha, A. Mohamed Mustaq Ahmed

Abstract:

Email and instant messaging applications are foremost and extensively used electronic communication methods in this era of information explosion. These applications are generally used for exchange of information using several frontend applications from various service providers by its users. Almost all such communications are now secured using SSL or TLS security over HTTP communication. At the same time, it is also noted that cyber criminals and terrorists have started exchanging information using these methods. Since communication is encrypted end-to-end, tracing significant forensic details and actual content of messages are found to be unattended and severe challenges by available forensic tools. These challenges seriously affect in procuring substantial evidences against such criminals from their working environments. This paper presents a vibrant forensic exploration and architectural framework which not only decrypts any communication or network session but also reconstructs actual message contents of email as well as instant messaging applications. The framework can be effectively used in proxy servers and individual computers and it aims to perform forensic reconstruction followed by analysis of webmail and ICQ messaging applications. This forensic framework exhibits a versatile nature as it is equipped with high speed packet capturing hardware, a well-designed packet manipulating algorithm. It regenerates message contents over regular as well as SSL encrypted SMTP, POP3 and IMAP protocols and catalyzes forensic presentation procedure for prosecution of cyber criminals by producing solid evidences of their actual communication as per court of law of specific countries.

Keywords: forensics, network sessions, packet reconstruction, packet reordering

Procedia PDF Downloads 345
4139 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks

Authors: Sulemana Ibrahim

Abstract:

Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.

Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks

Procedia PDF Downloads 65
4138 Cybersecurity Strategies for Protecting Oil and Gas Industrial Control Systems

Authors: Gaurav Kumar Sinha

Abstract:

The oil and gas industry is a critical component of the global economy, relying heavily on industrial control systems (ICS) to manage and monitor operations. However, these systems are increasingly becoming targets for cyber-attacks, posing significant risks to operational continuity, safety, and environmental integrity. This paper explores comprehensive cybersecurity strategies for protecting oil and gas industrial control systems. It delves into the unique vulnerabilities of ICS in this sector, including outdated legacy systems, integration with IT networks, and the increased connectivity brought by the Industrial Internet of Things (IIoT). We propose a multi-layered defense approach that includes the implementation of robust network security protocols, regular system updates and patch management, advanced threat detection and response mechanisms, and stringent access control measures. We illustrate the effectiveness of these strategies in mitigating cyber risks and ensuring the resilient and secure operation of oil and gas industrial control systems. The findings underscore the necessity for a proactive and adaptive cybersecurity framework to safeguard critical infrastructure in the face of evolving cyber threats.

Keywords: cybersecurity, industrial control systems, oil and gas, cyber-attacks, network security, IoT, threat detection, system updates, patch management, access control, cybersecurity awareness, critical infrastructure, resilience, cyber threats, legacy systems, IT integration, multi-layered defense, operational continuity, safety, environmental integrity

Procedia PDF Downloads 49
4137 Mass Transfer Studies of Carbon Dioxide Absorption in Sodium Hydroxide in Millichannels

Authors: A. Durgadevi, S. Pushpavanam

Abstract:

In this work, absorption studies are done by conducting experiments of 99.9 (v/v%) pure CO₂ with various concentrations of sodium hydroxide solutions in a T-junction glass circular milli-channel. The gas gets absorbed in the aqueous phase resulting in the shrinking of slugs. This phenomenon is used to develop a lumped parameter model. Using this model, the chemical dissolution dynamics and the mass transfer characteristics of the CO₂-NaOH system is analysed. The liquid side mass transfer coefficient is determined with the help of the experimental data.

Keywords: absorption, dissolution dynamics, lumped parameter model, milli-channel, mass transfer coefficient

Procedia PDF Downloads 285
4136 Resilience with Spontaneous Volunteers in Disasters-Coordination Using an It System

Authors: Leo Latasch, Mario Di Gennaro

Abstract:

Introduction: The goal of this project was to increase the resilience of the population as well as rescue organizations to make both quality and time-related improvements in handling crises. A helper network was created for this purpose. Methods: Social questions regarding the structure and purpose of helper networks were considered - specifically with regard to helper motivation, the level of commitment and collaboration between populations and agencies. The exchange of information, the coordinated use of volunteers, and the distribution of available resources will be ensured through defined communication and cooperation routines. Helper smartphones will also be used provide a picture of the situation on the ground. Results: The helper network was established and deployed based on the RESIBES information technology system. It consists of a service platform, a web portal and a smartphone app. The service platform is the central element for collaboration between the various rescue organizations, as well as for persons, associations, and companies from the population offering voluntary aid. The platform was used for: Registering helpers and resources and then requesting and assigning it in case of a disaster. These services allow the population's resources to be organized. The service platform also allows for a secure data exchange between services and external systems. Conclusions: The social and technical work priorities have allowed us to cover a full cycle of advance structural work, gaining an overview, damage management, evaluation, and feedback on experiences. This cycle allows experiences gained while handling the crisis to feed back into the cycle and improve preparations and management strategies.

Keywords: coordination, disaster, resilience, volunteers

Procedia PDF Downloads 144
4135 A Comparative Study on Deep Learning Models for Pneumonia Detection

Authors: Hichem Sassi

Abstract:

Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.

Keywords: deep learning, computer vision, pneumonia, models, comparative study

Procedia PDF Downloads 65
4134 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes

Authors: H. Ishii, S. Araki, H. Yamamoto

Abstract:

In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.

Keywords: membrane, perovskite structure, dual-phase, carbonate

Procedia PDF Downloads 369
4133 Improving the Efficiency of a High Pressure Turbine by Using Non-Axisymmetric Endwall: A Comparison of Two Optimization Algorithms

Authors: Abdul Rehman, Bo Liu

Abstract:

Axial flow turbines are commonly designed with high loads that generate strong secondary flows and result in high secondary losses. These losses contribute to almost 30% to 50% of the total losses. Non-axisymmetric endwall profiling is one of the passive control technique to reduce the secondary flow loss. In this paper, the non-axisymmetric endwall profile construction and optimization for the stator endwalls are presented to improve the efficiency of a high pressure turbine. The commercial code NUMECA Fine/ Design3D coupled with Fine/Turbo was used for the numerical investigation, design of experiments and the optimization. All the flow simulations were conducted by using steady RANS and Spalart-Allmaras as a turbulence model. The non-axisymmetric endwalls of stator hub and shroud were created by using the perturbation law based on Bezier Curves. Each cut having multiple control points was supposed to be created along the virtual streamlines in the blade channel. For the design of experiments, each sample was arbitrarily generated based on values automatically chosen for the control points defined during parameterization. The Optimization was achieved by using two algorithms i.e. the stochastic algorithm and gradient-based algorithm. For the stochastic algorithm, a genetic algorithm based on the artificial neural network was used as an optimization method in order to achieve the global optimum. The evaluation of the successive design iterations was performed using artificial neural network prior to the flow solver. For the second case, the conjugate gradient algorithm with a three dimensional CFD flow solver was used to systematically vary a free-form parameterization of the endwall. This method is efficient and less time to consume as it requires derivative information of the objective function. The objective function was to maximize the isentropic efficiency of the turbine by keeping the mass flow rate as constant. The performance was quantified by using a multi-objective function. Other than these two classifications of the optimization methods, there were four optimizations cases i.e. the hub only, the shroud only, and the combination of hub and shroud. For the fourth case, the shroud endwall was optimized by using the optimized hub endwall geometry. The hub optimization resulted in an increase in the efficiency due to more homogenous inlet conditions for the rotor. The adverse pressure gradient was reduced but the total pressure loss in the vicinity of the hub was increased. The shroud optimization resulted in an increase in efficiency, total pressure loss and entropy were reduced. The combination of hub and shroud did not show overwhelming results which were achieved for the individual cases of the hub and the shroud. This may be caused by fact that there were too many control variables. The fourth case of optimization showed the best result because optimized hub was used as an initial geometry to optimize the shroud. The efficiency was increased more than the individual cases of optimization with a mass flow rate equal to the baseline design of the turbine. The results of artificial neural network and conjugate gradient method were compared.

Keywords: artificial neural network, axial turbine, conjugate gradient method, non-axisymmetric endwall, optimization

Procedia PDF Downloads 226
4132 Prediction of SOC Stock using ROTH-C Model and Mapping in Different Agroclimatic Zones of Tamil Nadu

Authors: R. Rajeswari

Abstract:

An investigation was carried out to know the SOC stock and its change over time in benchmark soils of different agroclimatic zones of Tamil Nadu. Roth.C model was used to assess SOC stock under existing and alternate cropping pattern. Soil map prepared on 1:50,000 scale from Natural Resources Information System (NRIS) employed under satellite data (IRS-1C/1D-PAN sharpened LISS-III image) was used to estimate SOC stock in different agroclimatic zones of Tamil Nadu. Fifteen benchmark soils were selected in different agroclimatic zones of Tamil Nadu based on their land use and the areal extent to assess SOC level and its change overtime. This revealed that, between eleven years of period (1997 - 2007). SOC buildup was higher in soils under horticulture system, followed by soils under rice cultivation. Among different agroclimatic zones of Tamil Nadu hilly zone have the highest SOC stock, followed by north eastern, southern, western, cauvery delta, north western, and high rainfall zone. Although organic carbon content in the soils of North eastern, southern, western, North western, Cauvery delta were less than high rainfall zone, the SOC stock was high. SOC density was higher in high rainfall and hilly zone than other agroclimatic zones of Tamil Nadu. Among low rainfall regions of Tamil Nadu cauvery delta zone recorded higher SOC density. Roth.C model was used to assess SOC stock under existing and alternate cropping pattern in viz., Periyanaickenpalayam series (western zone), Peelamedu series (southern zone), Vallam series (north eastern zone), Vannappatti series (north western zone) and Padugai series (cauvery delta zone). Padugai series recorded higher TOC, BIO, and HUM, followed by Periyanaickenpalayam series, Peelamedu series, Vallam series, and Vannappatti series. Vannappatti and Padugai series develop high TOC, BIO, and HUM under existing cropping pattern. Periyanaickenpalayam, Peelamedu, and Vallam series develop high TOC, BIO, and HUM under alternate cropping pattern. Among five selected soil series, Periyanaickenpalayam, Peelamedu, and Padugai series recorded 0.75 per cent TOC during 2025 and 2018, 2100 and 2035, 2013 and 2014 under existing and alternate cropping pattern, respectively.

Keywords: agro climatic zones, benchmark soil, land use, soil organic carbon

Procedia PDF Downloads 97
4131 Usage of Cyanobacteria in Battery: Saving Money, Enhancing the Storage Capacity, Making Portable, and Supporting the Ecology

Authors: Saddam Husain Dhobi, Bikrant Karki

Abstract:

The main objective of this paper is save money, balance ecosystem of the terrestrial organism, control global warming, and enhancing the storage capacity of the battery with requiring weight and thinness by using Cyanobacteria in the battery. To fulfill this purpose of paper we can use different methods: Analysis, Biological, Chemistry, theoretical and Physics with some engineering design. Using this different method, we can produce the special type of battery that has the long life, high storage capacity, and clean environment, save money so on and by using the byproduct of Cyanobacteria i.e. glucose. Cyanobacteria are a special type of bacteria that produces different types of extracellular glucoses and oxygen with the help of little sunlight, water, and carbon dioxide and can survive in freshwater, marine and in the land as well. In this process, O₂ is more in the comparison to plant due to rapid growth rate of Cyanobacteria. The required materials are easily available in this process to produce glucose with the help of Cyanobacteria. Since CO₂, is greenhouse gas that causes the global warming? We can utilize this gas and save our ecological balance and the byproduct (glucose) C₆H₁₂O₆ can be utilized for raw material for the battery where as O₂ escape is utilized by living organism. The glucose produce by Cyanobateria goes on Krebs's Cycle or Citric Acid Cycle, in which glucose is complete, oxidizes and all the available energy from glucose molecule has been release in the form of electron and proton as energy. If we use a suitable anodes and cathodes, we can capture these electrons and protons to produce require electricity current with the help of byproduct of Cyanobacteria. According to "Virginia Tech Bio-battery" and "Sony" 13 enzymes and the air is used to produce nearly 24 electrons from a single glucose unit. In this output power of 0.8 mW/cm, current density of 6 mA/cm, and energy storage density of 596 Ah/kg. This last figure is impressive, at roughly 10 times the energy density of the lithium-ion batteries in your mobile devices. When we use Cyanobacteria in battery, we are able to reduce Carbon dioxide, Stop global warming, and enhancing the storage capacity of battery more than 10 times that of lithium battery, saving money, balancing ecology. In this way, we can produce energy from the Cyanobacteria and use it in battery for different benefits. In addition, due to the mass, size and easy cultivation, they are better to maintain the size of battery. Hence, we can use Cyanobacteria for the battery having suitable size, enhancing the storing capacity of battery, helping the environment, portability and so on.

Keywords: anode, byproduct, cathode, cyanobacteri, glucose, storage capacity

Procedia PDF Downloads 351
4130 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite

Abstract:

Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.

Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination

Procedia PDF Downloads 126
4129 Design of an Electric Arc Furnace for the Production of Metallurgical Grade Silicon

Authors: M. Barbouche, M. Hajji, H. Ezzaouia

Abstract:

This project is a step to manufacture solar grade silicon. It consists in designing an electrical arc furnace in order to produce metallurgical silicon Mg-Si with mutually carbon and high purity of silica. It concerns, first, the development of a functional analysis, a mechanical design and thermodynamic study. Our study covers also, the design of the temperature control system and the design of the electric diagrams. The furnace works correctly. A Labview interface was developed to control all parameters and to supervise the operation of furnace. Characterization tests with X-ray technique and Raman spectroscopy allow us to confirm the metallurgical silicon production.

Keywords: arc furnace, electrical design, silicon manufacturing, regulation, x-ray characterization

Procedia PDF Downloads 497
4128 Network Analysis of Genes Involved in the Biosynthesis of Medicinally Important Naphthodianthrone Derivatives of Hypericum perforatum

Authors: Nafiseh Noormohammadi, Ahmad Sobhani Najafabadi

Abstract:

Hypericins (hypericin and pseudohypericin) are natural napthodianthrone derivatives produced by Hypericum perforatum (St. John’s Wort), which have many medicinal properties such as antitumor, antineoplastic, antiviral, and antidepressant activities. Production and accumulation of hypericin in the plant are influenced by both genetic and environmental conditions. Despite the existence of different high-throughput data on the plant, genetic dimensions of hypericin biosynthesis have not yet been completely understood. In this research, 21 high-quality RNA-seq data on different parts of the plant were integrated into metabolic data to reconstruct a coexpression network. Results showed that a cluster of 30 transcripts was correlated with total hypericin. The identified transcripts were divided into three main groups based on their functions, including hypericin biosynthesis genes, transporters, detoxification genes, and transcription factors (TFs). In the biosynthetic group, different isoforms of polyketide synthase (PKSs) and phenolic oxidative coupling proteins (POCPs) were identified. Phylogenetic analysis of protein sequences integrated into gene expression analysis showed that some of the POCPs seem to be very important in the biosynthetic pathway of hypericin. In the TFs group, six TFs were correlated with total hypericin. qPCR analysis of these six TFs confirmed that three of them were highly correlated. The identified genes in this research are a rich resource for further studies on the molecular breeding of H. perforatum in order to obtain varieties with high hypericin production.

Keywords: hypericin, St. John’s Wort, data mining, transcription factors, secondary metabolites

Procedia PDF Downloads 95
4127 Timetabling for Interconnected LRT Lines: A Package Solution Based on a Real-world Case

Authors: Huazhen Lin, Ruihua Xu, Zhibin Jiang

Abstract:

In this real-world case, timetabling the LRT network as a whole is rather challenging for the operator: they are supposed to create a timetable to avoid various route conflicts manually while satisfying a given interval and the number of rolling stocks, but the outcome is not satisfying. Therefore, the operator adopts a computerised timetabling tool, the Train Plan Maker (TPM), to cope with this problem. However, with various constraints in the dual-line network, it is still difficult to find an adequate pairing of turnback time, interval and rolling stocks’ number, which requires extra manual intervention. Aiming at current problems, a one-off model for timetabling is presented in this paper to simplify the procedure of timetabling. Before the timetabling procedure starts, this paper presents how the dual-line system with a ring and several branches is turned into a simpler structure. Then, a non-linear programming model is presented in two stages. In the first stage, the model sets a series of constraints aiming to calculate a proper timing for coordinating two lines by adjusting the turnback time at termini. Then, based on the result of the first stage, the model introduces a series of inequality constraints to avoid various route conflicts. With this model, an analysis is conducted to reveal the relation between the ratio of trains in different directions and the possible minimum interval, observing that the more imbalance the ratio is, the less possible to provide frequent service under such strict constraints.

Keywords: light rail transit (LRT), non-linear programming, railway timetabling, timetable coordination

Procedia PDF Downloads 92
4126 Abatement of NO by CO on Pd Catalysts: Influence of the Support in Oxyfuel Combustion Conditions

Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin

Abstract:

The CO2 emitted from anthropic activities is perceived as a constraint in industrial activity due to taxes, stringent environmental regulations, impact on global warming… To limit these CO2 emissions, reuse of CO2 represents a promising alternative, with important applications in chemical industry and for power generation. However, CO2 valorization process requires a gas as pure as possible Oxyfuel-combustion that enables obtaining a CO2 rich stream, with water vapor (10%) is then interesting. Nevertheless to decrease the amount of the by-products found with the CO2 (especially CO and NOx which are harmful to the environment) a catalytic treatment must be applied. Nowadays three-way catalysts are well-developed material for simultaneous conversion of unburned hydrocarbons, carbon monoxide (CO) and nitrogen oxides (NOx). The use of Pd attracted considerable attention on the basis of economic factors (the high cost and scarcity of Pt and Rh). This explains the large number of studies concerning the CO-NO reaction on Pd in the recent years. In the present study, we will compare a series of Pd materials supported on different oxides for CO2 purification from the oxyfuel combustion system, by reducing NO with CO in an oxidizing environment containing CO2 rich stream and presence of 8.2% of water. Al2O3, CeO2, MgO, SiO2 and TiO2 were used as support materials of the catalysts. 1wt% Pd/Support catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2]. The obtained samples were subsequently characterized by H2 chemisorption, BET surface area and TEM. Finally, their catalytic performances were evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200mL.min−1, in the same GHSV. The catalytic performance of the Pd catalysts for CO2 purification revealed that: -The support material has a strong influence on the catalytic activity of 1wt.% Pd supported catalysts. depending of the nature of support, the Pd-based catalysts activity changes. -The highest reduction of NO with CO is obtained in the following ranking: TiO2>CeO2>Al2O3. -The supports SiO2 and MgO should be avoided for this reaction, -Total oxidation of CO occurred over different materials, -CO2 purification can reach 97%, -The presence of H2O has a positive effect on the NO reduction due to the production of the reductant H2 from WGS reaction H2O+CO → H2+CO2

Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis, oxyfuel combustion

Procedia PDF Downloads 257
4125 FACTS Based Stabilization for Smart Grid Applications

Authors: Adel. M. Sharaf, Foad H. Gandoman

Abstract:

Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.

Keywords: AC FACTS, smart grid, stabilization, PV-battery storage, Switched Filter-Compensation (SFC)

Procedia PDF Downloads 414
4124 Understanding Tourism Innovation through Fuzzy Measures

Authors: Marcella De Filippo, Delio Colangelo, Luca Farnia

Abstract:

In recent decades, the hyper-competition of tourism scenario has implicated the maturity of many businesses, attributing a central role to innovative processes and their dissemination in the economy of company management. At the same time, it has defined the need for monitoring the application of innovations, in order to govern and improve the performance of companies and destinations. The study aims to analyze and define the innovation in the tourism sector. The research actions have concerned, on the one hand, some in-depth interviews with experts, identifying innovation in terms of process and product, digitalization, sustainability policies and, on the other hand, to evaluate the interaction between these factors, in terms of substitutability and complementarity in management scenarios, in order to identify which one is essential to be competitive in the global scenario. Fuzzy measures and Choquet integral were used to elicit Experts’ preferences. This method allows not only to evaluate the relative importance of each pillar, but also and more interestingly, the level of interaction, ranging from complementarity to substitutability, between pairs of factors. The results of the survey are the following: in terms of Shapley values, Experts assert that Innovation is the most important factor (32.32), followed by digitalization (31.86), Network (20.57) and Sustainability (15.25). In terms of Interaction indices, given the low degree of consensus among experts, the interaction between couples of criteria on average could be ignored; however, it is worth to note that the factors innovations and digitalization are those in which experts express the highest degree of interaction. However for some of them, these factors have a moderate level of complementarity (with a pick of 57.14), and others consider them moderately substitutes (with a pick of -39.58). Another example, although outlier is the interaction between network and digitalization, in which an expert consider them markedly substitutes (-77.08).

Keywords: innovation, business model, tourism, fuzzy

Procedia PDF Downloads 273
4123 Air Quality Assessment for a Hot-Spot Station by Neural Network Modelling of the near-Traffic Emission-Immission Interaction

Authors: Tim Steinhaus, Christian Beidl

Abstract:

Urban air quality and climate protection are two major challenges for future mobility systems. Despite the steady reduction of pollutant emissions from vehicles over past decades, local immission load within cities partially still reaches heights, which are considered hazardous to human health. Although traffic-related emissions account for a major part of the overall urban pollution, modeling the exact interaction remains challenging. In this paper, a novel approach for the determination of the emission-immission interaction on the basis of neural network modeling for traffic induced NO2-immission load within a near-traffic hot-spot scenario is presented. In a detailed sensitivity analysis, the significance of relevant influencing variables on the prevailing NO2 concentration is initially analyzed. Based on this, the generation process of the model is described, in which not only environmental influences but also the vehicle fleet composition including its associated segment- and certification-specific real driving emission factors are derived and used as input quantities. The validity of this approach, which has been presented in the past, is re-examined in this paper using updated data on vehicle emissions and recent immission measurement data. Within the framework of a final scenario analysis, the future development of the immission load is forecast for different developments in the vehicle fleet composition. It is shown that immission levels of less than half of today’s yearly average limit values are technically feasible in hot-spot situations.

Keywords: air quality, emission, emission-immission-interaction, immission, NO2, zero impact

Procedia PDF Downloads 128
4122 Made on Land, Ends Up in the Water "I-Clare" Intelligent Remediation System for Removal of Harmful Contaminants in Water using Modified Reticulated Vitreous Carbon Foam

Authors: Sabina Żołędowska, Tadeusz Ossowski, Robert Bogdanowicz, Jacek Ryl, Paweł Rostkowski, Michał Kruczkowski, Michał Sobaszek, Zofia Cebula, Grzegorz Skowierzak, Paweł Jakóbczyk, Lilit Hovhannisyan, Paweł Ślepski, Iwona Kaczmarczyk, Mattia Pierpaoli, Bartłomiej Dec, Dawid Nidzworski

Abstract:

The circular economy of water presents a pressing environmental challenge in our society. Water contains various harmful substances, such as drugs, antibiotics, hormones, and dioxides, which can pose silent threats. Water pollution has severe consequences for aquatic ecosystems. It disrupts the balance of ecosystems by harming aquatic plants, animals, and microorganisms. Water pollution poses significant risks to human health. Exposure to toxic chemicals through contaminated water can have long-term health effects, such as cancer, developmental disorders, and hormonal imbalances. However, effective remediation systems can be implemented to remove these contaminants using electrocatalytic processes, which offer an environmentally friendly alternative to other treatment methods, and one of them is the innovative iCLARE system. The project's primary focus revolves around a few main topics: Reactor design and construction, selection of a specific type of reticulated vitreous carbon foams (RVC), analytical studies of harmful contaminants parameters and AI implementation. This high-performance electrochemical reactor will be build based on a novel type of electrode material. The proposed approach utilizes the application of reticulated vitreous carbon foams (RVC) with deposited modified metal oxides (MMO) and diamond thin films. The following setup is characterized by high surface area development and satisfactory mechanical and electrochemical properties, designed for high electrocatalytic process efficiency. The consortium validated electrode modification methods that are the base of the iCLARE product and established the procedures for the detection of chemicals detection: - deposition of metal oxides WO3 and V2O5-deposition of boron-doped diamond/nanowalls structures by CVD process. The chosen electrodes (porous Ferroterm electrodes) were stress tested for various parameters that might occur inside the iCLARE machine–corosis, the long-term structure of the electrode surface during electrochemical processes, and energetic efficacy using cyclic polarization and electrochemical impedance spectroscopy (before and after electrolysis) and dynamic electrochemical impedance spectroscopy (DEIS). This tool allows real-time monitoring of the changes at the electrode/electrolyte interphase. On the other hand, the toxicity of iCLARE chemicals and products of electrolysis are evaluated before and after the treatment using MARA examination (IBMM) and HPLC-MS-MS (NILU), giving us information about the harmfulness of using electrode material and the efficiency of iClare system in the disposal of pollutants. Implementation of data into the system that uses artificial intelligence and the possibility of practical application is in progress (SensDx).

Keywords: waste water treatement, RVC, electrocatalysis, paracetamol

Procedia PDF Downloads 91
4121 Social Networks in Business: The Complex Concept of Wasta and the Impact of Islam on the Perception of This Practice

Authors: Sa'ad Ali

Abstract:

This study explores wasta as an example of a social network and how it impacts business practice in the Arab Middle East, drawing links with social network impact in different regions of the world. In doing so, particular attention will be paid to the socio-economic and cultural influences on business practice. In exploring relationships in business, concepts such as social network analysis, social capital and group identity are used to explore the different forms of social networks and how they influence business decisions and practices in the regions and countries where they prevail. The use of social networks to achieve objectives is known as guanxi in China, wasta in the Arab Middle East and blat in ex-Soviet countries. Wasta can be defined as favouritism based on tribal and family affiliation and is a widespread practice that has a substantial impact on political, social and business interactions in the Arab Middle East. Within the business context, it is used in several ways, such as to secure a job or promotion or to cut through bureaucracy in government interactions. The little research available is fragmented, and most studies reveal a negative attitude towards its usage in business. Paradoxically, while wasta is widely practised, people from the Arab Middle East often deny its influence. Moreover, despite the regular exhibition of a negative opinion on the practice of wasta, it can also be a source of great pride. This paper addresses this paradox by conducting a positional literature review, exploring the current literature on wasta and identifying how the identified paradox can be explained. The findings highlight how wasta, to a large extent, has been treated as an umbrella concept, whilst it is a highly complex practice which has evolved from intermediary wasta to intercessory wasta and therefore from bonding social capital relationships to more bridging social capital relationships. In addition, the research found that Islam, as the predominant religion in the region and the main source of ethical guidance for the majority of people from the region, plays a substantial role in this paradox. Specifically, it is submitted that wasta can be viewed positively in Islam when it is practised to aid others without breaking Islamic ethical guidelines, whilst it can be viewed negatively when it is used in contradiction with the teachings of Islam. As such, the unique contribution to knowledge of this study is that it ties together the fragmented literature on wasta, highlighting and helping us understand its complexity. In addition, it sheds light on the role of Islam in wasta practices, aiding our understanding of the paradoxical nature of the practice.

Keywords: Islamic ethics, social capital, social networks, Wasta

Procedia PDF Downloads 148