Search results for: differential fuel flow meter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7738

Search results for: differential fuel flow meter

4138 Evaluation of Polyphenolics Compounds in Cold Brewed Indian Tea

Authors: Chandrima Das, Sirshendu Chatterjee

Abstract:

Tea (Camellia sinensis) is known as nature's low calorie wonder drink. Since ancient times hot consumptions of tea is very much popular. We have observed that many heat sensitive secondary metabolites which get destroyed on heating, moreover by people, who are permanently live at higher altitude or the members of high altitude expedition team, are deprived of various tea brewing facilities like electricity, fuel, etc. and the hence cold decoction of tea might be a good alternative. In this backdrop present study aims at the analysis of antioxidants like polyphenols, flavonoids and free radical scavenging activity as well as the l-theanine concentration of different types of cold brewed teas like black, green, white and oolong and compared with its hot decoction. Further, we also analysed in details about the bioactive components by using HPLC followed by green synthesis of nanoparticles. The study highlighted that the difference between the concentration of antioxidant in cold and hot brewed tea is insignificant and hence intake of cold decoction will be beneficial to health.

Keywords: antioxidants, flavanoid, polyphenols, HPLC, nanoparticles

Procedia PDF Downloads 293
4137 Numerical Analysis of NOₓ Emission in Staged Combustion for the Optimization of Once-Through-Steam-Generators

Authors: Adrien Chatel, Ehsan Askari Mahvelati, Laurent Fitschy

Abstract:

Once-Through-Steam-Generators are commonly used in the oil-sand industry in the heavy fuel oil extraction process. They are composed of three main parts: the burner, the radiant and convective sections. Natural gas is burned through staged diffusive flames stabilized by the burner. The heat generated by the combustion is transferred to the water flowing through the piping system in the radiant and convective sections. The steam produced within the pipes is then directed to the ground to reduce the oil viscosity and allow its pumping. With the rapid development of the oil-sand industry, the number of OTSG in operation has increased as well as the associated emissions of environmental pollutants, especially the Nitrous Oxides (NOₓ). To limit the environmental degradation, various international environmental agencies have established regulations on the pollutant discharge and pushed to reduce the NOₓ release. To meet these constraints, OTSG constructors have to rely on more and more advanced tools to study and predict the NOₓ emission. With the increase of the computational resources, Computational Fluid Dynamics (CFD) has emerged as a flexible tool to analyze the combustion and pollutant formation process. Moreover, to optimize the burner operating condition regarding the NOx emission, field characterization and measurements are usually accomplished. However, these kinds of experimental campaigns are particularly time-consuming and sometimes even impossible for industrial plants with strict operation schedule constraints. Therefore, the application of CFD seems to be more adequate in order to provide guidelines on the NOₓ emission and reduction problem. In the present work, two different software are employed to simulate the combustion process in an OTSG, namely the commercial software ANSYS Fluent and the open source software OpenFOAM. RANS (Reynolds-Averaged Navier–Stokes) equations combined with the Eddy Dissipation Concept to model the combustion and closed by the k-epsilon model are solved. A mesh sensitivity analysis is performed to assess the independence of the solution on the mesh. In the first part, the results given by the two software are compared and confronted with experimental data as a mean to assess the numerical modelling. Flame temperatures and chemical composition are used as reference fields to perform this validation. Results show a fair agreement between experimental and numerical data. In the last part, OpenFOAM is employed to simulate several operating conditions, and an Emission Characteristic Map of the combustion system is generated. The sources of high NOₓ production inside the OTSG are pointed and correlated to the physics of the flow. CFD is, therefore, a useful tool for providing an insight into the NOₓ emission phenomena in OTSG. Sources of high NOₓ production can be identified, and operating conditions can be adjusted accordingly. With the help of RANS simulations, an Emission Characteristics Map can be produced and then be used as a guide for a field tune-up.

Keywords: combustion, computational fluid dynamics, nitrous oxides emission, once-through-steam-generators

Procedia PDF Downloads 97
4136 Strength Properties of Cement Mortar with Dark Glass Waste Powder as a Partial Sand Replacement

Authors: Ng Wei Yan, Lim Jee Hock, Lee Foo Wei, Mo Kim Hung, Yip Chun Chieh

Abstract:

The burgeoning accumulation of glass waste in Malaysia, particularly from the food and beverage industry, has become a prominent environmental concern, with disposal sites reaching saturation. This study introduces a distinct approach to addressing the twin challenges of landfill scarcity and natural resource conservation by repurposing discarded glass bottle waste into a viable construction material. The research presents a comprehensive evaluation of the strength characteristics of cement mortar when dark glass waste powder is used as a partial sand replacement. The experimental investigation probes the density, flow spread diameter, and key strength parameters—including compressive, splitting tensile, and flexural strengths—of the modified cement mortar. Remarkably, results indicate that a full replacement of sand with glass waste powder significantly improves the material's strength attributes. A specific mixture with a cement/sand/water ratio of 1:5:1.24 was found to be optimal, yielding an impressive compressive strength of 7 MPa at the 28-day mark, accompanied by a favourable 200 mm spread diameter in flow table tests. The findings of this study underscore the dual benefits of utilizing glass waste powder in cement mortar: mitigating Malaysia's glass waste dilemma and enhancing the performance of construction materials such as bricks and concrete products. Consequently, the research validates the premise that increasing the incorporation of glass waste as a sand substitute promotes not only environmental sustainability but also material innovation in the construction industry.

Keywords: glass waste, strength properties, cement mortar, environmental friendly

Procedia PDF Downloads 44
4135 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence

Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang

Abstract:

Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.

Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics

Procedia PDF Downloads 62
4134 Modification of Newton Method in Two Point Block Backward Differentiation Formulas

Authors: Khairil I. Othman, Nur N. Kamal, Zarina B. Ibrahim

Abstract:

In this paper, we present modified Newton method as a new strategy for improving the efficiency of Two Point Block Backward Differentiation Formulas (BBDF) when solving stiff systems of ordinary differential equations (ODEs). These methods are constructed to produce two approximate solutions simultaneously at each iteration The detailed implementation of the predictor corrector BBDF with PE(CE)2 with modified Newton are discussed. The proposed modification of BBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with the existing Block Backward Differentiation Formula. Numerical results show the advantage of using the new strategy for solving stiff ODEs in improving the accuracy of the solution.

Keywords: newton method, two point, block, accuracy

Procedia PDF Downloads 340
4133 Synthesis and Performance Study of Co3O4 as a Bi-Functional Next Generation Material

Authors: Shrikaant Kulkarni, Akshata Naik Nimbalkar

Abstract:

In this worki a method protocol has been developed for the synthesis of innovative Co3O4 material by using a method of chemical synthesis followed by calcination. The effect of calcination temperature on the morphology, structure and catalytic performance on material in question is investigated by using characterization tools like scanning electron microscopy (SEM), X-ray diffraction (XRD) spectroscopy and electrochemical techniques. The SEM images reveal that the morphology of the Co3O4 material undergoes a change from the rod to a beadlike shape on calcination at temperature of 700 °C. The XRD image shows that although the morphology of synthesized Co3O4 material exhibits a cubic phase but it differs in crystallinity depending upon morphology. Similarly spherical beadlike Co3O4 material has exhibited better activity than its rodlike counterpart which is reflected from electrochemical findings. Further, its performance in terms of bifunctional nature and hlods a lot much of promise as a excellent electrode material in the next generation batteries and fuel cells.

Keywords: bifunctional, next generation material, Co3O4, XRD

Procedia PDF Downloads 358
4132 High Thermal Selective Detection of NOₓ Using High Electron Mobility Transistor Based on Gallium Nitride

Authors: Hassane Ouazzani Chahdi, Omar Helli, Bourzgui Nour Eddine, Hassan Maher, Ali Soltani

Abstract:

The real-time knowledge of the NO, NO₂ concentration at high temperature, would allow manufacturers of automobiles to meet the upcoming stringent EURO7 anti-pollution measures for diesel engines. Knowledge of the concentration of each of these species will also enable engines to run leaner (i.e., more fuel efficient) while still meeting the anti-pollution requirements. Our proposed technology is promising in the field of automotive sensors. It consists of nanostructured semiconductors based on gallium nitride and zirconia dioxide. The development of new technologies for selective detection of NO and NO₂ gas species would be a critical enabler of superior depollution. The current response was well correlated to the NO concentration in the range of 0–2000 ppm, 0-2500 ppm NO₂, and 0-300 ppm NH₃ at a temperature of 600.

Keywords: NOₓ sensors, HEMT transistor, anti-pollution, gallium nitride, gas sensor

Procedia PDF Downloads 231
4131 Into Composer’s Mind: Understanding the Process of Translating Emotions into Music

Authors: Sanam Preet Singh

Abstract:

Music in comparison to any other art form is more reactive and alive. It has the capacity to directly interact with the listener's mind and generate an emotional response. All the major research conducted in the area majorly relied on the listener’s perspective to draw an understanding of music and its effects. There is a very small number of studies which focused on the source from which music originates, the music composers. This study aims to understand the process of how music composers understand and perceive emotions and how they translate them into music, in simpler terms how music composers encode their compositions to express determining emotions. One-to-one in-depth semi structured interviews were conducted, with 8 individuals both male and female, who were professional to intermediate-level music composers and Thematic analysis was conducted to derive the themes. The analysis showed that there is no single process on which music composers rely, rather there are combinations of multiple micro processes, which constitute the understanding and translation of emotions into music. In terms of perception of emotions, the role of processes such as Rumination, mood influence and escapism was discovered in the analysis. Unique themes about the understanding of their top down and bottom up perceptions were also discovered. Further analysis also revealed the role of imagination and emotional trigger explaining how music composers make sense of emotions. The translation process of emotions revealed the role of articulation and instrumentalization, in encoding or translating emotions to a composition. Further, applications of the trial and error method, nature influences and flow in the translation process are also discussed. In the end themes such as parallels between musical patterns and emotions, comfort zones and relatability also emerged during the analysis.

Keywords: comfort zones, escapism, flow, rumination

Procedia PDF Downloads 73
4130 The Administration of Infection Diseases During the Pandemic COVID-19 and the Role of the Differential Diagnosis with Biomarkers VB10

Authors: Sofia Papadimitriou

Abstract:

INTRODUCTION: The differential diagnosis between acute viral and bacterial infections is an important cost-effectiveness parameter at the stage of the treatment process in order to achieve the maximum benefits in therapeutic intervention by combining the minimum cost to ensure the proper use of antibiotics.The discovery of sensitive and robust molecular diagnostic tests in response to the role of the host in infections has enhanced the accurate diagnosis and differentiation of infections. METHOD: The study used a sample of six independent blood samples (total=756) which are associated with human proteins-proteins, each of which at the transcription stage expresses a different response in the host network between viral and bacterial infections.Τhe individual blood samples are subjected to a sequence of computer filters that identify a gene panel corresponding to an autonomous diagnostic score. The data set and the correspondence of the gene panel to the diagnostic patents a new Bangalore -Viral Bacterial (BL-VB). FINDING: We use a biomarker based on the blood of 10 genes(Panel-VB) that are an important prognostic value for the detection of viruses from bacterial infections with a weighted average AUROC of 0.97(95% CL:0.96-0.99) in eleven independent samples (sets n=898). We discovered a base with a patient score (VB 10 ) according to the table, which is a significant diagnostic value with a weighted average of AUROC 0.94(95% CL: 0.91-0.98) in 2996 patient samples from 56 public sets of data from 19 different countries. We also studied VB 10 in a new cohort of South India (BL-VB,n=56) and found 97% accuracy in confirmed cases of viral and bacterial infections. We found that VB 10 (a)accurately identifies the type of infection even in unspecified cases negative to the culture (b) shows its clinical condition recovery and (c) applies to all age groups, covering a wide range of acute bacterial and viral infectious, including non-specific pathogens. We applied our VB 10 rating to publicly available COVID 19 data and found that our rating diagnosed viral infection in patient samples. RESULTS: Τhe results of the study showed the diagnostic power of the biomarker VB 10 as a diagnostic test for the accurate diagnosis of acute infections in recovery conditions. We look forward to helping you make clinical decisions about prescribing antibiotics and integrating them into your policies management of antibiotic stewardship efforts. CONCLUSIONS: Overall, we are developing a new property of the RNA-based biomarker and a new blood test to differentiate between viral and bacterial infections to assist a physician in designing the optimal treatment regimen to contribute to the proper use of antibiotics and reduce the burden on antimicrobial resistance, AMR.

Keywords: acute infections, antimicrobial resistance, biomarker, blood transcriptome, systems biology, classifier diagnostic score

Procedia PDF Downloads 139
4129 Application of a SubIval Numerical Solver for Fractional Circuits

Authors: Marcin Sowa

Abstract:

The paper discusses the subinterval-based numerical method for fractional derivative computations. It is now referred to by its acronym – SubIval. The basis of the method is briefly recalled. The ability of the method to be applied in time stepping solvers is discussed. The possibility of implementing a time step size adaptive solver is also mentioned. The solver is tested on a transient circuit example. In order to display the accuracy of the solver – the results have been compared with those obtained by means of a semi-analytical method called gcdAlpha. The time step size adaptive solver applying SubIval has been proven to be very accurate as the results are very close to the referential solution. The solver is currently able to solve FDE (fractional differential equations) with various derivative orders for each equation and any type of source time functions.

Keywords: numerical method, SubIval, fractional calculus, numerical solver, circuit analysis

Procedia PDF Downloads 190
4128 Studies of the Reaction Products Resulted from Glycerol Electrochemical Conversion under Galvanostatic Mode

Authors: Ching Shya Lee, Mohamed Kheireddine Aroua, Wan Mohd Ashri Wan Daud, Patrick Cognet, Yolande Peres, Mohammed Ajeel

Abstract:

In recent years, with the decreasing supply of fossil fuel, renewable energy has received a significant demand. Biodiesel which is well known as vegetable oil based fatty acid methyl ester is an alternative fuel for diesel. It can be produced from transesterification of vegetable oils, such as palm oil, sunflower oil, rapeseed oil, etc., with methanol. During the transesterification process, crude glycerol is formed as a by-product, resulting in 10% wt of the total biodiesel production. To date, due to the fast growing of biodiesel production in worldwide, the crude glycerol supply has also increased rapidly and resulted in a significant price drop for glycerol. Therefore, extensive research has been developed to use glycerol as feedstock to produce various added-value chemicals, such as tartronic acid, mesoxalic acid, glycolic acid, glyceric acid, propanediol, acrolein etc. The industrial processes that usually involved are selective oxidation, biofermentation, esterification, and hydrolysis. However, the conversion of glycerol into added-value compounds by electrochemical approach is rarely discussed. Currently, the approach is mainly focused on the electro-oxidation study of glycerol under potentiostatic mode for cogenerating energy with other chemicals. The electro-organic synthesis study from glycerol under galvanostatic mode is seldom reviewed. In this study, the glycerol was converted into various added-value compounds by electrochemical method under galvanostatic mode. This work aimed to study the possible compounds produced from glycerol by electrochemical technique in a one-pot electrolysis cell. The electro-organic synthesis study from glycerol was carried out in a single compartment reactor for 8 hours, over the platinum cathode and anode electrodes under acidic condition. Various parameters such as electric current (1.0 A to 3.0 A) and reaction temperature (27 °C to 80 °C) were evaluated. The products obtained were characterized by using gas chromatography-mass spectroscopy equipped with an aqueous-stable polyethylene glycol stationary phase column. Under the optimized reaction condition, the glycerol conversion achieved as high as 95%. The glycerol was successfully converted into various added-value chemicals such as ethylene glycol, glycolic acid, glyceric acid, acetaldehyde, formic acid, and glyceraldehyde; given the yield of 1%, 45%, 27%, 4%, 0.7% and 5%, respectively. Based on the products obtained from this study, the reaction mechanism of this process is proposed. In conclusion, this study has successfully converted glycerol into a wide variety of added-value compounds. These chemicals are found to have high market value; they can be used in the pharmaceutical, food and cosmetic industries. This study effectively opens a new approach for the electrochemical conversion of glycerol. For further enhancement on the product selectivity, electrode material is an important parameter to be considered.

Keywords: biodiesel, glycerol, electrochemical conversion, galvanostatic mode

Procedia PDF Downloads 185
4127 Deep Excavations with Embedded Retaining Walls - Diaphragm Walls

Authors: Sowmiyaa V. S., Tiruvengala Padma, Dhanasekaran B.

Abstract:

Due to urbanization, traffic congestion, air pollution and fuel consumption underground metros are constructed in urban cities nowadays. These metros reduce the commutation time and makes the daily transportation in urban cities hassle free. To construct the underground metros deep excavations are to be carried out. These excavations should be supported by an appropriate earth retaining structures to provide stability and to prevent deformation failures. The failure of deep excavations is catastrophic and hence appropriate caution need to be carried out during design and construction stages. This paper covers the construction aspects, equipment, quality control, design aspects of one of the earth retaining systems the Diaphragm Walls.

Keywords: underground metros, diaphragm wall, quality control of diaphragm wall, design aspects of diaphragm wall

Procedia PDF Downloads 87
4126 Extended Arithmetic Precision in Meshfree Calculations

Authors: Edward J. Kansa, Pavel Holoborodko

Abstract:

Continuously differentiable radial basis functions (RBFs) are meshfree, converge faster as the dimensionality increases, and is theoretically spectrally convergent. When implemented on current single and double precision computers, such RBFs can suffer from ill-conditioning because the systems of equations needed to be solved to find the expansion coefficients are full. However, the Advanpix extended precision software package allows computer mathematics to resemble asymptotically ideal Platonic mathematics. Additionally, full systems with extended precision execute faster graphical processors units and field-programmable gate arrays because no branching is needed. Sparse equation systems are fast for iterative solvers in a very limited number of cases.

Keywords: partial differential equations, Meshfree radial basis functions, , no restrictions on spatial dimensions, Extended arithmetic precision.

Procedia PDF Downloads 137
4125 Apoptotic Induction Ability of Harmalol and Its Binding: Biochemical and Biophysical Perspectives

Authors: Kakali Bhadra

Abstract:

Harmalol administration caused remarkable reduction in proliferation of HepG2 cells with GI50 of 14.2 mM, without showing much cytotoxicity in embryonic liver cell line, WRL-68. Data from circular dichroism and differential scanning calorimetric analysis of harmalol-CT DNA complex shows conformational changes with prominent CD perturbation and stabilization of CT DNA by 8 oC. Binding constant and stoichiometry was also calculated using the above biophysical techniques. Further, dose dependent apoptotic induction ability of harmalol was studied in HepG2 cells using different biochemical assays. Generation of ROS, DNA damage, changes in cellular external and ultramorphology, alteration of membrane, formation of comet tail, decreased mitochondrial membrane potential and a significant increase in Sub Go/G1 population made the cancer cell, HepG2, prone to apoptosis. Up regulation of p53 and caspase 3 further indicated the apoptotic role of harmalol.

Keywords: apoptosis, beta carboline alkaloid, comet assay, cytotoxicity, ROS

Procedia PDF Downloads 197
4124 Zeolite 4A-confined Ni-Co Nanocluster: An Efficient and Durable Electrocatalyst for Alkaline Methanol Oxidation Reaction

Authors: Sarmistha Baruah, Akshai Kumar, Nageswara Rao Peela

Abstract:

The global energy crisis due to the dependence on fossil fuels and its limited reserves as well as environmental pollution are key concerns to the research communities. However, the implementation of alcohol-based fuel cells such as methanol is anticipated as a reliable source of future energy technology due to their high energy density, environment friendliness, ease of storage, transportation, etc. To drive the anodic methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs), an active and long-lasting catalyst is necessary for efficient energy conversion from methanol. Recently, transition metal-zeolite-based materials have been considered versatile catalysts for a variety of industrial and lab-scale processes. Large specific surface area, well-organized micropores, and adjustable acidity/basicity are characteristics of zeolites that make them excellent supports for immobilizing small-sized and highly dispersed metal species. Significant advancement in the production and characterization of well-defined metal clusters encapsulated within zeolite matrix has substantially expanded the library of materials available, and consequently, their catalytic efficacy. In this context, we developed bimetallic Ni-Co catalysts encapsulated within LTA (also known as 4A) zeolite via a method combined with the in-situ encapsulation of metal species using hydrothermal treatment followed by a chemical reduction process. The prepared catalyst was characterized using advanced characterization techniques, such as X-ray diffraction (XRD), field emission transmission electron microscope (FETEM), field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of the catalyst for MOR was carried out in an alkaline medium at room temperature using techniques such as cyclic voltammetry (CV), and chronoamperometry (CA). The resulting catalyst exhibited better catalytic activity of 12.1 mA cm-2 at 1.12 V vs Ag/AgCl and retained remarkable stability (~77%) even after 1000 cycles CV test for the electro-oxidation of methanol in alkaline media without any significant microstructural changes. The high surface area, better Ni-Co species integration in the zeolite, and the ample amount of surface hydroxyl groups contribute to highly dispersed active sites and quick analyte diffusion, which provide notable MOR kinetics. Thus, this study will open up new possibilities to develop a noble metal-free zeolite-based electrocatalyst due to its simple synthesis steps, large-scale fabrication, improved stability, and efficient activity for DMFC application.

Keywords: alkaline media, bimetallic, encapsulation, methanol oxidation reaction, LTA zeolite.

Procedia PDF Downloads 45
4123 Response Surface Methodology Approach to Defining Ultrafiltration of Steepwater from Corn Starch Industry

Authors: Zita I. Šereš, Ljubica P. Dokić, Dragana M. Šoronja Simović, Cecilia Hodur, Zsuzsanna Laszlo, Ivana Nikolić, Nikola Maravić

Abstract:

In this work the concentration of steep-water from corn starch industry is monitored using ultrafiltration membrane. The aim was to examine the conditions of ultrafiltration of steep-water by applying the membrane of 2.5nm. The parameters that vary during the course of ultrafiltration, were the transmembrane pressure, flow rate, while the permeate flux and the dry matter content of permeate and retentive were the dependent parameter constantly monitored during the process. Experiments of ultrafiltration are conducted on the samples of steep-water, which were obtained from the starch wet milling plant Jabuka, Pancevo. The procedure of ultrafiltration on a single-channel 250mm length, with inner diameter of 6.8mm and outer diameter of 10mm membrane were carried on. The membrane is made of a-Al2O3 with TiO2 layer obtained from GEA (Germany). The experiments are carried out at a flow rate ranging from 100 to 200lh-1 and transmembrane pressure of 1-3 bars. During the experiments of steep-water ultrafiltration, the change of permeate flux, dry matter content of permeate and retentive, as well as the absorbance changes of the permeate and retentive were monitored. The experimental results showed that the maximum flux reaches about 40lm-2h-1. For responses obtained after experiments, a polynomial model of the second degree is established to evaluate and quantify the influence of the variables. The quadratic equitation fits with the experimental values, where the coefficient of determination for flux is 0.96. The dry matter content of the retentive is increased for about 6%, while the dry matter content of permeate was reduced for about 35-40%, respectively. During steep-water ultrafiltration in permeate stays 40% less dry matter compared to the feed.

Keywords: ultrafiltration, steep-water, starch industry, ceramic membrane

Procedia PDF Downloads 271
4122 Treatment of Onshore Petroleum Drill Cuttings via Soil Washing Process: Characterization and Optimal Conditions

Authors: T. Poyai, P. Painmanakul, N. Chawaloesphonsiya, P. Dhanasin, C. Getwech, P. Wattana

Abstract:

Drilling is a key activity in oil and gas exploration and production. Drilling always requires the use of drilling mud for lubricating the drill bit and controlling the subsurface pressure. As drilling proceeds, a considerable amount of cuttings or rock fragments is generated. In general, water or Water Based Mud (WBM) serves as drilling fluid for the top hole section. The cuttings generated from this section is non-hazardous and normally applied as fill materials. On the other hand, drilling the bottom hole to reservoir section uses Synthetic Based Mud (SBM) of which synthetic oils are composed. The bottom-hole cuttings, SBM cuttings, is regarded as a hazardous waste, in accordance with the government regulations, due to the presence of hydrocarbons. Currently, the SBM cuttings are disposed of as an alternative fuel and raw material in cement kiln. Instead of burning, this work aims to propose an alternative for drill cuttings management under two ultimate goals: (1) reduction of hazardous waste volume; and (2) making use of the cleaned cuttings. Soil washing was selected as the major treatment process. The physiochemical properties of drill cuttings were analyzed, such as size fraction, pH, moisture content, and hydrocarbons. The particle size of cuttings was analyzed via light scattering method. Oil present in cuttings was quantified in terms of total petroleum hydrocarbon (TPH) through gas chromatography equipped with flame ionization detector (GC-FID). Other components were measured by the standard methods for soil analysis. Effects of different washing agents, liquid-to-solid (L/S) ratio, washing time, mixing speed, rinse-to-solid (R/S) ratio, and rinsing time were also evaluated. It was found that drill cuttings held the electrical conductivity of 3.84 dS/m, pH of 9.1, and moisture content of 7.5%. The TPH in cuttings existed in the diesel range with the concentration ranging from 20,000 to 30,000 mg/kg dry cuttings. A majority of cuttings particles held a mean diameter of 50 µm, which represented silt fraction. The results also suggested that a green solvent was considered most promising for cuttings treatment regarding occupational health, safety, and environmental benefits. The optimal washing conditions were obtained at L/S of 5, washing time of 15 min, mixing speed of 60 rpm, R/S of 10, and rinsing time of 1 min. After washing process, three fractions including clean cuttings, spent solvent, and wastewater were considered and provided with recommendations. The residual TPH less than 5,000 mg/kg was detected in clean cuttings. The treated cuttings can be then used for various purposes. The spent solvent held the calorific value of higher than 3,000 cal/g, which can be used as an alternative fuel. Otherwise, the recovery of the used solvent can be conducted using distillation or chromatography techniques. Finally, the generated wastewater can be combined with the produced water and simultaneously managed by re-injection into the reservoir.

Keywords: drill cuttings, green solvent, soil washing, total petroleum hydrocarbon (TPH)

Procedia PDF Downloads 140
4121 Digital Transformation as the Subject of the Knowledge Model of the Discursive Space

Authors: Rafal Maciag

Abstract:

Due to the development of the current civilization, one must create suitable models of its pervasive massive phenomena. Such a phenomenon is the digital transformation, which has a substantial number of disciplined, methodical interpretations forming the diversified reflection. This reflection could be understood pragmatically as the current temporal, a local differential state of knowledge. The model of the discursive space is proposed as a model for the analysis and description of this knowledge. Discursive space is understood as an autonomous multidimensional space where separate discourses traverse specific trajectories of what can be presented in multidimensional parallel coordinate system. Discursive space built on the world of facts preserves the complex character of that world. Digital transformation as a discursive space has a relativistic character that means that at the same time, it is created by the dynamic discourses and these discourses are molded by the shape of this space.

Keywords: complexity, digital transformation, discourse, discursive space, knowledge

Procedia PDF Downloads 179
4120 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor

Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir

Abstract:

This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.

Keywords: centrifugal compressor, contra-rotating, interaction rotor, vacuum

Procedia PDF Downloads 120
4119 Numerical Simulation of Flow and Heat Transfer Characteristics with Various Working Conditions inside a Reactor of Wet Scrubber

Authors: Jonghyuk Yoon, Hyoungwoon Song, Youngbae Kim, Eunju Kim

Abstract:

Recently, with the rapid growth of semiconductor industry, lots of interests have been focused on after treatment system that remove the polluted gas produced from semiconductor manufacturing process, and a wet scrubber is the one of the widely used system. When it comes to mechanism of removing the gas, the polluted gas is removed firstly by chemical reaction in a reactor part. After that, the polluted gas stream is brought into contact with the scrubbing liquid, by spraying it with the liquid. Effective design of the reactor part inside the wet scrubber is highly important since removal performance of the polluted gas in the reactor plays an important role in overall performance and stability. In the present study, a CFD (Computational Fluid Dynamics) analysis was performed to figure out the thermal and flow characteristics inside unit a reactor of wet scrubber. In order to verify the numerical result, temperature distribution of the numerical result at various monitoring points was compared to the experimental result. The average error rates (12~15%) between them was shown and the numerical result of temperature distribution was in good agreement with the experimental data. By using validated numerical method, the effect of the reactor geometry on heat transfer rate was also taken into consideration. Uniformity of temperature distribution was improved about 15%. Overall, the result of present study could be useful information to identify the fluid behavior and thermal performance for various scrubber systems. This project is supported by the ‘R&D Center for the reduction of Non-CO₂ Greenhouse gases (RE201706054)’ funded by the Korea Ministry of Environment (MOE) as the Global Top Environment R&D Program.

Keywords: semiconductor, polluted gas, CFD (Computational Fluid Dynamics), wet scrubber, reactor

Procedia PDF Downloads 126
4118 Experimental Analysis of Electrical Energy Producing Using the Waste Heat of Exhaust Gas by the Help of Thermoelectric Generator

Authors: Dilek Ozlem Esen, Mesut Kaya

Abstract:

The focus of this study is to analyse the results of heat recovery from exhaust gas which is produced by an internal combustion engine (ICE). To obtain a small amount of energy, an exhaust system which is suitable for recovery waste heat has been constructed. Totally 27 TEGs have been used to convert from the heat to electric energy. By producing a small amount of this energy by the help of thermoelectric generators can reduce engine loads thus decreasing pollutant emissions, fuel consumption, and CO2. This case study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. As a result of this study, 0,45 A averaged current rate, 13,02 V averaged voltage rate and 5,8 W averaged electrical energy have been produced in a five hours operation time.

Keywords: thermoelectric, peltier, thermoelectric generator (TEG), exhaust, cogeneration

Procedia PDF Downloads 639
4117 Application Quality Function Deployment (QFD) Tool in Design of Aero Pumps Based on System Engineering

Authors: Z. Soleymani, M. Amirzadeh

Abstract:

Quality Function Deployment (QFD) was developed in 1960 in Japan and introduced in 1983 in America and Europe. The paper presents a real application of this technique in a way that the method of applying QFD in design and production aero fuel pumps has been considered. While designing a product and in order to apply system engineering process, the first step is identification customer needs then its transition to engineering parameters. Since each change in deign after production process leads to extra human costs and also increase in products quality risk, QFD can make benefits in sale by meeting customer expectations. Since the needs identified as well, the use of QFD tool can lead to increase in communications and less deviation in design and production phases, finally it leads to produce the products with defined technical attributes.

Keywords: customer voice, engineering parameters, gear pump, QFD

Procedia PDF Downloads 237
4116 Research Facility Assessment for Biomass Combustion in Moving Grate Furnaces

Authors: Francesco Gallucci, Mariangela Salerno, Ettore Guerriero, Manfredi Amalfi, Giancarlo Chiatti, Fulvio Palmieri

Abstract:

The paper deals with the experimental activities on a biomass combustion test-bed. More in detail, experimental campaigns have been devoted to investigate the operation of a biomass moving grate furnace. A research-oriented facility based on a moving grate furnace (350kW) has been set up in order to perform experimental activities in a wide range of test configurations. The paper reports the description of the complete biomass-plant and the assessment of the system operation. As the first step, the chemical and physical properties of the used wooden biomass have been preliminarily investigated. Once the biomass fuel has been characterized, investigations have been devoted to point out the operation of the furnace. It has been operated at full load, highlighting the influence of biomass combustion parameters on particulate matter and gaseous emission.

Keywords: biomass, combustion, experimental, pollutants

Procedia PDF Downloads 262
4115 BiVO₄‑Decorated Graphite Felt as Highly Efficient Negative Electrode for All-Vanadium Redox Flow Batteries

Authors: Daniel Manaye Kabtamu, Anteneh Wodaje Bayeh

Abstract:

With the development and utilization of new energy technology, people’s demand for large-scale energy storage system has become increasingly urgent. Vanadium redox flow battery (VRFB) is one of the most promising technologies for grid-scale energy storage applications because of numerous attractive features, such as long cycle life, high safety, and flexible design. However, the relatively low energy efficiency and high production cost of the VRFB still limit its practical implementations. It is of great attention to enhance its energy efficiency and reduce its cost. One of the main components of VRFB that can impressively impact the efficiency and final cost is the electrode materials, which provide the reactions sites for redox couples (V₂₊/V³⁺ and VO²⁺/VO₂⁺). Graphite felt (GF) is a typical carbon-based material commonly employed as electrode for VRFB due to low-cost, good chemical and mechanical stability. However, pristine GF exhibits insufficient wettability, low specific surface area, and poor kinetics reversibility, leading to low energy efficiency of the battery. Therefore, it is crucial to further modify the GF electrode to improve its electrochemical performance towards VRFB by employing active electrocatalysts, such as less expensive metal oxides. This study successfully fabricates low-cost plate-like bismuth vanadate (BiVO₄) material through a simple one-step hydrothermal route, employed as an electrocatalyst to adorn the GF for use as the negative electrode in VRFB. The experimental results show that BiVO₄-3h exhibits the optimal electrocatalytic activity and reversibility for the vanadium redox couples among all samples. The energy efficiency of the VRFB cell assembled with BiVO₄-decorated GF as the negative electrode is found to be 75.42% at 100 mA cm−2, which is about 10.24% more efficient than that of the cell assembled with heat-treated graphite felt (HT-GF) electrode. The possible reasons for the activity enhancement can be ascribed to the existence of oxygen vacancies in the BiVO₄ lattice structure and the relatively high surface area of BiVO₄, which provide more active sites for facilitating the vanadium redox reactions. Furthermore, the BiVO₄-GF electrode obstructs the competitive irreversible hydrogen evolution reaction on the negative side of the cell, and it also has better wettability. Impressively, BiVO₄-GF as the negative electrode shows good stability over 100 cycles. Thus, BiVO₄-GF is a promising negative electrode candidate for practical VRFB applications.

Keywords: BiVO₄ electrocatalyst, electrochemical energy storage, graphite felt, vanadium redox flow battery

Procedia PDF Downloads 1555
4114 Analysis and Design of Simultaneous Dual Band Harvesting System with Enhanced Efficiency

Authors: Zina Saheb, Ezz El-Masry, Jean-François Bousquet

Abstract:

This paper presents an enhanced efficiency simultaneous dual band energy harvesting system for wireless body area network. A bulk biasing is used to enhance the efficiency of the adapted rectifier design to reduce Vth of MOSFET. The presented circuit harvests the radio frequency (RF) energy from two frequency bands: 1 GHz and 2.4 GHz. It is designed with TSMC 65-nm CMOS technology and high quality factor dual matching network to boost the input voltage. Full circuit analysis and modeling is demonstrated. The simulation results demonstrate a harvester with an efficiency of 23% at 1 GHz and 46% at 2.4 GHz at an input power as low as -30 dBm.

Keywords: energy harvester, simultaneous, dual band, CMOS, differential rectifier, voltage boosting, TSMC 65nm

Procedia PDF Downloads 390
4113 Just Child Protection Practice for Immigrant and Racialized Families in Multicultural Western Settings: Considerations for Context and Culture

Authors: Sarah Maiter

Abstract:

Heightened globalization, migration, displacement of citizens, and refugee needs is putting increasing demand for approaches to social services for diverse populations that responds to families to ensure the safety and protection of vulnerable members while providing supports and services. Along with this social works re-focus on socially just approaches to practice increasingly asks social workers to consider the challenging circumstances of families when providing services rather than a focus on individual shortcomings alone. Child protection workers then struggle to ensure safety of children while assessing the needs of families. This assessment can prove to be difficult when providing services to immigrant, refugee, and racially diverse families as understanding of and familiarity with these families is often limited. Furthermore, child protection intervention in western countries is state mandated having legal authority when intervening in the lives of families where child protection concerns have been identified. Within this context, racialized immigrant and refugee families are at risk of misunderstandings that can result in interventions that are overly intrusive, unhelpful, and harsh. Research shows disproportionality and overrepresentation of racial and ethnic minorities, and immigrant families in the child protection system. Reasons noted include: a) possibilities of racial bias in reporting and substantiating abuse, b) struggles on the part of workers when working with families from diverse ethno-racial backgrounds and who are immigrants and may have limited proficiency in the national language of the country, c) interventions during crisis and differential ongoing services for these families, d) diverse contexts of these families that poses additional challenges for families and children, and e) possible differential definitions of child maltreatment. While cultural and ethnic diversity in child rearing approaches have been cited as contributors to child protection concerns, this approach should be viewed cautiously as it can result in stereotyping and generalizing that then results in inappropriate assessment and intervention. However, poverty and the lack of social supports, both well-known contributors to child protection concerns, also impact these families disproportionately. Child protection systems, therefore, need to continue to examine policy and practice approaches with these families that ensures safety of children while balancing the needs of families. This presentation provides data from several research studies that examined definitions of child maltreatment among a sample of racialized immigrant families, experiences of a sample of immigrant families with the child protection system, concerns of a sample of child protection workers in the provision of services to these families, and struggles of families in the transitions to their new country. These studies, along with others provide insights into areas of consideration for practice that can contribute to safety for children while ensuring just and equitable responses that have greater potential for keeping families together rather than premature apprehension and removal of children to state care.

Keywords: child protection, child welfare services, immigrant families, racial and ethnic diversity

Procedia PDF Downloads 275
4112 Academic Performance and Therapeutic Breathing

Authors: Abha Gupta, Seema Maira, Smita Sinha

Abstract:

This paper explores using breathing techniques to boost the academic performance of students and describes how teachers can foster the technique in their classrooms. The innovative study examines the differential impact of therapeutic breathing exercises, called pranayama, on students’ academic performance. The paper introduces approaches to therapeutic breathing exercises as an alternative to improve school performance, as well as the self-regulatory behavior, which is known to correlate with academic performance. The study was conducted in a school-wide pranayama program with positive outcomes. The intervention consisted of two breathing exercises, (1) deep breathing, and (2) alternate nostril breathing. It is a quantitative study spanning over a year with about 100 third graders was conducted using daily breathing exercises to investigate the impact of pranayama on academic performance. Significant cumulative gain-scores were found for students who practiced the approach.

Keywords: academic performance, pranayama, therapeutic breathing, yoga

Procedia PDF Downloads 473
4111 Iron Doped Biomaterial Calcium Borate: Synthesis and Characterization

Authors: G. Çelik Gül, F. Kurtuluş

Abstract:

Colemanite is the most common borate mineral, and the main source of the boron required by plants, human, and earth. Transition metals exhibit optical and physical properties such as; non-linear optical character, structural diversity, thermal stability, long cycle life and luminescent radiation. The doping of colemanite with a transition metal, bring it very interesting and attractive properties which make them applicable in industry. Iron doped calcium borate was synthesized by conventional solid state method at 1200 °C for 12 h with a systematic pathway. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS) were used to characterize structural and morphological properties. Also, thermal properties were recorded by thermogravimetric-differential thermal analysis (TG/DTA). 

Keywords: colemanite, conventional synthesis, powder x-ray diffraction, borates

Procedia PDF Downloads 319
4110 Low Cost Surface Electromyographic Signal Amplifier Based on Arduino Microcontroller

Authors: Igor Luiz Bernardes de Moura, Luan Carlos de Sena Monteiro Ozelim, Fabiano Araujo Soares

Abstract:

The development of a low cost acquisition system of S-EMG signals which are reliable, comfortable for the user and with high mobility shows to be a relevant proposition in modern biomedical engineering scenario. In the study, the sampling capacity of the Arduino microcontroller Atmel Atmega328 with an A/D converter with 10-bit resolution and its reconstructing capability of a signal of surface electromyography are analyzed. An electronic circuit to capture the signal through two differential channels was designed, signals from Biceps Brachialis of a healthy man of 21 years was acquired to test the system prototype. ARV, MDF, MNF and RMS estimators were used to compare de acquired signals with physiological values. The Arduino was configured with a sampling frequency of 1.5 kHz for each channel, and the tests with the circuit designed offered a SNR of 20.57dB.

Keywords: electromyography, Arduino, low-cost, atmel atmega328 microcontroller

Procedia PDF Downloads 348
4109 Development and Characterization of Ceramic-Filled Composite Filaments and Functional Structures for Fused Deposition Modeling

Authors: B. Khatri, K. Lappe, M. Habedank, T. Müller, C. Megnin, T. Hanemann

Abstract:

We present a process flow for the development of ceramic-filled polymer composite filaments compatible with the fused deposition modeling (FDM) 3D printing process. Thermoplastic-ceramic composites were developed using acrylonitrile butadiene styrene (ABS) and 10- and 20 vol.% barium titanate (BaTiO3) powder (corresponding to 39.47- and 58.23 wt.% respectively) and characterized for their flow properties. To make them compatible with the existing FDM process, the composites were extruded into filaments. These composite filaments were subsequently structured into tensile stress specimens using a commercially available FDM 3D printer and characterized for their mechanical properties. Rheometric characterization of the material composites revealed non-Newtonian behavior with the viscosity logarithmically decreasing over increasing shear rates, as well as higher viscosities for samples with higher BaTiO3 filler content for a given shear rate (with the ABS+20vol.% BaTiO3 composite being over 50% more viscous compared to pure ABS at a shear rate of 1x〖10〗^3 s^(-1)). Mechanical characterization of the tensile stress specimens exhibited increasingly brittle behavior as well as a linearly decreasing ultimate tensile strength of the material composites with increasing volumetric ratio of BaTiO3 (from σ_max=32.4MPa for pure ABS to σ_max=21.3MPa for ABS+20vol.% BaTiO3). Further studies being undertaken include the development of composites with higher filler concentrations, sintering of the printed composites to yield pure dielectric structures and the determination of the dielectric characteristics of the composites.

Keywords: ceramic composites, fused deposition modeling, material characterization, rapid prototyping

Procedia PDF Downloads 319