Search results for: concentration polarisation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4999

Search results for: concentration polarisation

1429 Testing Nature Based Solutions for Air Quality Improvement: Aveiro Case Study

Authors: A. Ascenso, C. Silveira, B. Augusto, S. Rafael, S. Coelho, J. Ferreira, A. Monteiro, P. Roebeling, A. I. Miranda

Abstract:

Innovative nature-based solutions (NBSs) can provide answers to the challenges that urban areas are currently facing due to urban densification and extreme weather conditions. The effects of NBSs are recognized and include improved quality of life, mental and physical health and improvement of air quality, among others. Part of the work developed in the scope of the UNaLab project, which aims to guide cities in developing and implementing their own co-creative NBSs, intends to assess the impacts of NBSs on air quality, using Eindhoven city as a case study. The state-of-the-art online air quality modelling system WRF-CHEM was applied to simulate meteorological and concentration fields over the study area with a spatial resolution of 1 km2 for the year 2015. The baseline simulation (without NBSs) was validated by comparing the model results with monitored data retrieved from the Eindhoven air quality database, showing an adequate model performance. In addition, land use changes were applied in a set of simulations to assess the effects of different types of NBSs. Finally, these simulations were compared with the baseline scenario and the impacts of the NBSs were assessed. Reductions on pollutant concentrations, namely for NOx and PM, were found after the application of the NBSs in the Eindhoven study area. The present work is particularly important to support public planners and decision makers in understanding the effects of their actions and planning more sustainable cities for the future.

Keywords: air quality, modelling approach, nature based solutions, urban area

Procedia PDF Downloads 238
1428 Effect of Bull Exposure on Post-Partum Estrus Interval in Nili-Ravi Buffaloes

Authors: Muhammad Saleem Akhtar, Mushtaq Hussain Lashari, Ejaz Ahmad, Tanveer Ahmad, Laeeq Akbar Lodhi, Ijaz Ahmad, Masood Akhtar

Abstract:

The objective of this study was to determine the effect of bull exposure continuously or intermittently or its excretory products after calving on postpartum interval to estrus, in Nili-Ravi buffalo. Forty-eight buffaloes of Nili-Ravi breed were allocated one of the four treatments in a totally randomized plan using a 4 x 1 factorial design. The four treatment groups were BEC (Bull Exposed Continuously), BEI (Bull Exposed Intermittently), EPB (Excretory Products of Bull) and BNE (Bull Not Exposed). BEC; buffaloes (n = 12) were exposed continuously to the physical presence of a bull whereas in BEI; buffaloes (n = 12) were exposed intermittently to the physical presence of bull. EPB; buffaloes (n = 12) were exposed to discharge waste (urine and feces) of bull and BNE buffaloes (n = 12) were not exposed to a bull or discharge waste of bulls. Buffaloes were exposed on day 15 after parturition. Day 15 postpartum represented d 0 for each treatment. The postpartum interval from calving to first behavioural estrus was 66.88 days in BEC, 75.12 days in BEI, 77.28 days in EPB and 76.5 days in BNE treatments. Postpartum interval to first behavioural estrus was shorter in BEC than BEI, EPB, and BNE treatments. There was no significant difference in postpartum interval to estrus between BEI, EPB and BNE treatments. In present study, the percentage of buffaloes showing estrus during experimental period was 75.0%, 66.66%, 66.66% and 58.33% in BEC, BEI, EPB and BNE treatments, respectively. The mean serum progesterone concentration did not differ significantly between BEC and other (BEI, EPB, and BNE) treatments. It was concluded that presence of bull has positive effect in reducing calving interval in Nili Ravi buffalo.

Keywords: calving interval, biostimulation, buffalo, bull exposure

Procedia PDF Downloads 253
1427 Characteristics of Serum Exosomes after Burn Injury and Dermal Fibroblast Regulation by Exosomes in Vitro

Authors: Jie Ding, Yingying Pan, Shammy Raj, Lindy Schaffrick, Jolene Wong, Antoinette Nguyen, Sharada Manchikanti, Larry Unsworth, Peter Kwan, Edward E. Tredget

Abstract:

Background: Exosomes (EXOs) have been considered a new target that is thought to be involved in and treat wound healing. More research is needed to fully understand the EXO characteristics and mechanisms of EXO-mediated wound healing, especially wound healing after burn injury. Methods: Total EXOs were isolated from 85 serum samples of 29 burn patients and 13 healthy individuals. We characterized the EXOs for morphology and density, serum concentration, protein level, marker expression, size distribution, and cytokine content. After confirmation of EXO uptake by dermal fibroblasts, we also explored functional regulation of primary human normal skin and hypertrophic scar fibroblast cell lines by the EXOs in vitro, including cell proliferation and apoptosis. Results: EXOs dynamically changed their morphology, density, size, and cytokine level during wound healing in burn patients, which were correlated with burn severity and the stages of wound healing. EXOs from both burn patients and healthy individuals stimulated dermal fibroblast proliferation and apoptosis. Conclusion: EXO features may be important signals that influence wound healing after burn injury; however, to understand the mechanisms by which EXOs regulated the fibroblasts in healing wounds, further studies will be required in the future.

Keywords: exosome, burn, wound healing, hypertrophic scarring, cytokines

Procedia PDF Downloads 80
1426 Hybrid Graphene Based Nanomaterial as Highly Efficient Catalyst for the Electrochemical Determination of Ciprofloxacin

Authors: Tien S. H. Pham, Peter J. Mahon, Aimin Yu

Abstract:

The detection of drug molecules by voltammetry has attracted great interest over the past years. However, many drug molecules exhibit poor electrochemical signals at common electrodes which result in low sensitivity in detection. An efficient way to overcome this problem is to modify electrodes with functional materials. Since discovered in 2004, graphene (or reduced graphene oxide) has emerged as one of the most studied two-dimensional carbon materials in condensed matter physics, electrochemistry, and so on due to its exceptional physicochemical properties. Additionally, the continuous development of technology has opened the new window for the successful fabrications of many novel graphene-based nanomaterials to serve in electrochemical analysis. This research aims to synthesize and characterize gold nanoparticle coated beta-cyclodextrin functionalized reduced graphene oxide (Au NP–β-CD–RGO) nanocomposites with highly conductive and strongly electro-catalytic properties as well as excellent supramolecular recognition abilities for the modification of electrodes. The electrochemical responses of ciprofloxacin at the as-prepared nanocomposite modified electrode was effectively amplified was much higher in comparison with that at the bare electrode. The linear concentration range was from 0.01 to 120 µM, with a detection limit of 2.7 nM using differential pulse voltammetry. Thus, Au NP–β-CD–RGO nanocomposite has great potential as an ideal material to construct sensitive sensors for the electrochemical determination of ciprofloxacin or similar antibacterial drugs in the future based on its excellent stability, selectivity, and reproducibility.

Keywords: Au nanoparticles, β-CD, ciprofloxacin, electrochemical determination, graphene based nanomaterials

Procedia PDF Downloads 186
1425 Bioactive Compounds Characterization of Cereal-Based Porridge Enriched with Cirina forda

Authors: Kunle Oni

Abstract:

This study investigated the bioactivity potentials of porridge from yellow maize and malted sorghum enriched with Cirinaforda.All the samples were analyzed using standard methods.Results showed that the highest value 217.03μmolTEAC/100g, 43.3 mmol Fe2+ /100g, and 35.56% for DPPH, FRAP and TBARS respectively were reported in sample 50FYM+20MS+30CF, while the lowest value 146.10μmolTEAC/100, 20.18±0.11 mmol Fe2+/100g and 13.25% for DPPH, FRAP and TBARS were reported in the control sample.The oxalate and tannin contents were lowest in sample 50FYM+20MS+30CFbutOxalate was highest in the control sample while tannin was highest in sample 60FYM+20MS+20CF.The phytate content was highest in the 60FYM+20MS+20CF mixture (2.32 mg/100g) and lowest in the control (100% FYM) porridge (2.20 mg/100g).The result also showed that the total phenolic content was highest in the 60FYM+20MS+20CF mixture (318.28 mg GAE/100g) and lowest in the50FYM+30MS+20CF mixture (264.18mg GAE/100g).The total flavonoid content had the50FYM+20MS+30CFmixture having the highest content (189.31mg RE/100g) and the 60FYM+20MS+20CF mixture having the lowest (90.10mg RE/100g). The enrichment of the porridge with C. fordaincreased the concentration of various bioactive compounds compared to the control sample. The identified compounds cinnamic acid, methyl ester, 10-Methyl-E-11-tridecen-1-ol propionate, methaqualone,3-(2-Hydroxy-6-methylphenyl)-4(3H)-quinazolinone, and oleic acid

Keywords: bioactive compounds, characterization, cereal-based porridge, Cirina forda

Procedia PDF Downloads 58
1424 Elimination of Mixed-Culture Biofilms Using Biological Agents

Authors: Anita Vidacs, Csaba Vagvolgyi, Judit Krisch

Abstract:

The attachment of microorganisms to different surfaces and the development of biofilms can lead to outbreaks of food-borne diseases and economic losses due to perished food. In food processing environments, bacterial communities are generally formed by mixed cultures of different species. Plants are sources of several antimicrobial substances that may be potential candidates for the development of new disinfectants. We aimed to investigate cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris). Essential oils and their major components (cinnamaldehyde, terpinene-4-ol, and thymol) on four-species biofilms of E. coli, L. monocytogenes, P. putida, and S. aureus. Experiments had three parts: (i) determination of minimum bactericide concentration and the killing time with microdilution methods; (ii) elimination of the four-species 24– and 168-hours old biofilm from stainless steel, polypropylene, tile and wood surfaces; and (iii) comparing the disinfectant effect with industrial used per-acetic based sanitizer (HC-DPE). E. coli and P. putida were more resistant to investigated essential oils and their main components in biofilm, than L. monocytogenes and S. aureus. These Gram-negative bacteria were detected on the surfaces, where the natural based disinfectant had not total biofilm elimination effect. Most promoted solutions were the cinnamon essential oil and the terpinene-4-ol that could eradicate the biofilm from stainless steel, polypropylene and even from tile, too. They have a better disinfectant effect than HC-DPE. These natural agents can be used as alternative solutions in the battle against bacterial biofilms.

Keywords: biofilm, essential oils, surfaces, terpinene-4-ol

Procedia PDF Downloads 110
1423 Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation

Authors: Praveen Kumar, Nitin Kumar, Hemant Kumar

Abstract:

The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid–liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5° pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5° pipe bend for two-phase (solid and liquid) flow using finite volume method with standard k-ε turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline.

Keywords: computational fluid dynamics (CFD), erosion, slurry transportation, k-ε Model

Procedia PDF Downloads 405
1422 A Pilot Study of Robot Reminiscence in Dementia Care

Authors: Ryuji Yamazaki, Masahiro Kochi, Weiran Zhu, Hiroko Kase

Abstract:

In care for older adults, behavioral and psychological symptoms of dementia (BPSD) like agitation and aggression are distressing for patients and their caretakers, often resulting in premature institutionalization with increased costs of care. To improve mood and mitigate symptoms, as a non-pharmaceutical approach, emotion-oriented therapy like reminiscence work is adopted in face-to-face communication. Telecommunication support is expected to be provided by robotic media as a bridge for digital divide for those with dementia and facilitate social interaction both verbally and nonverbally. The purpose of this case study is to explore the conditions in which robotic media can effectively attract attention from older adults with dementia and promote their well-being. As a pilot study, we introduced the pillow-phone Hugvie®, a huggable humanly shaped communication medium to five residents with dementia at a care facility, to investigate how the following conditions work for the elderly when they use the medium; 1) no sound, 2) radio, non-interactive, 3) daily conversation, and 4) reminiscence work. As a result, under condition 4, reminiscence work, the five participants kept concentration in interacting with the medium for a longer duration than other conditions. In condition 4, they also showed larger amount of utterances than under other conditions. These results indicate that providing topics related to personal histories through robotic media could affect communication positively and should, therefore, be further investigated. In addition, the issue of ethical implications by using persuasive technology that affects emotions and behaviors of older adults is also discussed.

Keywords: BPSD, reminiscence, tactile telecommunication, utterances

Procedia PDF Downloads 171
1421 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

Authors: Balgaisha Mukanova, Natalya Glazyrina, Sergey Glazyrin

Abstract:

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Keywords: direct problem, multiparametric optimization, optimization parameters, water treatment

Procedia PDF Downloads 385
1420 Biosynthesis of Healthy Secondary Metabolites in Olive Fruit in Response to Different Agronomic Treatments

Authors: Anna Perrone, Federico Martinelli

Abstract:

Olive fruit is well-known for the high content in secondary metabolites with high interest at nutritional, nutraceutical, antioxidant, and healthy levels. The content of secondary metabolites in olive at harvest may be affected by different water regimes, with significant effects on olive oil composition and quality and, consequently, on its healthy and nutritional features. In this work, a summary of several research studies dealing with the biosynthesis of healthy and nutraceutical metabolites of the secondary metabolism in olive fruit will be reported. The phytochemical findings have been correlated with the expression of key genes involved in polyphenol, terpenoid, and carotenoid biosynthesis and metabolism in response to different development stages and water regimes. Flavonoids were highest in immature fruits, while anthocyanins increased at ripening. In epicarp tissue, this was clearly associated with an up-regulation of the UFGT gene. Olive fruits cultivated under different water regimes were analyzed by metabolomics. This method identified several hundred metabolites in the ripe mesocarp. Among them, 46 were differentially accumulated in the comparison between rain-fed and irrigated conditions. Well-known healthy metabolites were more abundant at a higher level of water regimes. Increased content of polyphenols was observed in the rain-fed fruit; particularly, anthocyanin concentration was higher at ripening. Several secondary metabolites were differentially accumulated between different irrigation conditions. These results showed that these metabolic approaches could be efficiently used to determine the effects of agronomic treatments on olive fruit physiology and, consequently, on nutritional and healthy properties of the obtained extra-virgin olive oil.

Keywords: olea europea, anthocyanins, polyphenols, water regimes

Procedia PDF Downloads 146
1419 Renoprotective Effect of Alcoholic Extract of Bacopa monnieri via Inhibition of Advanced Glycation End Products and Oxidative Stress in Stz-Nicotinamide Induced Diabetic Nephropathy

Authors: Lalit Kishore, Randhir Singh

Abstract:

Diabetic nephropathy (DN) is the major cause of morbidity among diabetic patients. In this study, the effect of Bacopa monnieri Linn. (Brahmi, BM), was studied in a Streptozotocin (STZ)-induced experimental rat model of DN. Diabetic nephropathy was induced in Male Wistar rats (body weight- 300± 10 gms) by single intra-peritoneal injection of STZ (45mg/kg, i.p.) after 15 min of Nicotinamide (230 mg/kg) administration. Different doses of alcoholic extract i.e. 100, 200 and 400 mg/kg was given for 45 days by oral gavage after induction of DN. Blood glucose level, serum insulin, glycosylated haemoglobin, renal parameters (serum urea, uric acid, creatinine and BUN) and lipid profile (total cholesterol, triglycerides, HDL, LDL and VLDL levels) were measured. Concentration of thiobarbituric acid reactive species (TBARS) and levels of antioxidant enzymes of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were evaluated in the kidney, liver and pancreas. At the end of treatment period the alcoholic extract of BM reduced the elevated level of blood glucose, serum insulin, renal parameters, lipid levels, TBARS, AGE’s in kidney and significantly increased body weight, HDL and antioxidant enzymes in dose dependent manner as compared to diabetic control animals. These results suggested the BM possesses significant renoprotective activity.

Keywords: AGE's, lipid profile, oxidative stress, renal parameters

Procedia PDF Downloads 321
1418 Heavy Metal Adsorption from Synthetic Wastewater Using Agro Waste-Based Nanoparticles: A Comparative Study

Authors: Nomthandazo Precious Sibiya, Thembisile Patience Mahlangu, Sudesh Rathilal

Abstract:

Heavy metal removal is critical in the wastewater treatment process due to its numerous harmful effects on human and aquatic life. There are several chemical and physical techniques for removing heavy metals from wastewater, including ion exchange, reverse osmosis, adsorption, electrodialysis, and ultrafiltration. However, adsorption technology has captivated researchers for years due to its low cost, high efficiency, and compatible with the environment. In this study, the adsorption effectiveness of three modified agro-waste materials was explored for the removal of lead from synthetic wastewater: banana peels (BP), orange peels (OP), and sugarcane bagasse (SB). The magnetite (Fe₃O₄) is incorporated with BP, OP, and SB at a ratio of 1:1 to create magnetic biosorbents. Characterization of biosorbents was carried out using and scanning electron microscopy (SEM) combined with energy-dispersive X-ray (EDX) to investigate surface morphology and elemental compositions, respectively. A series of batch experiments were carried out to investigate the effects of adsorbent mass, agitation time, and initial pH concentration on adsorption behaviour, as well as adsorption isotherms and kinetics. The removal efficiency of lead by the modified agro-waste materials proved to be superior to that of non-modified agro-waste materials. The proof of concept was achieved, and agro-waste materials can be paired with adsorption technology to effectively remove lead from aqueous media. The use of agricultural waste as biosorbents will aid in waste reduction and management.

Keywords: adsorption, isotherms, kinetics, agro waste, nanoparticles, batch

Procedia PDF Downloads 65
1417 Effect of Feed Additive on Cryopreservation of Barki Ram Semen

Authors: Abdurzag Kerban, Mostfa M. Abou-Ahmed, Abdelrof M. Ghallab, Mona H. Shaker

Abstract:

Preservation of semen had a major impact on sheep genetic breeding. The aim of this study was to evaluate the effect of protected fat, probiotic and zinc-enriched diets on semen freezability. Twenty two Barki rams were randomly assigned into four groups; Group I (n=5) was fed the basal diet enriched with 3.7% of dry fat/kg concentration/day, Group II (n=5) was fed a basal diet-enriched with 10gm of probiotic /head/day, Group III (n=6) was fed on the basal diet enriched with 100 ppm of 10% zinc chelated with methionine/kg dry matter/day and Group IV (n=6) was served as control. A pool of three to four ejaculates were pooled from rams within a period of ten weeks. Semen was diluted in egg yolk-Tris diluent and processed in 0.25 ml straw. Motility was evaluated after dilution, before freezing and post-thawing at 0, 1, 2 and 3 hour incubation. Viability index, acrosome integrity and leakage of intracellular enzymes (Aspartat aminotransferase and Alkline phosphatase) were also evaluated. Spermatozoa exhibited highly significant (P<0.01) percentages of motility at 0, 1, 2, and 3 hours incubation after thawing, viability index and acrosome integrity in rams fed a diet enriched with protected fat and zinc groups as compared with probiotic and control groups. Also, the mean value of extracellular leakage of AST was significantly lower in fat and zinc group as compared with probiotic and control groups. In conclusion, semen freezability was improved in animals fed a diet fortified with fat and zinc with no significant improvement in animals fed the probiotic-enriched diet.

Keywords: Barki ram semen, freezing, straw, feed additives

Procedia PDF Downloads 782
1416 Ammonia Adsorption Properties of Composite Ammonia Carriers Obtained by Supporting Metal Chloride on Porous Materials

Authors: Cheng Shen, LaiHong Shen

Abstract:

Ammonia is an important carrier of hydrogen energy, with the characteristics of high hydrogen content density and no carbon dioxide emission. Ammonia synthesis by the Haber process is the main method for industrial ammonia synthesis, but the conversion rate of ammonia per pass is only about 12%, while the conversion rate of biomass synthesis ammonia is as high as 56%. Therefore, safe and efficient ammonia capture for ammonia synthesis from biomass is an important way to alleviate the energy crisis and solve the energy problem. Metal chloride has a chemical adsorption effect on ammonia, and can be desorbed at high temperature to obtain high-concentration ammonia after combining with ammonia, which has a good development prospect in ammonia capture and separation technology. In this paper, the ammonia adsorption properties of CuCl₂ were measured, and the composite adsorbents were prepared by using silicon and multi-walled carbon nanotubes respectively to support CuCl₂, and the ammonia adsorption properties of the composite adsorbents were studied. The study found that the ammonia adsorption capacity of the three adsorbents decreased with the increase in temperature, so metal chlorides were more suitable for the low-temperature adsorption of ammonia. Silicon and multi-walled carbon nanotubes have an enhanced effect on the ammonia adsorption of CuCl₂. The reason is that the porous material itself has a physical adsorption effect on ammonia, and silicon can play the role of skeleton support in cupric chloride particles, which enhances the pore structure of the adsorbent, thereby alleviating sintering.

Keywords: ammonia, adsorption properties, metal chloride, silicon, MWCNTs

Procedia PDF Downloads 110
1415 Screening the Growth Inhibition Mechanism of Sulfate-Reducing Bacteria by Chitosan/Lignosulfonate Nanocomposite in Seawater Media

Authors: K. Rasool

Abstract:

Sulfate-reducing bacteria (SRBs) induced biofilm formation is a global industrial concern due to its role in the development of microbial-induced corrosion (MIC). Herein, we have developed a biodegradable chitosan/lignosulfonate nanocomposite (CS@LS) as an efficient green biocide for the inhibition of SRBs biofilms. We investigated in detail the inhibition mechanism of SRBs by CS@LS in seawater media. Stable CS@LS-1:1 with 150–200 nm average size and zeta potential of + 34.25 mV was synthesized. The biocidal performance of CS@LS was evaluated by sulfate reduction profiles coupled with analysis of extracted extracellular polymeric substances (EPS) and lactate dehydrogenase (LDH) release assays. As the nanocomposite concentration was increased from 50 to 500 µg/mL, the specific sulfate reduction rate (SSRR) decreased from 0.278 to 0.036 g-sulfate/g-VSS*day showing a relative sulfate reduction inhibition of 86.64% as compared to that of control. Similarly, the specific organic uptake rate (SOUR) decreased from 0.082 to 0.039 0.036 g-TOC/g-VSS*day giving a relative co-substrate oxidation inhibition of 52.19% as compared to that of control. The SRBs spiked with 500 µg/mL CS@LS showed a reduction in cell viability to 1.5 × 106 MPN/mL. To assess the biosafety of the nanocomposite on the marine biota, the 72-hours acute toxicity assays using the zebrafish embryo model revealed that the LC50 for the CS@LS was 103.3 µg/mL. Thus, CS@LS can be classified as environmentally friendly. The nanocomposite showed long-term stability and excellent antibacterial properties against SRBs growth and is thus potentially useful for combating the problems of biofilm growth in harsh marine and aquatic environments.

Keywords: green biocides, chitosan/lignosulfonate nanocomposite, SRBs, toxicity

Procedia PDF Downloads 119
1414 Eco-Friendly Approach in the Management of Stored Sorghum Insect Pests in Small-Scale Farmers’ Storage Structures of Northern Nigeria

Authors: Mohammed Suleiman, Ibrahim Sani, Samaila Abubakar, Kabir Abdullahi Bindawa

Abstract:

Farmers’ storage structures in Pauwa village of Katsina State, Northern Nigeria, were simulated and incorporated with the application of leaf powders of Euphorbia balsamifera Aiton, Lawsonia inermis L., Mitracarpus hirtus (L.) DC. and Senna obtusifolia L. to search for more eco-friendly methods of managing insect pests of stored sorghum. The four most commonly grown sorghum varieties in the study area, namely “Farar Kaura” (FK), “Jar Kaura” (JK), “Yar Gidan Daudu” (YGD), and ICSV400 in threshed forms were used for the study. The four varieties (2.50 kg each) were packed in small polypropylene bags, mixed with the leaf powders at the concentration of 5% (w/w) of the plants, and kept in small stores of the aforementioned village for 12 weeks. Insect pests recovered after 12 weeks were Sitophilus zeamais, Rhyzopertha dominica, Tribolium castaneum, Cryptolestes ferrugineus, and Oryzaephilus surinamensis. There were significantly fewer insect pests in treated sorghum than in untreated types (p < 0.05). More weight losses were recorded in untreated grains than in those treated with the botanical powders. In terms of varieties, grain weight losses were in the order FK > JK > YGD > ICSV400. The botanicals also showed significant (p < 0.05) protectant ability against the weevils with their performance as E. balsamifera > L. inermis > M. hirtus > S. obtusifolia.

Keywords: botanical powders, infestations, insect pests, management, sorghum varieties, storage structures, weight losses

Procedia PDF Downloads 99
1413 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm

Procedia PDF Downloads 300
1412 Triose Phosphate Utilisation at the (Sub)Foliar Scale Is Modulated by Whole-plant Source-sink Ratios and Nitrogen Budgets in Rice

Authors: Zhenxiang Zhou

Abstract:

The triose phosphate utilisation (TPU) limitation to leaf photosynthesis is a biochemical process concerning the sub-foliar carbon sink-source (im)balance, in which photorespiration-associated amino acids exports provide an additional outlet for carbon and increases leaf photosynthetic rate. However, whether this process is regulated by whole-plant sink-source relations and nitrogen budgets remains unclear. We address this question by model analyses of gas-exchange data measured on leaves at three growth stages of rice plants grown at two-nitrogen levels, where three means (leaf-colour modification, adaxial vs abaxial measurements, and panicle pruning) were explored to alter source-sink ratios. Higher specific leaf nitrogen (SLN) resulted in higher rates of TPU and also led to the TPU limitation occurring at a lower intercellular CO2 concentration. Photorespiratory nitrogen assimilation was greater in higher-nitrogen leaves but became smaller in cases associated with yellower-leaf modification, abaxial measurement, or panicle pruning. The feedback inhibition of panicle pruning on rates of TPU was not always observed because panicle pruning blocked nitrogen remobilisation from leaves to grains, and the increased SLN masked the feedback inhibition. The (sub)foliar TPU limitation can be modulated by whole-plant source-sink ratios and nitrogen budgets during rice grain filling, suggesting a close link between sub-foliar and whole-plant sink limitations.

Keywords: triose phosphate utilization, sink limitation, panicle pruning, oryza sativa

Procedia PDF Downloads 89
1411 Simulation and Controller Tunning in a Photo-Bioreactor Applying by Taguchi Method

Authors: Hosein Ghahremani, MohammadReza Khoshchehre, Pejman Hakemi

Abstract:

This study involves numerical simulations of a vertical plate-type photo-bioreactor to investigate the performance of Microalgae Spirulina and Control and optimization of parameters for the digital controller by Taguchi method that MATLAB software and Qualitek-4 has been made. Since the addition of parameters such as temperature, dissolved carbon dioxide, biomass, and ... Some new physical parameters such as light intensity and physiological conditions like photosynthetic efficiency and light inhibitors are involved in biological processes, control is facing many challenges. Not only facilitate the commercial production photo-bioreactor Microalgae as feed for aquaculture and food supplements are efficient systems but also as a possible platform for the production of active molecules such as antibiotics or innovative anti-tumor agents, carbon dioxide removal and removal of heavy metals from wastewater is used. Digital controller is designed for controlling the light bioreactor until Microalgae growth rate and carbon dioxide concentration inside the bioreactor is investigated. The optimal values of the controller parameters of the S/N and ANOVA analysis software Qualitek-4 obtained With Reaction curve, Cohen-Con and Ziegler-Nichols method were compared. The sum of the squared error obtained for each of the control methods mentioned, the Taguchi method as the best method for controlling the light intensity was selected photo-bioreactor. This method compared to control methods listed the higher stability and a shorter interval to be answered.

Keywords: photo-bioreactor, control and optimization, Light intensity, Taguchi method

Procedia PDF Downloads 390
1410 Tuning Nanomechanical Properties of Stimuli-Responsive Hydrogel Nanocomposite Thin Films for Biomedical Applications

Authors: Mallikarjunachari Gangapuram

Abstract:

The design of stimuli-responsive hydrogel nanocomposite thin films is gaining significant attention in these days due to its wide variety of applications. Soft microrobots, drug delivery, biosensors, regenerative medicine, bacterial adhesion, energy storage and wound dressing are few advanced applications in different fields. In this research work, the nanomechanical properties of composite thin films of 20 microns were tuned by applying homogeneous external DC, and AC magnetic fields of magnitudes 0.05 T and 0.1 T. Polyvinyl alcohol (PVA) used as a matrix material and elliptical hematite nanoparticles (ratio of the length of the major axis to the length of the minor axis is 140.59 ± 1.072 nm/52.84 ± 1.072 nm) used as filler materials to prepare the nanocomposite thin films. Both quasi-static nanoindentation, Nano Dynamic Mechanical Analysis (Nano-DMA) tests were performed to characterize the viscoelastic properties of PVA, PVA+Hematite (0.1% wt, 2% wt and 4% wt) nanocomposites. Different properties such as storage modulus, loss modulus, hardness, and Er/H were carefully analyzed. The increase in storage modulus, hardness, Er/H and a decrease in loss modulus were observed with increasing concentration and DC magnetic field followed by AC magnetic field. Contact angle and ATR-FTIR experiments were conducted to understand the molecular mechanisms such as hydrogen bond formation, crosslinking density, and particle-particle interactions. This systematic study is helpful in design and modeling of magnetic responsive hydrogel nanocomposite thin films for biomedical applications.

Keywords: hematite, hydrogel, nanoindentation, nano-DMA

Procedia PDF Downloads 191
1409 Morphological and Electrical Characterization of Polyacrylonitrile Nanofibers Synthesized Using Electrospinning Method for Electrical Application

Authors: Divyanka Sontakke, Arpit Thakre, D. K Shinde, Sujata Parmeshwaran

Abstract:

Electrospinning is the most widely utilized method to create nanofibers because of the direct setup, the capacity to mass-deliver consistent nanofibers from different polymers, and the ability to produce ultrathin fibers with controllable diameters. Smooth and much arranged ultrafine Polyacrylonitrile (PAN) nanofibers with diameters going from submicron to nanometer were delivered utilizing Electrospinning technique. PAN powder was used as a precursor to prepare the solution utilized as a part of this process. At the point when the electrostatic repulsion contradicted surface tension, a charged stream of polymer solution was shot out from the head of the spinneret and along these lines ultrathin nonwoven fibers were created. The effect of electrospinning parameter such as applied voltage, feed rate, concentration of polymer solution and tip to collector distance on the morphology of electrospun PAN nanofibers were investigated. The nanofibers were heat treated for carbonization to examine the changes in properties and composition to make for electrical application. Scanning Electron Microscopy (SEM) was performed before and after carbonization to study electrical conductivity and morphological characterization. The SEM images have shown the uniform fiber diameter and no beads formation. The average diameter of the PAN fiber observed 365nm and 280nm for flat plat and rotating drum collector respectively. The four probe strategy was utilized to inspect the electrical conductivity of the nanofibers and the electrical conductivity is significantly improved with increase in oxidation temperature exposed.

Keywords: electrospinning, polyacrylonitrile carbon nanofibres, heat treatment, electrical conductivity

Procedia PDF Downloads 148
1408 In vitro Inhibitory Action of an Aqueous Extract of Carob on the Release of Myeloperoxidase by Human Neutrophils

Authors: Kais Rtibi, Slimen Selmi, Jamel El-Benna, Lamjed Marzouki, Hichem Sebai

Abstract:

Background: Myeloperoxidase (MPO) is a hemic enzyme found in high concentrations in the primary neutrophils granules. In addition to its peroxidase activity, it has a chlorination activity, using hydrogen peroxide and chloride ions to form hypochlorous acid, a strong oxidant, capable of chlorinating molecules. Bioactive compounds contained in medicinal plants could limit the action of this enzyme to reduce the reactive oxygen species production and its chlorination activity. The purpose of this study is to evaluate the effect of the carob aqueous extract (CAE) on the release of MPO by human neutrophils in vitro and its activity following stimulation of these cells by PMA. Methods: Neutrophils were isolated by simple sedimentation using the Dextran/Ficoll method. After stimulation with phorbol 12-myristate 13-acetate (PMA), neutrophils release the MPO by degranulation. The effect of CAE on the release of MPO was analyzed by the Western blot technique, while, its activity was determined by biochemical method using the method of 3,3', 5,5'- Tetramethylbenzidine (TMB) and hydrogen peroxide. The data were expressed as mean ± SEM. Results: The carob aqueous extract causes a decrease in MPO quantity and activity in a concentration-dependent manner which leads to a reduction of the production of the ROS (reactive oxygen species) and the protection of the molecules against oxidation and chlorination mechanisms. Conclusion: Thanks to its richness in bioactive compounds, the aqueous extract of carob could limit the development of damages related to the uncontrolled activity of MPO.

Keywords: carob, MPO, myeloperoxidase, neutrophils, PMA, phorbol 12-myristate 13-acetate

Procedia PDF Downloads 156
1407 Effects of Drying Temperatures on the Qualitative and Quantitative Phytochemicals of Aqueous Extracts If the Calyces of Hibiscus Sabdariffa

Authors: John O. Efosa, S. Egielewa, M. A. Azeke

Abstract:

Hibiscus sabdariffa (Hs) is known for its delicacy and also for medicinal properties. The flower calyces are usually sun- or oven-dried after harvesting. There are unverified claims that calyces dried at lower temperatures have better medicinal potentials than those dried at higher temperatures. The present work, therefore, aimed to study the effects of drying temperatures on the photochemical composition and antioxidant potential of aqueous extracts of the calyces of Hs. The calyces were dried at different temperatures (freeze-drying at -580C, drying at 300C, 400C, and 500 C.) respectively to constant weight. Samples (25 g) of dried calyces from each drying temperatures were weighed and placed in clean conical flasks and extracted; each was used for the analysis. Validated analytical assays were used for the determination of the different Phytochemicals. From the results obtained, it was observed that drying at 30°C resulted in the highest retention of total phenols, total flavonoids, tannins, alkaloids and saponins. Using the Inhibition Concentration values (IC50), some antioxidant parameters were found to follow the same trend as the earlier mentioned phytochemicals. Drying at 30°C resulted in the highest retention of DPPH Radical Scavenging Activity, Ferric Reducing Antioxidant Potential (FRAP), Nitrite radical scavenging Activity, 2, 2-azinobis-3-ethylbenzotiazoline-6-sulfonic acid (ABTS) radical scavenging activity There were, however, significant reductions in vitamin C and oxalate contents as the drying temperature increased (P < 0.05). From the results, it recommended that the calyces of Hibiscus sabdariffa be dried at 30°C in order to optimally elicit its medicinal potentials.

Keywords: antioxidant, drying temperature, hibiscus sabdariffa, phytochemicals, quantitative

Procedia PDF Downloads 164
1406 Isolation and Identification Fibrinolytic Protease Endophytic Fungi from Hibiscus Leaves in Shah Alam

Authors: Mohd Sidek Ahmad, Zainon Mohd Noor, Zaidah Zainal Ariffin

Abstract:

Fibrin degradation is an important part in prevention or treatment of intravascular thrombosis and cardiovascular diseases. Plasmin like fibrinolytic enzymes has given new hope to patient with cardiovascular diseases by treating fibrin aggregation related diseases with traditional plasminogen activator which have many side effects. Various researches involving wide range of sources for production of fibrinolytic proteases, from bacteria, fungi, insects and fermented foods. But few have looked into endophytic fungi as a potential source. Sixteen (16) endophytic fungi were isolated from Hibiscus sp. leaves from six different locations in Shah Alam, Selangor. Only two endophytic fungi, FH3 and S13 showed positive fibrinolytic protease activities. FH3 produced 5.78cm and S13 produced 4.48cm on Skim Milk Agar after 4 days of incubation at 27°C. Fibrinolytic activity was observed; 3.87cm and 1.82cm diameter clear zone on fibrin plate of FH3 and S13 respectively. 18srRNA was done for identification of the isolated fungi with positive fibrinolytic protease. S13 had the highest similarity (100%) to that of Penicillium citrinum strain TG2 and FH3 had the highest similarity (99%) to that of Fusarium sp. FW2PhC1, Fusarium sp. 13002, Fusarium sp. 08006, Fusarium equiseti strain Salicorn 8 and Fungal sp. FCASAn-2. Media composition variation showed the effects of carbon nitrogen on protein concentration, where the decrement of 50% of media composition caused drastic decrease in protease of FH3 from 1.081 to 0.056 and also S13 from 2.946 to 0.198.

Keywords: isolation, identification, fibrinolytic protease, endophytic fungi, Hibiscus leaves

Procedia PDF Downloads 431
1405 Hydrogen Production Through Thermocatalytic Decomposition of Methane Over Biochar

Authors: Seyed Mohamad Rasool Mirkarimi, David Chiaramonti, Samir Bensaid

Abstract:

Catalytic methane decomposition (CMD, reaction 4) is a one-step process for hydrogen production where carbon in the methane molecule is sequestered in the form of stable and higher-value carbon materials. Metallic catalysts and carbon-based catalysts are two major types of catalysts utilized for the CDM process. Although carbon-based catalysts have lower activity compared to metallic ones, they are less expensive and offer high thermal stability and strong resistance to chemical impurities such as sulfur. Also, it would require less costly separation methods as some of the carbon-based catalysts may not have an active metal component in them. Since the regeneration of metallic catalysts requires burning of the C on their surfaces, which emits CO/CO2, in some cases, using carbon-based catalysts would be recommended because regeneration can be completely avoided, and the catalyst can be directly used in other processes. This work focuses on the effect of biochar as a carbon-based catalyst for the conversion of methane into hydrogen and carbon. Biochar produced from the pyrolysis of poplar wood and activated biochar are used as catalysts for this process. In order to observe the impact of carbon-based catalysts on methane conversion, methane cracking in the absence and presence of catalysts for a gas stream with different levels of methane concentration should be performed. The results of these experiments prove conversion of methane in the absence of catalysts at 900 °C is negligible, whereas in the presence of biochar and activated biochar, significant growth has been observed. Comparing the results of the tests related to using char and activated char shows the enhancement obtained in BET surface area of the catalyst through activation leads to more than 10 vol.% methane conversion.

Keywords: hydrogen production, catalytic methane decomposition, biochar, activated biochar, carbon-based catalyts

Procedia PDF Downloads 80
1404 Simulation of Climatic Change Effects on the Potential Fishing Zones of Dorado Fish (Coryphaena hippurus L.) in the Colombian Pacific under Scenarios RCP Using CMIP5 Model

Authors: Adriana Martínez-Arias, John Josephraj Selvaraj, Luis Octavio González-Salcedo

Abstract:

In the Colombian Pacific, Dorado fish (Coryphaena hippurus L.) fisheries is of great commercial interest. However, its habitat and fisheries may be affected by climatic change especially by the actual increase in sea surface temperature. Hence, it is of interest to study the dynamics of these species fishing zones. In this study, we developed Artificial Neural Networks (ANN) models to predict Catch per Unit Effort (CPUE) as an indicator of species abundance. The model was based on four oceanographic variables (Chlorophyll a, Sea Surface Temperature, Sea Level Anomaly and Bathymetry) derived from satellite data. CPUE datasets for model training and cross-validation were obtained from logbooks of commercial fishing vessel. Sea surface Temperature for Colombian Pacific were projected under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CPUE maps were created. Our results indicated that an increase in sea surface temperature reduces the potential fishing zones of this species in the Colombian Pacific. We conclude that ANN is a reliable tool for simulation of climate change effects on the potential fishing zones. This research opens a future agenda for other species that have been affected by climate change.

Keywords: climatic change, artificial neural networks, dorado fish, CPUE

Procedia PDF Downloads 242
1403 Vitamin D Status in Tunisian Obese Patients

Authors: O. Berriche, R. Ben Othmen, H. Sfar, H. Abdesslam, S. Bou Meftah, S. Bhouri, F. Mahjoub, C. Amrouche, H. Jamoussi

Abstract:

Introduction: Although current evidence emphasizes a high prevalence of vitamin D deficiency and an inverse association between serum 25-hydroxyvitamin D (25-OHD) concentration and obesity, no studies have been conducted in Tunisian obese. The objectives of our study were to estimate the vitamin D deficiency in obese, identify risk factors for vitamin D deficiency, demonstrating a possible association between vitamin D levels and metabolic parameters. Methods: This was a descriptive study of 100 obese 18-65 year-old. Anthropometric measurements were determined. Fasting blood samples were assessed for the following essays : serum calcium, 25 OH vitamin D, inorganic phosphorus, fasting glucose, HDL, LDL cholesterol and triglyceride. Insulin resistance was evaluated by fasting insulin, HOMA-IR and HOMA-ß. Consumption of foods riche in vitamin D, sunscreen use, wearing protective clothes and exposed surface were assessed through applied questionnaires. Results: The deficit of vitamin D (< 30 ng/ml) among obese was 98,8%. Half of them had a rate < 10ng/ml. Environmental factors involved in vitamin D deficiency are : the veil (p = 0,001), wearing protective clothes (p = 0,04) and the exposed surface (p = 0,011) and dietary factors are represented by the daily caloric intake (p = 0,0001). The percent of fat mass was negatively related to vitamin D levels (p = 0,01) but not with BMI (p = 0,11) or waist circumference (p = 0,88). Similarly, lipid and glucose profile had no link with vitamin D. We found no relationship between Insulin resistance and vitamin D levels. Conclusion: At the end of our study, we have identified a very important vitamin D deficiency among obese. Dosage and systematic supplementation should be applied and for that physician awareness is needed.

Keywords: insulinresistance, risk factors, obesity, vitamin D

Procedia PDF Downloads 652
1402 Climate Change in Awash River Basin of Ethiopia: A Projection Study Using Global and Regional Climate Model Simulations

Authors: Mahtsente Tadese, Lalit Kumar, Richard Koech

Abstract:

The aim of this study was to project and analyze climate change in the Awash River Basin (ARB) using bias-corrected Global and Regional Climate Model simulations. The analysis included a baseline period from 1986-2005 and two future scenarios (the 2050s and 2070s) under two representative concentration pathways (RCP4.5 and RCP8.5). Bias correction methods were evaluated using graphical and statistical methods. Following the evaluation of bias correction methods, the Distribution Mapping (DM) and Power Transformation (PT) were used for temperature and precipitation projection, respectively. The 2050s and 2070s RCP4 simulations showed an increase in precipitation during half of the months with 32 and 10%, respectively. Moreover, the 2050s and 2070s RCP8.5 simulation indicated a decrease in precipitation with 18 and 26%, respectively. The 2050s and 2070s RCP8.5 simulation indicated a significant decrease in precipitation in four of the months (February/March to May) with the highest decreasing rate of 34.7%. The 2050s and 2070s RCP4.5 simulation showed an increase of 0.48-2.6 °C in maximum temperature. In the case of RCP8.5, the increase rate reached 3.4 °C and 4.1 °C in the 2050s and 2070s, respectively. The changes in precipitation and temperature might worsen the water stress, flood, and drought in ARB. Moreover, the critical focus should be given to mitigation strategies and management options to reduce the negative impact. The findings of this study provide valuable information on future precipitation and temperature change in ARB, which will help in the planning and design of sustainable mitigation approaches in the basin.

Keywords: variability, climate change, Awash River Basin, precipitation

Procedia PDF Downloads 172
1401 Impact of Edible Coatings Made of Chitosan and Spray Dried Propolis in the Shell Life of White Cachama (Piaractus brachypomus)

Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez

Abstract:

There is a need to preserve aquaculture matrices due to their high nutritional value, and its broad consumption, one of those species is the white cachama (Piaractus brachypomus), this fish is located in the rivers of eastern Colombia, and the previously mentioned species needs more study. Therefore, in a paper the effects of an alternative method of preservation of shell life were investigated, the method used is the application of an edible coating made from chitosan and ethanolic extract of propolis (EEP) encapsulated in maltodextrin. The coating was applied by immersion, and after that, we investigated the post mortem quality changes of the fish performing physicochemical and microbiological analysis. pH, volatile bases, test thiobarbituric acid and peroxide value were tested; finally, we studied the effect of the coating on mesophilic strains, coliforms and other microorganisms such as Staphylococcus, and Salmonella. Finally, we concluded that the coating prolongs the shelf life because it acts as a barrier to oxygen and moisture, the bioactive compounds trap free radicals and the coatings changes the metabolism and cause the cell lysis of the microorganisms. It was determined that the concentration of malonaldehyde, the volatile basic nitrogen content and pH are the variables that distinguish more clearly between the samples with the treatment and the control samples.

Keywords: antimicrobial activity, lipid oxidation, texture profile analysis (TPA), sensorial analysis, peroxide value, thiobarbituric acid assay (TBA), total volatile basic nitrogen (TVB-N)

Procedia PDF Downloads 288
1400 Impact of Agriculture on the Groundwater Quality: Case of the Alluvial Plain of Nil River (North-Eastern Algerian)

Authors: S. Benessam, T. H. Debieche, A. Drouiche, F. Zahi, S. Mahdid

Abstract:

The intensive use of the chemical fertilizers and the pesticides in agriculture often produces a contamination of the groundwater by organic pollutants. The irrigation and/or rainwater transport the pollutants towards groundwater or water surface. Among these pollutants, one finds the nitrogen, often observed in the agricultural zones in the nitrate form. In order to understand the form and chemical mobility of nitrogen in groundwater, this study was conducted. A two-monthly monitoring of the parameters physicochemical and chemistry of water of the alluvial plain of Nil river (North-eastern Algerian) were carried out during the period from November 2013 to January 2015 as well as an in-situ investigation of the various chemical products used by the farmers. The results show a raise concentration of nitrates in the wells (depth < 20 m) of the plain, which the concentrations arrive at 50 mg/L (standard of potable water). On the other hand in drillings (depth > 20 m), one observes two behaviors. The first in the upstream part, where the aquifer is unconfined and the medium is oxidizing, one observes the weak nitrate concentrations, indicating its absorption by the ground during the infiltration of water towards the groundwater. The second in the central and downstream parts, where the groundwater is locally confined and the reducing medium, one observes an absence of nitrates and the appearance of nitrites and ammonium, indicating the reduction of nitrates. The projection of the analyses on diagrams Eh-pH of nitrogen has enabled to us to determine the intervals of variation of the nitrogen forms. This study also highlighted the effect of the rains, the pumping and the nature of the geological formations in the form and the mobility of nitrogen in the plain.

Keywords: groundwater, nitrogen, mobility, speciation

Procedia PDF Downloads 247