Search results for: drug resistance reversion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4985

Search results for: drug resistance reversion

4655 The Effect of Strength Training and Consumption of Glutamine Supplement on GH/IGF1 Axis

Authors: Alireza Barari

Abstract:

Physical activity and diet are factors that influence the body's structure. The purpose of this study was to compare the effects of four weeks of resistance training, and glutamine supplement consumption on growth hormone (GH), and Insulin-like growth factor 1 (IGF-1) Axis. 40 amateur male bodybuilders, participated in this study. They were randomly divided into four equal groups, Resistance (R), Glutamine (G), Resistance with Glutamine (RG), and Control (C). The R group was assigned to a four week resistance training program, three times/week, three sets of 10 exercises with 6-10 repetitions, at the 80-95% 1RM (One Repetition Maximum), with 120 seconds rest between sets), G group is consuming l-glutamine (0.1 g/kg-1/day-1), RG group resistance training with consuming L-glutamine, and C group continued their normal lifestyle without exercise training. GH, IGF1, IGFBP-III plasma levels were measured before and after the protocol. One-way ANOVA indicated significant change in GH, IGF, and IGFBP-III between the four groups, and the Tukey test demonstrated significant increase in GH, IGF1, IGFBP-III plasma levels in R, and RG group. Based upon these findings, we concluded that resistance training at 80-95% 1RM intensity, and resistance training along with oral glutamine shows significantly increase secretion of GH, IGF-1, and IGFBP-III in amateur males, but the addition of oral glutamine to the exercise program did not show significant difference in GH, IGF-1, and IGFBP-III.

Keywords: strength, glutamine, growth hormone, insulin-like growth factor 1

Procedia PDF Downloads 308
4654 Differential Expression of Arc in the Mesocorticolimbic System Is Involved in Drug and Natural Rewarding Behavior in Rats

Authors: Yuhua Wang, Mu Li, Jinggen Liu

Abstract:

Aim: To investigate the different effects of heroin and milk in activating the corticostriatal system that plays a critical role in reward reinforcement learning. Methods: Male SD rats were trained daily for 15 d to self-administer heroin or milk tablets in a classic runway drug self-administration model. Immunohistochemical assay was used to quantify Arc protein expression in the medial prefrontal cortex (mPFC), the nucleus accumbens (NAc), the dorsomedial striatum (DMS) and the ventrolateral striatum (VLS) in response to chronic self-administration of heroin or milk tablets. NMDA receptor antagonist MK801 (0.1 mg/kg) or dopamine D1 receptor antagonist SCH23390 (0.03 mg/kg) were intravenously injected at the same time as heroin was infused intravenously. Results: Runway training with heroin resulted in robust enhancement of Arc expression in the mPFC, the NAc and the DMS on d 1, 7, and 15, and in the VLS on d 1 and d 7. However, runway training with milk led to increased Arc expression in the mPFC, the NAc and the DMS only on d 7 and/or d 15 but not on d 1. Moreover, runway training with milk failed to induce increased Arc protein in the VLS. Both heroin-seeking behavior and Arc protein expression were blocked by MK801 or SCH23390 administration. Conclusion: The VLS is likely to be critically involved in drug-seeking behavior. The NMDA and D1 receptor-dependent Arc expression is important in drug-seeking behavior.

Keywords: arc, mesocorticolimbic system, drug rewarding behavior, NMDA receptor

Procedia PDF Downloads 389
4653 Drug Therapy Problems and Associated Factors among Patients with Heart Failure in the Medical Ward of Arba Minch General Hospital, Ethiopia

Authors: Debalke Dale, Bezabh Geneta, Yohannes Amene, Yordanos Bergene, Mohammed Yimam

Abstract:

Background: A drug therapy problem (DTP) is an event or circumstance that involves drug therapies that actually or potentially interfere with the desired outcome and requires professional judgment to resolve. Heart failure is an emerging worldwide threat whose prevalence and health loss burden constantly increase, especially in the young and in low-to-middle-income countries. There is a lack of population-based incidence and prevalence of heart failure (HF) studies in sub-Saharan African countries, including Ethiopia. Objective: The aim of this study was designed to assess drug therapy problems and associated factors among patients with HF in the medical ward of Arba Minch General Hospital(AGH), Ethiopia, from June 5 to August 20, 2022. Methods: A retrospective cross-sectional study was conducted among 180 patients with HF who were admitted to the medical ward of AGH. Data were collected from patients' cards by using questionnaires. The data were categorized and analyzed by using SPSS version 25.0 software, and data were presented in tables and words based on the nature of the data. Result: Out of the total, 85 (57.6%) were females, and 113 (75.3%) patients were aged over fifty years. Of the 150 study participants, 86 (57.3%) patients had at least one DTP identified, and a total of 116 DTPs were identified, which is 0.77 DTPs per patient. The most common types of DTP were unnecessary drug therapy (32%), followed by the need for additional drug therapy (36%), and dose too low (15%). Patients who used polypharmacy were 5.86 (AOR) times more likely to develop DTPs than those who did not (95% CI = 1.625–16.536, P = 0.005), and patients with more co-morbid conditions developed 3.68 (AOR) times more DTPs than those who had fewer co-morbidities (95% CI = 1.28–10.5, P = 0.015). Conclusion: The results of this study indicated that drug therapy problems were common among medical ward patients with heart failure. These problems are adversely affecting the treatment outcomes of patients, so it requires the special attention of healthcare professionals to optimize them.

Keywords: heart failure, drug therapy problems, Arba Minch general hospital, Ethiopia

Procedia PDF Downloads 106
4652 The Safety Profile of Vilazodone: A Study on Post-Marketing Surveillance

Authors: Humraaz Kaja, Kofi Mensah, Frasia Oosthuizen

Abstract:

Background and Aim: Vilazodone was approved in 2011 as an antidepressant to treat the major depressive disorder. As a relatively new drug, it is not clear if all adverse effects have been identified. The aim of this study was to review the adverse effects reported to the WHO Programme for International Drug Monitoring (PIDM) in order to add to the knowledge about the safety profile and adverse effects caused by vilazodone. Method: Data on adverse effects reported for vilazodone was obtained from the database VigiAccess managed by PIDM. Data was extracted from VigiAccess using Excel® and analyzed using descriptive statistics. The data collected was compared to the patient information leaflet (PIL) of Viibryd® and the FDA documents to determine adverse drug reactions reported post-marketing. Results: A total of 9708 adverse events had been recorded on VigiAccess, of which 6054 were not recorded on the PIL and the FDA approval document. Most of the reports were received from the Americas and were for adult women aged 45-64 years (24%, n=1059). The highest number of adverse events reported were for psychiatric events (19%; n=1889), followed by gastro-intestinal effects (18%; n=1839). Specific psychiatric disorders recorded included anxiety (316), depression (208), hallucination (168) and agitation (142). The systematic review confirmed several psychiatric adverse effects associated with the use of vilazodone. The findings of this study suggested that these common psychiatric adverse effects associated with the use of vilazodone were not known during the time of FDA approval of the drug and is not currently recorded in the patient information leaflet (PIL). Conclusions: In summary, this study found several adverse drug reactions not recorded in documents emanating from clinical trials pre-marketing. This highlights the importance of continued post-marketing surveillance of a drug, as well as the need for further studies on the psychiatric adverse events associated with vilazodone in order to improve the safety profile.

Keywords: adverse drug reactions, pharmacovigilance, post-marketing surveillance, vilazodone

Procedia PDF Downloads 115
4651 Effect of Nicotine on the Reinforcing Effects of Cocaine in a Nonhuman Primate Model of Drug Use

Authors: Mia I. Allen, Bernard N. Johnson, Gagan Deep, Yixin Su, Sangeeta Singth, Ashish Kumar, , Michael A. Nader

Abstract:

With no FDA-approved treatments for cocaine use disorders (CUD), research has focused on the behavioral and neuropharmacological effects of cocaine in animal models, with the goal of identifying novel interventions. While the majority of people with CUD also use tobacco/nicotine, the majority of preclinical cocaine research does not include the co-use of nicotine. The present study examined nicotine and cocaine co-use under several conditions of intravenous drug self-administration in monkeys. In Experiment 1, male rhesus monkeys (N=3) self-administered cocaine (0.001-0.1 mg/kg/injection) alone and cocaine+nicotine (0.01-0.03 mg/kg/injection) under a progressive-ratio schedule of reinforcement. When nicotine was added to cocaine, there was a significant leftward shift and significant increase in peak break point. In Experiment 2, socially housed female and male cynomolgus monkeys (N=14) self-administered cocaine under a concurrent drug-vs-food choice schedule. Combining nicotine significantly decreased cocaine choice ED50 values (i.e., shifted the cocaine dose-response curve to the left) in females but not in males. There was no evidence of social rank differences. In delay discounting studies, the co-use of nicotine and cocaine required significantly larger delays to the preferred drug reinforcer to reallocate choice compared with cocaine alone. Overall, these results suggest drug interactions of nicotine and cocaine co-use is not simply a function of potency but rather a fundamentally distinctive condition that should be utilized to better understand the neuropharmacology of CUD and the evaluation of potential treatments.

Keywords: polydrug use, animal models, nonhuman primates, behavioral pharmacology, drug self-administration

Procedia PDF Downloads 87
4650 Effect of Zirconium Addition to Aluminum Grain Refined by Ti on its Resistance to Wear: A Three-Dimensional Approach

Authors: S. M. A. Al-Qawabah, A. I. O. Zaid

Abstract:

Aluminum and its alloys are versatile materials which are widely used in industrial and engineering applications due to their good and useful properties e.g. high strength to weight ratio, high thermal and electrical conductivities and good resistance to corrosion. However, against these favorable properties they have the disadvantage they solidifying large grain columnar structure which negatively affects their mechanical properties and surface quality. Aluminum alloys are normally grain refined by some alloying elements, such as Ti, Ti-B or Zr. In this paper, the effect of zirconium addition to Al grain refined by Ti after extrusion on its wear resistance is investigated under different loads and sliding speeds namely at 5,10 and 20 N loads and sliding speeds ranging from m/min. and m/min. the results are presented in three-dimensional wear mode. To the best the authors' knowledge, the wear of aluminum in 3-dimensions has never been tackled before. In this work, the wear resistance of by presenting the results of wear are presented and discussed on the time, load and speed plots.

Keywords: aluminum grain refined, addition of titanium, wear resistance, titanium

Procedia PDF Downloads 401
4649 Influential Effect of Self-Healing Treatment on Water Absorption and Electrical Resistance of Normal and Light Weight Aggregate Concretes

Authors: B. Tayebani, N. Hosseinibalam, D. Mostofinejad

Abstract:

Interest in using bacteria in cement materials due to its positive influences has been increased. Cement materials such as mortar and concrete basically suffer from higher porosity and water absorption compared to other building materials such as steel materials. Because of the negative side-effects of certain chemical techniques, biological methods have been proposed as a desired and environmentally friendly strategy for reducing concrete porosity and diminishing water absorption. This paper presents the results of an experimental investigation carried out to evaluate the influence of Sporosarcina pasteurii bacteria on the behaviour of two types of concretes (light weight aggregate concrete and normal weight concrete). The resistance of specimens to water penetration by testing water absorption and evaluating the electrical resistance of those concretes was examined and compared. As a conclusion, 20% increase in electrical resistance and 10% reduction in water absorption of lightweight aggregate concrete (LWAC) and for normal concrete the results show 7% decrease in water absorption and almost 10% increase in electrical resistance.

Keywords: bacteria, biological method, normal weight concrete, lightweight aggregate concrete, water absorption, electrical resistance

Procedia PDF Downloads 181
4648 Controlled Drug Delivery System for Delivery of Poor Water Soluble Drugs

Authors: Raj Kumar, Prem Felix Siril

Abstract:

The poor aqueous solubility of many pharmaceutical drugs and potential drug candidates is a big challenge in drug development. Nanoformulation of such candidates is one of the major solutions for the delivery of such drugs. We initially developed the evaporation assisted solvent-antisolvent interaction (EASAI) method. EASAI method is use full to prepared nanoparticles of poor water soluble drugs with spherical morphology and particles size below 100 nm. However, to further improve the effect formulation to reduce number of dose and side effect it is important to control the delivery of drugs. However, many drug delivery systems are available. Among the many nano-drug carrier systems, solid lipid nanoparticles (SLNs) have many advantages over the others such as high biocompatibility, stability, non-toxicity and ability to achieve controlled release of drugs and drug targeting. SLNs can be administered through all existing routes due to high biocompatibility of lipids. SLNs are usually composed of lipid, surfactant and drug were encapsulated in lipid matrix. A number of non-steroidal anti-inflammatory drugs (NSAIDs) have poor bioavailability resulting from their poor aqueous solubility. In the present work, SLNs loaded with NSAIDs such as Nabumetone (NBT), Ketoprofen (KP) and Ibuprofen (IBP) were successfully prepared using different lipids and surfactants. We studied and optimized experimental parameters using a number of lipids, surfactants and NSAIDs. The effect of different experimental parameters such as lipid to surfactant ratio, volume of water, temperature, drug concentration and sonication time on the particles size of SLNs during the preparation using hot-melt sonication was studied. It was found that particles size was directly proportional to drug concentration and inversely proportional to surfactant concentration, volume of water added and temperature of water. SLNs prepared at optimized condition were characterized thoroughly by using different techniques such as dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). We successfully prepared the SLN of below 220 nm using different lipids and surfactants combination. The drugs KP, NBT and IBP showed 74%, 69% and 53% percentage of entrapment efficiency with drug loading of 2%, 7% and 6% respectively in SLNs of Campul GMS 50K and Gelucire 50/13. In-vitro drug release profile of drug loaded SLNs is shown that nearly 100% of drug was release in 6 h.

Keywords: nanoparticles, delivery, solid lipid nanoparticles, hot-melt sonication, poor water soluble drugs, solubility, bioavailability

Procedia PDF Downloads 312
4647 The Effect of the Proportion of Carbon on the Corrosion Rate of Carbon-Steel

Authors: Abdulmagid A. Khattabi, Ahmed A. Hablous, Mofied M. Elnemry

Abstract:

The carbon steel is of one of the most common mineral materials used in engineering and industrial applications in order to have access to the required mechanical properties, especially after the change of carbon ratio, but this may lead to stimulate corrosion. It has been used in models of solids with different carbon ratios such as 0.05% C, 0.2% C, 0.35% C, 0.5% C, and 0.65% C and have been studied using three testing durations which are 4 weeks, 6 weeks, and 8 weeks and among different corrosion environments such as atmosphere, fresh water, and salt water. This research is for the purpose of finding the effect of the carbon content on the corrosion resistance of steels in different corrosion medium by using the weight loss technique as a function of the corrosion resistance. The results that have been obtained through this research shows that a correlation can be made between corrosion rates and steel's carbon content, and the corrosion resistance decreases with the increase in carbon content.

Keywords: proportion of carbon in the steel, corrosion rate, erosion, corrosion resistance in carbon-steel

Procedia PDF Downloads 606
4646 Relationship Between Muscle Mass and Insulin Resistance in Cirrhotic Patients with Hepatitis B

Authors: Eyüp S. Akbas, Betul Ayaz, Beyza S. Haksever, Sema Basat

Abstract:

We aimed to evaluate the relationship between insulin resistance, muscle mass and muscle strength in patients with Hepatitis B virus-related cirrhosis. In our study, there were 65 patients with hepatitis B virus-related cirrhosis in Child A and B group and 65 healthy control individual. Control group was chosen between patients who admitted to the internal medicine clinic and had no pathological values in a routine examination. Muscle mass index was calculated with bioimpedance analysis for both groups to determine muscle strength and muscle mass. Handgrip strength, arm, and calf circumference were measured. In both groups, HOMA-IR was calculated to determine insulin resistance. Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) value was detected 3,47±3,80 in the study group and 1,83±1,20 in control group. There were significant differences between the two groups in arm circumference, fasting insulin, fasting glucose, HOMA-IR, High-density lipoprotein (HDL) and total cholesterol parameters. The correlation coefficient between muscle mass and insulin resistance was statistically insignificant, especially in the study group. In healthy individuals group and all the groups, there wasn’t a correlation between muscle mass and insulin resistance. The upper limit for HOMA-IR was determined as 3,2. In control group, %78,9 of individuals were in HOMA-IR ( < 3.2) group and %21,1 of them were in ( ≥ 3,2) group. In study group, %68,3 of individuals were in HOMA-IR ( < 3,2) group and %31.7 were in HOMA-IR ( ≥ 3,2) group. In our study, we did not find a relationship between muscle mass and insulin resistance in patients with liver cirrhosis. In the study group, we detected a positive relationship between muscle mass, handgrip strength, and calf circumference. We did not find a relationship between insulin resistance and handgrip strength in our study.

Keywords: cirrhosis, hepatitis B, Insulin resistance, muscle mass

Procedia PDF Downloads 151
4645 Pefloxacin as a Surrogate Marker for Ciprofloxacin Resistance in Salmonella: Study from North India

Authors: Varsha Gupta, Priya Datta, Gursimran Mohi, Jagdish Chander

Abstract:

Fluoroquinolones form the mainstay of therapy for the treatment of infections due to Salmonella enterica subsp. enterica. There is a complex interplay between several resistance mechanisms for quinolones and various fluoroquinolones discs, giving varying results, making detection and interpretation of fluoroquinolone resistance difficult. For detection of fluoroquinolone resistance in Salmonella ssp., we compared the use of pefloxacin and nalidixic acid discs as surrogate marker. Using MIC for ciprofloxacin as the gold standard, 43.5% of strains showed MIC as ≥1 μg/ml and were thus resistant to fluoroquinoloes. Based on the performance of nalidixic acid and pefloxacin discs as surrogate marker for ciprofloxacin resistance, both the discs could correctly detect all the resistant phenotypes; however, use of nalidixic acid disc showed false resistance in the majority of the sensitive phenotypes. We have also tested newer antimicrobial agents like cefixime, imipenem, tigecycline and azithromycin against Salmonella spp. Moreover, there was a comeback of susceptibility to older antimicrobials like ampicillin, chloramphenicol, and cotrimoxazole. We can also use cefixime, imipenem, tigecycline and azithromycin in the treatment of multidrug resistant S. typhi due to their high susceptibility.

Keywords: salmonella, pefloxacin, surrogate marker, chloramphenicol

Procedia PDF Downloads 988
4644 Anti-tuberculosis, Resistance Modulatory, Anti-pulmonary Fibrosis and Anti-silicosis Effects of Crinum Asiaticum Bulbs and Its Active Metabolite, Betulin

Authors: Theophilus Asante, Comfort Nyarko, Daniel Antwi

Abstract:

Drug-resistant tuberculosis, together with the associated comorbidities like pulmonary fibrosis and silicosis, has been one of the most serious global public health threats that requires immediate action to curb or mitigate it. This prolongs hospital stays, increases the cost of medication, and increases the death toll recorded annually. Crinum asiaticum bulb (CAE) and betulin (BET) are known for their biological and pharmacological effects. Pharmacological effects reported on CAE include antimicrobial, anti-inflammatory, anti-pyretic, anti-analgesic, and anti-cancer effects. Betulin has exhibited a multitude of powerful pharmacological properties ranging from antitumor, anti-inflammatory, anti-parasitic, anti-microbial, and anti-viral activities. This work sought to investigate the anti-tuberculosis and resistant modulatory effects and also assess their effects on mitigating pulmonary fibrosis and silicosis. In the anti-tuberculosis and resistant modulatory effects, both CAE and BET showed strong antimicrobial activities (31.25 ≤ MIC ≤ 500) µg/ml against the studied microorganisms and also produced significant anti-efflux pump and biofilm inhibitory effects (ρ < 0.0001) as well as exhibiting resistance modulatory and synergistic effects when combined with standard antibiotics. Crinum asiaticum bulbs extract and betulin were shown to possess anti-pulmonary fibrosis effects. There was an increased survival rate in the CAE and BET treatment groups compared to the BLM-induced group. There was a marked decrease in the levels of hydroxyproline and collagen I and III in the CAE and BET treatment groups compared to the BLM-treated group. The treatment groups of CAE and BET significantly downregulated the levels of pro-fibrotic and pro-inflammatory cytokine concentrations such as TGF-β1, MMP9, IL-6, IL-1β and TNF-alpha compared to an increase in the BLM-treated groups. The histological findings of the lungs suggested the curative effects of CAE and BET following BLM-induced pulmonary fibrosis in mice. The study showed improved lung functions with a wide focal area of viable alveolar spaces and few collagen fibers deposition on the lungs of the treatment groups. In the anti-silicosis and pulmonoprotective effects of CAE and BET, the levels of NF-κB, TNF-α, IL-1β, IL-6 and hydroxyproline, collagen types I and III were significantly reduced by CAE and BET (ρ < 0.0001). Both CAE and BET significantly (ρ < 0.0001) inhibited the levels of hydroxyproline, collagen I and III when compared with the negative control group. On BALF biomarkers such as macrophages, lymphocytes, monocytes, and neutrophils, CAE and BET were able to reduce their levels significantly (ρ < 0.0001). The CAE and BET were examined for anti-oxidant activity and shown to raise the levels of catalase (CAT) and superoxide dismutase (SOD) while lowering the level of malondialdehyde (MDA). There was an improvement in lung function when lung tissues were examined histologically. Crinum asiaticum bulbs extract and betulin were discovered to exhibit anti-tubercular and resistance-modulatory properties, as well as the capacity to minimize TB comorbidities such as pulmonary fibrosis and silicosis. In addition, CAE and BET may act as protective mechanisms, facilitating the preservation of the lung's physiological integrity. The outcomes of this study might pave the way for the development of leads for producing single medications for the management of drug-resistant tuberculosis and its accompanying comorbidities.

Keywords: fibrosis, crinum, tuberculosis, antiinflammation, drug resistant

Procedia PDF Downloads 83
4643 Targeting Trypanosoma brucei Using Antibody Drug Conjugates against the Transferrin Receptor

Authors: Camilla Trevor, Matthew K. Higgins, Andrea Gonzalez-Munoz, Mark Carrington

Abstract:

Trypanosomiasis is a devastating disease affecting both humans and livestock in sub-Saharan Africa. The diseases are caused by infection with African trypanosomes, protozoa transmitted by tsetse flies. Treatment currently relies on the use of chemotherapeutics with ghastly side effects. Here, we describe the development of effective antibody-drug conjugates that target the T. brucei transferrin receptor. The receptor is essential for trypanosome growth in a mammalian host but there are approximately 12 variants of the transferrin receptor in the genome. Two of the most divergent variants were used to generate recombinant monoclonal immunoglobulin G using phage display and we identified cross-reactive antibodies that bind both variants using phage ELISA, fluorescence resonance energy transfer assays and surface plasmon resonance. Fluorescent antibodies were used to demonstrate uptake into trypanosomes in culture. Toxin-conjugated antibodies were effective at killing trypanosomes at sub-nanomolar concentrations. The approach of using antibody-drug conjugates has proven highly effective.

Keywords: antibody-drug conjugates, phage display, transferrin receptor, trypanosomes

Procedia PDF Downloads 155
4642 Role of ABC-Type Efflux Transporters in Antifungal Resistance of Candida auris

Authors: Mohamed Mahdi Alshahni, Takashi Tamura, Koichi Makimura

Abstract:

Objective: The objective of this study is to evaluate roles of ABC-type efflux transporters in the resistance of Candida auris against common antifungal agents. Material and Methods: A wild-type C. auris strain and its antifungal resistant derivative strain that is generated through induction by antifungal agents were used in this study. The strains were cultured onto media containing beauvericin alone or in combination with azole agents. Moreover, expression levels of four ABC-type transporter’s homologs in those strains were analyzed by real time PCR with or without antifungal stress by fluconazole or voriconazole. Results: Addition of beauvericin helped to partially restore the susceptibility of the resistant strain against fluconazole, suggesting participation of ABC-type transporters in the resistance mechanism. Real time PCR results showed that mRNA levels of three out of the four analyzed transporters in the resistant strain were more than 2-fold higher than their counterparts in the wild-type strain under negative control and antifungal agent-containing conditions. Conclusion: C. auris is an emerging multidrug-resistant pathogen causing human mortality worldwide. Providing effective treatment has been hampered by the resistance to antifungal drugs, demanding understanding the resistance mechanism in order to devise new therapeutic strategies. Our data suggest a partial contribution of ABC-type transporters to the resistance of this pathogen.

Keywords: resistance, C. auris, transporters, antifungi

Procedia PDF Downloads 169
4641 Pulsatile Drug Delivery System for Chronopharmacological Disorders

Authors: S. S. Patil, B. U. Janugade, S. V. Patil

Abstract:

Pulsatile systems are gaining a lot of interest as they deliver the drug at the right site of action at the right time and in the right amount, thus providing spatial and temporal delivery thus increasing patient compliance. These systems are designed according to the circadian rhythm of the body. Chronotherapeutics is the discipline concerned with the delivery of drugs according to inherent activities of a disease over a certain period of time. It is becoming increasingly more evident that the specific time that patients take their medication may be even more significant than was recognized in the past. The tradition of prescribing medication at evenly spaced time intervals throughout the day, in an attempt to maintain constant drug levels throughout a 24-hour period, may be changing as researcher’s report that some medications may work better if their administration is coordinated with day-night patterns and biological rhythms. The potential benefits of chronotherapeutics have been demonstrated in the management of a number of diseases. In particular, there is a great deal of interest in how chronotherapy can particularly benefit patients suffering from allergic rhinitis, rheumatoid arthritis and related disorders, asthma, cancer, cardiovascular diseases, and peptic ulcer disease.

Keywords: pulsatile drug delivery, chronotherapeutics, circadian rhythm, asthma, chronobiology

Procedia PDF Downloads 365
4640 Laboratory Investigation of the Impact Resistance of High-Strength Reinforced Concrete Against Impact Loading

Authors: Hadi Rouhi Belvirdi

Abstract:

Reinforced concrete structures, in addition to bearing service loads and seismic effects, may also be subjected to impact loads resulting from unforeseen incidents. Understanding the behavior of these structures is crucial, as they serve to protect against such sudden loads and can significantly reduce damage and destruction. In examining the behavior of structures under such loading conditions, a total of eight specimens of single-layer reinforced concrete slabs were subjected to impact loading through the free fall of weights from specified heights. The weights and dimensions of the specimens were uniform, and the amount of reinforcement was consistent. By altering the slabs' overall shape and the reinforcement details, efforts were made to optimize the behavior of the slabs against impact loads. The results indicated that utilizing ductile features in the slabs increased their resistance to impact loading. However, the compressive strength of the reinforcement did not significantly enhance the flexural resistance. Assuming a constant amount of longitudinal steel, changes in the placement of tensile reinforcement led to a decrease in resistance. With a fixed amount of transverse steel, merely adjusting the angle of the transverse reinforcement could help control cracking and mitigate premature failures. An increase in compressive resistance beyond a certain limit resulted in local buckling of the compressive zone, subsequently decreasing the impact resistance.

Keywords: reinforced concrete slab, high-strength concrete, impact loading, impact resistance

Procedia PDF Downloads 10
4639 Host-Assisted Delivery of a Model Drug to Genomic DNA: Key Information From Ultrafast Spectroscopy and in Silico Study

Authors: Ria Ghosh, Soumendra Singh, Dipanjan Mukherjee, Susmita Mondal, Monojit Das, Uttam Pal, Aniruddha Adhikari, Aman Bhushan, Surajit Bose, Siddharth Sankar Bhattacharyya, Debasish Pal, Tanusri Saha-Dasgupta, Maitree Bhattacharyya, Debasis Bhattacharyya, Asim Kumar Mallick, Ranjan Das, Samir Kumar Pal

Abstract:

Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ~652 s 1. However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner.

Keywords: DNA, drug delivery, micelle, pre-micelle, SDS, toluidine blue

Procedia PDF Downloads 113
4638 The Effect of Nanocomposite on the Release of Imipenem on Bacteria Causing Infections with Implants

Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri

Abstract:

—Results The prudent administration of antibiotics aims to avoid the side effects and the microbes' resistance to antibiotics. An approach developing methods of local administration of antibiotics is especially required for localized infections caused by bacterial colonization of medical devices or implant materials. Among the wide variety of materials used as drug delivery systems, bioactive glasses (BG) have large utilization in regenerative medicine . firstly, the production of bioactive glass/nickel oxide/tin dioxide nanocomposite using sol-gel method, and then, the controlled release of imipenem from the double metal oxide/bioactive glass nanocomposite, and finally, the investigation of the antibacterial property of the nanocomposite. against a number of implant-related infectious agents. In this study, BG/SnO2 and BG/NiO single systema with different metal oxide present and BG/NiO/SnO2 nanocomposites were synthesized by sol-gel as drug carriers for tetracycline and imepinem. These two antibiotics were widely used for osteomyelitis because of its favorable penetration and bactericidal effect on all the probable osteomyelitis pathogens. The antibacterial activity of synthesized samples were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa as bacteria model using disk diffusion method. The BG modification using metal oxides results to antibacterial property of samples containing metal oxide with highest efficiency for nancomposite. bioactivity of all samples was assessed by determining the surface morphology, structural and composition changes using scanning electron microscopy (SEM), FTIR and X-ray diffraction (XRD) spectroscopy, respectively, after soaking in simulated body fluid (SBF) for 28 days. The hydroxyapatite formation was clearly observed as a bioactivity measurement. Then, BG nanocomposite sample was loaded using two antibiotics, separately and their release profiles were studied. The BG nancomposite sample was shown the slow and continuous drug releasing for a period of 72 hours which is desirable for a drug delivery system. The loaded antibiotic nanocomposite sample retaining antibacterial property and showing inactivation effect against bacteria under test. The modified bioactive glass forming hydroxyapatite with controlled release drug and effective against bacterial infections can be introduced as scaffolds for bone implants after clinical trials for biomedical applications . Considering the formation of biofilm by infectious bacteria after sticking on the surfaces of implants, medical devices, etc. Also, considering the complications of traditional methods, solving the problems caused by the above-mentioned microorganisms in technical and biomedical industries was one of the necessities of this research.

Keywords: antibacterial, bioglass, drug delivery system, sol- gel

Procedia PDF Downloads 60
4637 Analysis of Taxonomic Compositions, Metabolic Pathways and Antibiotic Resistance Genes in Fish Gut Microbiome by Shotgun Metagenomics

Authors: Anuj Tyagi, Balwinder Singh, Naveen Kumar B. T., Niraj K. Singh

Abstract:

Characterization of diverse microbial communities in specific environment plays a crucial role in the better understanding of their functional relationship with the ecosystem. It is now well established that gut microbiome of fish is not the simple replication of microbiota of surrounding local habitat, and extensive species, dietary, physiological and metabolic variations in fishes may have a significant impact on its composition. Moreover, overuse of antibiotics in human, veterinary and aquaculture medicine has led to rapid emergence and propagation of antibiotic resistance genes (ARGs) in the aquatic environment. Microbial communities harboring specific ARGs not only get a preferential edge during selective antibiotic exposure but also possess the significant risk of ARGs transfer to other non-resistance bacteria within the confined environments. This phenomenon may lead to the emergence of habitat-specific microbial resistomes and subsequent emergence of virulent antibiotic-resistant pathogens with severe fish and consumer health consequences. In this study, gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. Metagenomic DNA, extracted from the fish gut, was subjected to sequencing on Illumina NextSeq to generate paired-end (PE) 2 x 150 bp sequencing reads. After the QC of raw sequencing data by Trimmomatic, taxonomic analysis by Kraken2 taxonomic sequence classification system revealed the presence of 36 phyla, 326 families and 985 genera in the fish gut microbiome. At phylum level, Proteobacteria accounted for more than three-fourths of total bacterial populations followed by Actinobacteria (14%) and Cyanobacteria (3%). Commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) were found to be very less prevalent in fish gut. After sequencing data assembly by MEGAHIT v1.1.2 assembler and PROKKA automated analysis pipeline, pathway analysis revealed the presence of 1,608 Metacyc pathways in the fish gut microbiome. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy-metabolism (4%) and fermentation (2%). Almost one-third (33%) of biosynthesis pathways were involved in the synthesis of secondary metabolites. Metabolic pathways for the biosynthesis of 35 antibiotic types were also present, and these accounted for 5% of overall metabolic pathways in the fish gut microbiome. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. More than 90% ARGs in fish gut microbiome were against beta-lactams (penicillins, cephalosporins, penems, and monobactams). Resistance against tetracycline, macrolides, fluoroquinolones, and phenicols ranged from 0.7% to 1.3%. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment.

Keywords: antibiotic resistance, fish gut, metabolic pathways, microbial diversity

Procedia PDF Downloads 144
4636 Formulation and Evaluation of Solid Dispersion of an Anti-Epileptic Drug Carbamazepine

Authors: Sharmin Akhter, M. Salahuddin, Sukalyan Kumar Kundu, Mohammad Fahim Kadir

Abstract:

Relatively insoluble candidate drug like carbamazepine (CBZ) often exhibit incomplete or erratic absorption; and hence wide consideration is given to improve aqueous solubility of such compound. Solid dispersions were formulated with an aim of improving aqueous solubility, oral bioavailability and the rate of dissolution of Carbamazepine using different hydrophyllic polymer like Polyethylene Glycol (PEG) 6000, Polyethylene Glycol (PEG) 4000, kollidon 30, HPMC 6 cps, poloxamer 407 and povidone k 30. Solid dispersions were prepared with different drug to polymer weight ratio by the solvent evaporation method where methanol was used as solvent. Drug-polymer physical mixtures were also prepared to compare the rate of dissolution. Effects of different polymer were studied for solid dispersion formulation as well as physical mixtures. These formulations were characterized in the solid state by Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). Solid state characterization indicated CBZ was present as fine particles and entrapped in carrier matrix of PEG 6000 and PVP K30 solid dispersions. Fourier Transform Infrared (FTIR) spectroscopic studies showed the stability of CBZ and absence of well-defined drug-polymer interactions. In contrast to the very slow dissolution rate of pure CBZ, dispersions of drug in polymers considerably improved the dissolution rate. This can be attributed to increased wettability and dispersibility, as well as decreased crystallinity and increase in amorphous fraction of drug. Solid dispersion formulations containing PEG 6000 and Povidone K 30 showed maximum drug release within one hour at the ratio of 1:1:1. Even physical mixtures of CBZ prepared with both carriers also showed better dissolution profiles than those of pure CBZ. In conclusions, solid dispersions could be a promising delivery of CBZ with improved oral bioavailability and immediate release profiles.

Keywords: carbamazepine, FTIR, kollidon 30, HPMC 6 CPS, PEG 6000, PEG 4000, poloxamer 407, water solubility, povidone k 30, SEM, solid dispersion

Procedia PDF Downloads 297
4635 Probability Sampling in Matched Case-Control Study in Drug Abuse

Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell

Abstract:

Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.

Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling

Procedia PDF Downloads 493
4634 Microencapsulation of Phenobarbital by Ethyl Cellulose Matrix

Authors: S. Bouameur, S. Chirani

Abstract:

The aim of this study was to evaluate the potential use of EthylCellulose in the preparation of microspheres as a Drug Delivery System for sustained release of phenobarbital. The microspheres were prepared by solvent evaporation technique using ethylcellulose as polymer matrix with a ratio 1:2, dichloromethane as solvent and Polyvinyl alcohol 1% as processing medium to solidify the microspheres. Size, shape, drug loading capacity and entrapement efficiency were studied.

Keywords: phenobarbital, microspheres, ethylcellulose, polyvinylacohol

Procedia PDF Downloads 361
4633 Circadian-Clock Controlled Drug Transport Across Blood-Cerebrospinal Fluid Barrier

Authors: André Furtado, Rafael Mineiro, Isabel Gonçalves, Cecília Santos, Telma Quintela

Abstract:

The development of therapies for central nervous system (CNS) disorders is one of the biggest challenges of current pharmacology, given the unique features of brain barriers, which limit drug delivery. Efflux transporters (ABC transporters) expressed at the blood-cerebrospinal fluid barrier (BCSFB), are the main obstacles for the delivery of therapeutic compounds into the CNS, compromising the effective treatment of brain cancer, brain metastasis from peripheral cancers, or even neurodegenerative disorders. It is thus extremely important to understand the regulation of these transporters for reducing their expression while treating a brain disorder or choosing the most appropriate conditions for drug administration. Based on the fact that the BCSFB have fine-tuned biological rhythms, studying the circadian variation of drug transport processes is critical for choosing the most appropriate time of the day for drug administration. In our study, using an in vitro model of the BCSFB, we characterized the circadian transport profile of methotrexate (MTX) and donepezil (DNPZ), two drugs involved in the treatment of cancer and Alzheimer’s Disease symptoms, respectively. We found that MTX is transported across the basal and apical membranes of the BCSFB in a circadian way. The circadian pattern of an ABC transporter, Abcc4, might be partially responsible for MTX circadian transport. Furthermore, regarding the DNPZ transport study, we observed that the regulation of Abcg2 expression by the circadian rhythm will impact the circadian-dependent transport of DNPZ across the BCSFB. Overall, our results will contribute to the current knowledge on brain pharmacoresistance at the BCSFB by disclosing how circadian rhythms control drug delivery to the brain, setting the grounds for a potential application of chronotherapy to brain diseases to enhance the efficacy of medications and minimize their side effects.

Keywords: blood-cerebrospinal fluid barrier, ABC transporters, drug transport, chronotherapy

Procedia PDF Downloads 13
4632 The Effect of Jujube Extract and Resistance Training on the Reduction of Complications Caused by the Induction of Anabolic Steroid Boldenone on the Histopathological Changes of Pancreatic Tissue of Male Wistar Rats

Authors: Sayyed-javad Ziaolhagh, Ali-Reza Saadatifar

Abstract:

Introduction: Athletes frequently perform anabolic steroid resistance exercise, but the effects of medical doses and abuse along with resistance exercise on structural damage to the Pancreases and also jujube extract are unknown. The aim of this study was to investigate the effects of resistance training on body weight and hip fractures induced by boldenone injection in male rats. Materials and methods: In this experimental study, 30 male Wistar rats aged 8-12 weeks (weight 202±9.34 g) were randomly divided into five groups: control, boldenone, extract of iujuba+boldenone, boldenone+resistance training and boldenone+resistance training +extract of jujuba. The resistance training program included climbing the ladder for 8 weeks, 3 days a week, 1 session training in a day and each session consisted of the 3 sets and 5 repetitions. Injection was conducted in depth in the hamstring once a week on an appointed day. After anesthesia, autopsy was performed, and the cardiac tissue was isolated. Results: Results showed that boldenone caused tissue damage, congestion, and nuclei unclear and diffuse. In the group "resistance + Boldenone," The Pancreases tissue showed a high degree of hyperemia, and the muscle cells were somewhat abnormal. In boldenone + jujube, the appearance of the tissue was normal, and the rejuvenating effect was visible. Conclusion: Boldenone appears to cause structural damage to the Pancreases tissue. Strength training with Jujube Extract can reduce part of the pancreatic system disorders (necrosis and inflammation) caused by anabolic steroid use.

Keywords: boldenone, Jujube extract, pancreases tissue, resistance training

Procedia PDF Downloads 70
4631 Characteristics of PET-Based Conductive Fiber

Authors: Chung-Yang Chuang, Chi-Lung Chen, Hui-Min Wang, Chang-Jung Chang

Abstract:

Conductive fiber is the key material for e-textiles and wearable devices. However, the durability of the conductive fiber after the wash process is an important issue for conductive fiber applications in e-textiles. Therefore, it is necessary for conductive fiber with good performance on electrically conductive behavior during the product life cycle. In this research, the PET-based conductive fiber was prepared by silver conductive ink continuous coating. The conductive fiber showed low fiber resistance (10-¹~10Ω/cm), and the conductive behavior still had good performance (fiber resistance:10-¹~10Ω/cm, percentage of fiber resistance change:<60%) after the water wash durability test (AATCC-135, 30 times). This research provides a better solution to resolve the issues of resistance increase after the water wash process due to the damage to the conductive fiber structure.

Keywords: PET, conductive fiber, e-textiles, wearable devices

Procedia PDF Downloads 101
4630 Tri/Tetra-Block Copolymeric Nanocarriers as a Potential Ocular Delivery System of Lornoxicam: Experimental Design-Based Preparation, in-vitro Characterization and in-vivo Estimation of Transcorneal Permeation

Authors: Alaa Hamed Salama, Rehab Nabil Shamma

Abstract:

Introduction: Polymeric micelles that can deliver drug to intended sites of the eye have attracted much scientific attention recently. The aim of this study was to review the aqueous-based formulation of drug-loaded polymeric micelles that hold significant promise for ophthalmic drug delivery. This study investigated the synergistic performance of mixed polymeric micelles made of linear and branched poly (ethylene oxide)-poly (propylene oxide) for the more effective encapsulation of Lornoxicam (LX) as a hydrophobic model drug. Methods: The co-micellization process of 10% binary systems combining different weight ratios of the highly hydrophilic poloxamers; Synperonic® PE/P84, and Synperonic® PE/F127 and the hydrophobic poloxamine counterpart (Tetronic® T701) was investigated by means of photon correlation spectroscopy and cloud point. The drug-loaded micelles were tested for their solubilizing capacity towards LX. Results: Results showed a sharp solubility increase from 0.46 mg/ml up to more than 4.34 mg/ml, representing about 136-fold increase. Optimized formulation was selected to achieve maximum drug solubilizing power and clarity with lowest possible particle size. The optimized formulation was characterized by 1HNMR analysis which revealed complete encapsulation of the drug within the micelles. Further investigations by histopathological and confocal laser studies revealed the non-irritant nature and good corneal penetrating power of the proposed nano-formulation. Conclusion: LX-loaded polymeric nanomicellar formulation was fabricated allowing easy application of the drug in the form of clear eye drops that do not cause blurred vision or discomfort, thus achieving high patient compliance.

Keywords: confocal laser scanning microscopy, Histopathological studies, Lornoxicam, micellar solubilization

Procedia PDF Downloads 449
4629 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Their Antibacterial Effects on Negative Bacillus Bacteria Causing Urinary Tract Infection

Authors: F. Madani, M. Doudi, L. Rahimzadeh Torabi

Abstract:

The irregular consumption of current antibiotics contributes to an escalation in antibiotic resistance among urinary pathogens on a global scale. The objective of this research was to investigate the process of biologically synthesized silver nanoparticles through the utilization of Zataria multiflora extract. Additionally, the study aimed to evaluate the efficacy of these synthesized nanoparticles in inhibiting the growth of multi-drug resistant negative bacillus bacteria, which commonly contribute to urinary tract infections. The botanical specimen utilized in the current research investigation was Z. multiflora, and its extract was produced employing the Soxhlet extraction technique. The study examined the green synthesis conditions of silver nanoparticles by considering three key parameters: the quantity of extract used, the concentration of silver nitrate salt, and the temperature. The particle dimensions were ascertained using the Zetasizer technique. In order to identify synthesized Silver nanoparticles TEM, XRD, and FTIR methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through a biological method, different concentrations of silver nanoparticles were studied on 140 cases of Multiple drug resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections, for identification of bacteria were used of PCR test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were subjected to analysis using the statistical software SPSS, specifically employing nonparametric Kruskal-Wallis and Mann-Whitney tests. This study yielded noteworthy findings regarding the impacts of varying concentrations of silver nitrate, different quantities of Z. multiflora extract, and levels of temperature on nanoparticles. Specifically, it was observed that an increase in the concentration of silver nitrate, extract amount, and temperature resulted in a reduction in the size of the nanoparticles synthesized. However, the impact of the aforementioned factors on the index of particle diffusion was found to be statistically non-significant. According to the transmission electron microscopy (TEM) findings, the particles exhibited predominantly spherical morphology, with a diameter spanning from 25 to 50 nanometers. Nanoparticles in the examined sample. Nanocrystals of silver. FTIR method illustrated that the spectrums of Z. multiflora and synthesized nanoparticles had clear peaks in the ranges of 1500-2000, and 3500 - 4000. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E. coli, A. bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125 mg/ml and for A. bumanii 250 mg/ml. Comparing the growth inhibitory effect of chemically synthesized the results obtained from the experiment indicated that both nanoparticles and biologically synthesized nanoparticles exhibit a notable growth inhibition effect. Specifically, the chemical method of synthesizing nanoparticles demonstrated the highest level of growth inhibition at a concentration of 62.5 mg/mL The present study demonstrated an inhibitory effect on bacterial growth, facilitating the causative factors of urine infection and multidrug resistance (MDR).

Keywords: multiple drug resistance, negative bacillus bacteria, urine infection, Zataria multiflora

Procedia PDF Downloads 104
4628 Essential Oil Composition and Antimicrobial Activity of Rosmarinus officinalis L. Grown in Algeria (Djelfa)

Authors: Samah Lakehal, A. Meliani, F. Z. Benrebiha, C. Chaouia

Abstract:

In the last few years, due to the misuse of antibiotics and an increasing incidence of immunodeficiency-related diseases, the development of microbial drug resistance has become more and more of a pressing problem. Recently, natural products from medicinal plants represent a fertile ground for the development of novel antibacterial agents. Plants essential oils have come more into the focus of phytomedicine. The present study describes antimicrobial activity of Rosmarinus officinalis L. essential oil known medicinally for its powerful antibacterial properties. The essential oil of rosemary obtained by hydrodistillation (using Clevenger type apparatus) growing in Algeria (Djelfa city of south Algeria) was investigated by GC-MS. The essential oil yield of the study was 1.4 %. The major components were found to be camphor, camphene, 1,8-cineole. The essential oil has been tested for antimicrobial activity against eight bacteria (Gram-negative and Gram-positive), and three fungi including Candida albicans. Inhibition of growth was tested by the agar diffusion method based on the determination of the diameter of inhibition. The oil was found to have significant antibacterial activity and therefore can be used as a natural antimicrobial agent for the treatment of several infectious diseases caused by those germs, which have developed resistance to antibiotics.

Keywords: antimicrobial activity, Rosmarinus officinalis L., essential oils, GC/MS, camphor

Procedia PDF Downloads 391
4627 Association of Antibiotics Resistance with Efflux Pumps Genes among Multidrug-Resistant Klebsiella pneumonia Recovered from Hospital Waste Water Effluents in Eastern Cape, South Africa

Authors: Okafor Joan, Nwodo Uchechukwu

Abstract:

Klebsiella pneumoniae (K. pneumoniae) is a significant pathogen responsible for opportunistic and nosocomial infection. One of the most significant antibiotic resistance mechanisms in K. pneumoniae isolates is efflux pumps. Our current study identified efflux genes (AcrAB, OqxAB, MacAB, and TolC) and regulatory genes (RamR and RarA) in multidrug-resistant (MDR) K. pneumoniae isolated from hospital effluents and investigated their relationship with antibiotic resistance. The sum of 145 K. pneumoniae isolates was established by PCR and screened for antibiotic susceptibility. PCR detected efflux pump genes, and their link with antibiotic resistance was statistically examined. However, 120 (83%) of the confirmed isolated were multidrug-resistant, with the largest percentage of resistance to ampicillin (88.3%) and the weakest rate of resistance to imipenem (5.5%). Resistance to the other antibiotics ranged from 11% to 76.6%. Molecular distribution tests show that AcrA, AcrB, MacA, oqxB oqxA, TolC, MacB were detected in 96.7%, 85%, 76.7%, 70.8%, 55.8%, 39.1%, and 29.1% respectively. However, 14.3% of the isolates harboured all seven genes screened. Efflux pump system AcrAB (83.2%) was the most commonly detected in K. pneumonia isolated across all the antibiotics class-tested. In addition, the frequencies of RamR and RarA were 46.2% and 31.4%, respectively. AcrAB and OqxAB efflux pump genes were significantly associated with fluoroquinolone, beta-lactam, carbapenem, and tetracycline resistance (p<0.05). The high rate of efflux genes in this study demonstrated that this resistance mechanism is the dominant way in K. pneumoniae isolates. Appropriate treatment must be used to reduce and tackle the burden of resistant Klebsiella pneumonia in hospital wastewater effluents.

Keywords: Klebsiella pneumonia, efflux pumps, regulatory genes, multidrug-resistant, hospital, PCR

Procedia PDF Downloads 84
4626 Improving Fire Resistance of Wood and Wood-Based Composites and Fire Testing Systems

Authors: Nadir Ayrilmis

Abstract:

Wood and wood-based panels are one of the oldest structural materials used in the construction industry due to their significant advantages such as good mechanical properties, low density, renewable material, low-cost, recycling, etc. However, they burn when exposed to a flame source or high temperatures. This is very important when the wood products are used as structural or hemi-structural materials in the construction industry, furniture industry, so on. For this reason, the fire resistance is demanded property for wood products. They can be impregnated with fire retardants to improve their fire resistance. The most used fire retardants, fire-retardant mechanism, and fire-testing systems, and national and international fire-durability classifications and standard requirements for fire-durability of wood and wood-based panels were given in this study.

Keywords: fire resistance, wood-based panels, cone calorimeter, wood

Procedia PDF Downloads 165