Search results for: panel data method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 38610

Search results for: panel data method

35130 Identification of the Relationship Between Signals in Continuous Monitoring of Production Systems

Authors: Maciej Zaręba, Sławomir Lasota

Abstract:

Understanding the dependencies between the input signal, that controls the production system and signals, that capture its output, is of a great importance in intelligent systems. The method for identification of the relationship between signals in continuous monitoring of production systems is described in the paper. The method discovers the correlation between changes in the states derived from input signals and resulting changes in the states of output signals of the production system. The method is able to handle system inertia, which determines the time shift of the relationship between the input and output.

Keywords: manufacturing operation management, signal relationship, continuous monitoring, production systems

Procedia PDF Downloads 93
35129 Evaluation of the Efficiency of French Language Educational Software for Learners in Semnan Province, Iran

Authors: Alireza Hashemi

Abstract:

In recent decades, language teaching methodology has undergone significant changes due to the advent of computers and the growth of educational software. French language education has also benefited from these developments, and various software has been produced to facilitate the learning of this language. However, the question arises whether these software programs meet the educational needs of Iranian learners, particularly in Semnan Province. The aim of this study is to evaluate the efficiency and effectiveness of French language educational software for learners in Semnan Province, considering educational, cultural, and technical criteria. In this study, content analysis and performance evaluation methods were used to examine the educational software ‘Français Facile’. This software was evaluated based on criteria such as teaching methods, cultural compatibility, and technical features. To collect data, standardized questionnaires and semi-structured interviews with learners in Semnan Province were used. Additionally, the SPSS statistical software was employed for quantitative data analysis, and the thematic analysis method was used for qualitative data. The results indicated that the ‘Français Facile’ software has strengths such as providing diverse educational content and an interactive learning environment. However, some weaknesses include the lack of alignment of educational content with the learning culture of learners in Semnan Province and technical issues in software execution. Statistical data showed that 65% of learners were satisfied with the educational content, but 55% reported issues related to cultural alignment with their needs. This study indicates that to enhance the efficiency of French language educational software, there is a need to localize educational content and improve technical infrastructure. Producing locally adapted educational software can improve the quality of language learning and increase the motivation of learners in Semnan Province. This research emphasizes the importance of understanding the cultural and educational needs of learners in the development of educational software and recommends that developers of educational software pay special attention to these aspects.

Keywords: educational software, French language, Iran, learners in Semnan province

Procedia PDF Downloads 42
35128 Investigation of Axisymmetric Bimetallic Tube Extrusion with Conic Die

Authors: A. Eghbali, M. Goodarzi, M. Hagh Panahi

Abstract:

In this article process of direct extrusion of axisymmetric bimetallic tube with conic die profile and constant Mandrel by upper bound method has been analyzed and finite element method is simulated. Deformation area is divided into six smaller deformation areas and are calculated by presenting two generalized velocity field and applicable input and output sections separately (velocity profile with logarithmic curve for input section and spherical velocity profile for materials output ) for each die profile in spherical coordinate system strain rate values in every deformation area. After internal power, shearing power and material friction power is obtained, extrusion force is calculated. The results of upper bound analysis method with given results from other researcher's experiments and simulation by finite parts method (Abaqus software) are compared for conic die.

Keywords: extrusion, upper bound, axisy metric, deformation velocity field

Procedia PDF Downloads 376
35127 Swot Analysis for Employment of Graduates of Physical Education and Sport Sciences in Iran

Authors: Mohammad Reza Boroumand Devlagh

Abstract:

Employment problem, especially university graduates is the most important challenges in the decade ahead. The purpose of this study is the SWOT analysis for employment of graduates of Physical Education and Sport Sciences in Iran. The sample of this research consist of 115 (35.5 + 8.0 years) of physical education and sport sciences faculty members of higher education institutions, major sport managers and graduates of physical education and sport sciences. Library method, interview and questioners were used to collect data. The questionnaires were made in four parts: Strengths, Weaknesses, Opportunities and Threats with Cronbach's alpha coefficient of 0.94. After data collection, means, standard deviation (SD) and percentage were calculated by using SPSS software. Fridman was used for the statical analysis at P < 0.05. The results showed that Employment of graduates of Physical Education and Sport Sciences in Iran Located In the worst position possible (T-W area) in Strategic Position and Action Evaluation Matrix) SPACEM), and there are more weaknesses than strengths (2.02 < 2.5) in internal evaluation and there are more threats than opportunities(2.36 < 2.5) in external evaluation.

Keywords: employment, graduate, physical education and sport sciences, SWOT analysis

Procedia PDF Downloads 539
35126 Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy

Authors: Nazaket Gazieva

Abstract:

Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.

Keywords: phonogram, speech signal, temporal characteristics, fundamental frequency, biometric fingerprints

Procedia PDF Downloads 144
35125 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics

Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer

Abstract:

Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.

Keywords: Hamilton's principle of least action, particle-based method, hyper-elasticity, analysis of stability

Procedia PDF Downloads 341
35124 Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components

Authors: Masahiro Yoneda

Abstract:

The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge.

Keywords: simplified method, human walking vertical force, higher component, pedestrian bridge vibration

Procedia PDF Downloads 435
35123 Relationship of Religious Coping with Occupational Stress and the Quality of Working Life of Midwives in Maternity Hospitals in Zahedan

Authors: Fatemeh Roostaee, Zahra Nikmanesh

Abstract:

This study was done to investigate the role of religious coping components on occupational stress and the quality of working life of midwives. The method of study was descriptive-correlation. The sample was comprised of all midwives in maternity hospitals in Zahedan during 1393. Participants were selected through applying census method. The instruments of data collection were three questionnaires: the quality of working life, occupational stress, and religious opposition. For statistical analysis, Pearson correlation and step by step regression analysis methods were used. The results showed that there is a significant negative relationship between the component of religious activities (r=-0/454) and occupational stress, and regression analysis was also shown that the variable of religious activities has been explained 45% of occupational stress variable changes. The Pearson correlation test showed that there isn't any significant relationship between religious opposition components and the quality of life. Therefore, it is necessary to present essential trainings on (the field of) strengthening compatibility strategies and religious activities to reduce occupational stress.

Keywords: the quality of working life, occupational stress, religious, midwife

Procedia PDF Downloads 581
35122 Large Amplitude Vibration of Sandwich Beam

Authors: Youssef Abdelli, Rachid Nasri

Abstract:

The large amplitude free vibration analysis of three-layered symmetric sandwich beams is carried out using two different approaches. The governing nonlinear partial differential equations of motion in free natural vibration are derived using Hamilton's principle. The formulation leads to two nonlinear partial differential equations that are coupled both in axial and binding deformations. In the first approach, the method of multiple scales is applied directly to the governing equation that is a nonlinear partial differential equation. In the second approach, we discretize the governing equation by using Galerkin's procedure and then apply the shooting method to the obtained ordinary differential equations. In order to check the validity of the solutions obtained by the two approaches, they are compared with the solutions obtained by two approaches; they are compared with the solutions obtained numerically by the finite difference method.

Keywords: finite difference method, large amplitude vibration, multiple scales, nonlinear vibration

Procedia PDF Downloads 463
35121 Strategy and Maze Surgery (Atrial fibrillation Surgery)

Authors: Shirin Jalili, Ramin Ghasemi Shayan

Abstract:

Atrial fibrillation is the foremost common arrhythmia around the world, with expanding recurrence famous with age. Thromboembolic occasions and strokes are the number one cause of mortality and morbidity. For patients who don't react to restorative treatment for rate and beat control, the maze method offers an elective treatment mediation. pharmaco-medical treatment for atrial fibrillation is pointed at the control of rate or cadence, intrusive treatment for atrial fibrillation is pointed at cadence control. An obtrusive approach may comprise of percutaneous catheter treatment, surgery, or a crossover approach. Since the maze method is recognized as the foremost successful way to dispense with AF, combining the maze strategy amid major cardiac surgeries has been received in clinical hone. the maze strategy, moreover known as Cox¬maze iii or the ‘cut¬and¬sew’ method, involves making different incisions within the atria to make an arrangement of scars that dispose of each potential zone of re¬entry. The electrical drive is constrained through a maze of scars that coordinates the electrical drive from the sinus node to the av node. By settling the headstrong period between ranges of scar, re¬entry is disposed of. in this article, we evaluate the Maze surgery method that's the surgical method of choice for the treatment of restorative atrial fibrillation.

Keywords: atrial fibrillation, congenital heart disease, procedure, maze surgery, treatment

Procedia PDF Downloads 138
35120 Establishment of the Regression Uncertainty of the Critical Heat Flux Power Correlation for an Advanced Fuel Bundle

Authors: L. Q. Yuan, J. Yang, A. Siddiqui

Abstract:

A new regression uncertainty analysis methodology was applied to determine the uncertainties of the critical heat flux (CHF) power correlation for an advanced 43-element bundle design, which was developed by Canadian Nuclear Laboratories (CNL) to achieve improved economics, resource utilization and energy sustainability. The new methodology is considered more appropriate than the traditional methodology in the assessment of the experimental uncertainty associated with regressions. The methodology was first assessed using both the Monte Carlo Method (MCM) and the Taylor Series Method (TSM) for a simple linear regression model, and then extended successfully to a non-linear CHF power regression model (CHF power as a function of inlet temperature, outlet pressure and mass flow rate). The regression uncertainty assessed by MCM agrees well with that by TSM. An equation to evaluate the CHF power regression uncertainty was developed and expressed as a function of independent variables that determine the CHF power.

Keywords: CHF experiment, CHF correlation, regression uncertainty, Monte Carlo Method, Taylor Series Method

Procedia PDF Downloads 416
35119 Evaluation of Lactobacillus helveticus as an Adjunct Culture for Removal of Bitterness in Iranian White-Brined Cheese

Authors: F. Nejati, Sh. Dokhani

Abstract:

Bitterness is a flavor defect encountered in some cheeses, such as Iranian white brined cheese and is responsible for reducing acceptability of the cheeses. The objective of this study was to investigate the effect of an adjunct culture on removal of bitterness fro, Iranian white-brined cheese. The chemical and proteolysis characteristics of the cheese were also monitored. Bitter cheeses were made using overdose of clotting enzyme with and without L. helveticus CH-1 as an adjunct culture. Cheese made with normal doses of clotting enzyme was used as the control. Adjunct culture was applied in two different forms: attenuated and non-attenuated. Proteolysis was assessed by measuring the amount of water soluble nitrogen, 12% trichloroacetic acid soluble nitrogen and total free amino acids during ripening. A taste panel group also evaluated the cheeses at the end of ripening period. Results of the statistical analysis showed that the adjunct caused considerable proteolysis and the level of water soluble nitrogen and 12% soluble nitrogen fractions were found to be significantly higher in the treatment involving L. helveticus (respectively P < 0.05 and P < 0.01). Regarding to organoleptic evaluations, the non-shocked adjunct culture caused reduction in bitterness and enhancement of flavor in cheese.

Keywords: bitterness, Iranian white brined cheese, Lactobacillus helveticus, ripening

Procedia PDF Downloads 373
35118 Lactobacillus Helveticus as an Adjunct Culture for Removal of Bitterness in White-Brined Cheese

Authors: Fatemeh Nejati, Shahram Dokhani

Abstract:

Bitterness is a flavor defect encountered in some cheeses, such as Iranian white brined cheese and is responsible for reducing acceptability of the cheeses. The objective of this study was to investigate the effect of an adjunct culture on removal of bitterness fro, Iranian white-brined cheese. The chemical and proteolysis characteristics of the cheese were also monitored. Bitter cheeses were made using overdose of clotting enzyme with and without L. helveticus CH-1 as an adjunct culture. Cheese made with normal doses of clotting enzyme was used as the control. Adjunct culture was applied in two different forms: attenuated and non-attenuated. Proteolysis was assessed by measuring the amount of water soluble nitrogen, 12% trichloroacetic acid soluble nitrogen and total free amino acids during ripening. A taste panel group also evaluated the cheeses at the end of ripening period. Results of the statistical analysis showed that the adjunct caused considerable proteolysis and the level of water soluble nitrogen and 12% soluble nitrogen fractions were found to be significantly higher in the treatment involving L. helveticus (respectively P < 0.05 and P < 0.01). Regarding to organoleptic evaluations, the non-shocked adjunct culture caused reduction in bitterness and enhancement of flavor in cheese.

Keywords: Bitterness, Iranian white brined Cheese, Lactobacillus helveticus, Ripening

Procedia PDF Downloads 462
35117 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records

Authors: Sara ElElimy, Samir Moustafa

Abstract:

Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).

Keywords: big data analytics, machine learning, CDRs, 5G

Procedia PDF Downloads 139
35116 A Data Mining Approach for Analysing and Predicting the Bank's Asset Liability Management Based on Basel III Norms

Authors: Nidhin Dani Abraham, T. K. Sri Shilpa

Abstract:

Asset liability management is an important aspect in banking business. Moreover, the today’s banking is based on BASEL III which strictly regulates on the counterparty default. This paper focuses on prediction and analysis of counter party default risk, which is a type of risk occurs when the customers fail to repay the amount back to the lender (bank or any financial institutions). This paper proposes an approach to reduce the counterparty risk occurring in the financial institutions using an appropriate data mining technique and thus predicts the occurrence of NPA. It also helps in asset building and restructuring quality. Liability management is very important to carry out banking business. To know and analyze the depth of liability of bank, a suitable technique is required. For that a data mining technique is being used to predict the dormant behaviour of various deposit bank customers. Various models are implemented and the results are analyzed of saving bank deposit customers. All these data are cleaned using data cleansing approach from the bank data warehouse.

Keywords: data mining, asset liability management, BASEL III, banking

Procedia PDF Downloads 553
35115 Optimizing Mechanical Behavior of Middle Ear Prosthesis Using Finite Element Method with Material Degradation Functionally Graded Materials in Three Functions

Authors: Khatir Omar, Fekih Sidi Mohamed, Sahli Abderahmene, Benkhettou Abdelkader, Boudjemaa Ismail

Abstract:

Advancements in technology have revolutionized healthcare, with notable impacts on auditory health. This study introduces an approach aimed at optimizing materials for middle ear prostheses to enhance auditory performance. We have developed a finite element (FE) model of the ear incorporating a pure titanium TORP prosthesis, validated against experimental data. Subsequently, we applied the Functionally Graded Materials (FGM) methodology, utilizing linear, exponential, and logarithmic degradation functions to modify prosthesis materials. Biocompatible materials suitable for auditory prostheses, including Stainless Steel, titanium, and Hydroxyapatite, were investigated. The findings indicate that combinations such as Stainless Steel with titanium and Hydroxyapatite offer improved outcomes compared to pure titanium and Hydroxyapatite ceramic in terms of both displacement and stress. Additionally, personalized prostheses tailored to individual patient needs are feasible, underscoring the potential for further advancements in auditory healthcare.

Keywords: middle ear, prosthesis, ossicles, FGM, vibration analysis, finite-element method

Procedia PDF Downloads 86
35114 Prevention of Heart Failure Progression in Patients with Post-Infarction Cardiosclerosis After Coronavirus Infection

Authors: Sujayeva V. A., Karpova I. S., Koslataya O. V., Kolyadko M. G., Russkikh I. I., Vankovich E. A.

Abstract:

Objective: The goal of this study is to develop a method for the prevention of the progression of heart failure (HF) in patients with post-infarction cardiosclerosis who have suffered coronavirus infection. Methods: 135 patients with post-infarction cardiosclerosis were divided into 2 groups: Group I - patients who had suffered COVID-19 - 85 people, and Group II - patients who had not suffered COVID-19 - 50 people. Patients of group I, depending on the level of N-terminal fragment of natriuretic peptide (NTproBNP), were divided into 2 subgroups - subgroup A - with HF - 40 people, subgroup B - without HF - 45 people. All patients underwent a clinical examination, echocardiography, electrocardiotopography in 60 leads, computed angiography of the coronary arteries, heart magnetic resonance imaging, NTproBNP. Results: In the post-Covid period, in patients with post-infarction cardiosclerosis, remodeling of the left ventricle and right parts of the heart, deterioration of the systolic-diastolic function of both ventricles, increased pressure in the pulmonary artery, progression of coronary artery atherosclerosis, and an increase in the size of myocardial fibrosis were revealed. The consequence of these changes was the progression of heart failure. The developed method of medical prevention made it possible to improve the clinical course of coronary artery disease and prevent the progression of chronic heart failure in patients with post-infarction cardiosclerosis. Conclusions: In patients with post-infarction cardiosclerosis who initially had HF, after 1 year, according to laboratory and instrumental data, a slight decrease in its severity was revealed. In patients with post-infarction cardiosclerosis who did not have HF before COVID-19, HF developed 1 year after the coronavirus disease, which may be due to the identified process of myocardial fibrosis, which dictates the need to prevent the development of HF in patients with post-infarction cardiosclerosis, even those who did not initially have HF. The proposed method of medical prevention made it possible to improve the clinical course of coronary artery disease in patients with post-infarction cardiosclerosis after COVID-19, both in persons with and without HF, when included in the study. A method of medical prevention in people with post-infarction cardiosclerosis after COVID-19 infection, including spironolactone, loop diuretics, empagliflozin, sacubitril/valsartan, helped prevent the progression of HF.

Keywords: elderly, myocardial infarction, COVID-19, prevention

Procedia PDF Downloads 24
35113 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters

Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu

Abstract:

Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.

Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning

Procedia PDF Downloads 201
35112 Evaluation of Triage Performance: Nurse Practice and Problem Classifications

Authors: Atefeh Abdollahi, Maryam Bahreini, Babak Choobi Anzali, Fatemeh Rasooli

Abstract:

Introduction: Triage becomes the main part of organization of care in Emergency department (ED)s. It is used to describe the sorting of patients for treatment priority in ED. The accurate triage of injured patients has reduced fatalities and improved resource usage. Besides, the nurses’ knowledge and skill are important factors in triage decision-making. The ability to define an appropriate triage level and their need for intervention is crucial to guide to a safe and effective emergency care. Methods: This is a prospective cross-sectional study designed for emergency nurses working in four public university hospitals. Five triage workshops have been conducted every three months for emergency nurses based on a standard triage Emergency Severity Index (ESI) IV slide set - approved by Iranian Ministry of Health. Most influential items on triage performance were discussed through brainstorming in workshops which then, were peer reviewed by five emergency physicians and two head registered nurses expert panel. These factors that might distract nurse’ attention from proper decisions included patients’ past medical diseases, the natural tricks of triage and system failure. After permission had been taken, emergency nurses participated in the study and were given the structured questionnaire. Data were analysed by SPSS 21.0. Results: 92 emergency nurses enrolled in the study. 30 % of nurses reported the past history of chronic disease as the most influential confounding factor to ascertain triage level, other important factors were the history of prior admission, past history of myocardial infarction and heart failure to be 20, 17 and 11 %, respectively. Regarding the concept of difficulties in triage practice, 54.3 % reported that the discussion with patients and family members was difficult and 8.7 % declared that it is hard to stay in a single triage room whole day. Among the participants, 45.7 and 26.1 % evaluated the triage workshops as moderately and highly effective, respectively. 56.5 % reported overcrowding as the most important system-based difficulty. Nurses were mainly doubtful to differentiate between the triage levels 2 and 3 according to the ESI VI system. No significant correlation was found between the work record of nurses in triage and the uncertainty in determining the triage level and difficulties. Conclusion: The work record of nurses hardly seemed to be effective on the triage problems and issues. To correct the deficits, training workshops should be carried out, followed by continuous refresher training and supportive supervision.

Keywords: assessment, education, nurse, triage

Procedia PDF Downloads 233
35111 Quantifying Mobility of Urban Inhabitant Based on Social Media Data

Authors: Yuyun, Fritz Akhmad Nuzir, Bart Julien Dewancker

Abstract:

Check-in locations on social media provide information about an individual’s location. The millions of units of data generated from these sites provide knowledge for human activity. In this research, we used a geolocation service and users’ texts posted on Twitter social media to analyze human mobility. Our research will answer the questions; what are the movement patterns of a citizen? And, how far do people travel in the city? We explore the people trajectory of 201,118 check-ins and 22,318 users over a period of one month in Makassar city, Indonesia. To accommodate individual mobility, the authors only analyze the users with check-in activity greater than 30 times. We used sampling method with a systematic sampling approach to assign the research sample. The study found that the individual movement shows a high degree of regularity and intensity in certain places. The other finding found that the average distance an urban inhabitant can travel per day is as far as 9.6 km.

Keywords: mobility, check-in, distance, Twitter

Procedia PDF Downloads 168
35110 Method Development for the Determination of Gamma-Aminobutyric Acid in Rice Products by Lc-Ms-Ms

Authors: Cher Rong Matthew Kong, Edmund Tian, Seng Poon Ong, Chee Sian Gan

Abstract:

Gamma-aminobutyric acid (GABA) is a non-protein amino acid that is a functional constituent of certain rice varieties. When consumed, it decreases blood pressure and reduces the risk of hypertension-related diseases. This has led to more research dedicated towards the development of functional food products (e.g. germinated brown rice) with enhanced GABA content, and the development of these functional food products has led to increased demand for instrument-based methods that can efficiently and effectively determine GABA content. Current analytical methods require analyte derivatisation, and have significant disadvantages such as being labour intensive and time-consuming, and being subject to analyte loss due to the increased complexity of the sample preparation process. To address this, an LC-MS-MS method for the determination of GABA in rice products has been developed and validated. This developed method involves a relatively simple sample preparation process before analysis using HILIC LC-MS-MS. This method eliminates the need for derivatisation, thereby significantly reducing the labour and time associated with such an analysis. Using LC-MS-MS also allows for better differentiation of GABA from any potential co-eluting compounds in the sample matrix. Results obtained from the developed method demonstrated high linearity, accuracy, and precision for the determination of GABA (1ng/L to 8ng/L) in a variety of brown rice products. The method can significantly simplify sample preparation steps, improve the accuracy of quantitation, and increase the throughput of analyses, thereby providing a quick but effective alternative to established instrumental analysis methods for GABA in rice.

Keywords: functional food, gamma-aminobutyric acid, germinated brown rice, method development

Procedia PDF Downloads 268
35109 Is It Important to Measure the Volumetric Mass Density of Nanofluids?

Authors: Z. Haddad, C. Abid, O. Rahli, O. Margeat, W. Dachraoui, A. Mataoui

Abstract:

The present study aims to measure the volumetric mass density of NiPd-heptane nanofluids synthesized using a one-step method known as thermal decomposition of metal-surfactant complexes. The particle concentration is up to 7.55 g/l and the temperature range of the experiment is from 20°C to 50°C. The measured values were compared with the mixture theory and good agreement between the theoretical equation and measurement were obtained. Moreover, the available nanofluids volumetric mass density data in the literature is reviewed.

Keywords: NiPd nanoparticles, nanofluids, volumetric mass density, stability

Procedia PDF Downloads 401
35108 Protein and Lipid Extraction from Microalgae with Ultrasound Assisted Osmotic Shock Method

Authors: Nais Pinta Adetya, H. Hadiyanto

Abstract:

Microalgae has a potential to be utilized as food and natural colorant. The microalgae components consists of three main parts, these are lipid, protein, and carbohydrate. Crucial step in producing lipid and protein from microalgae is extraction. Microalgae has high water level (70-90%), it causes drying process of biomass needs much more energy and also has potential to distract lipid and protein from microalgae. Extraction of lipid from wet biomass is able to take place efficiently with cell disruption of microalgae by osmotic shock method. In this study, osmotic shock method was going to be integrated with ultrasound to maximalize the extraction yield of lipid and protein from wet biomass Spirulina sp. with osmotic shock method assisted ultrasound. This study consisted of two steps, these were osmotic shock process toward wet biomass and ultrasound extraction assisted. NaCl solution was used as osmotic agent, with the variation of concentrations were 10%, 20%, and 30%. Extraction was conducted in 40°C for 20 minutes with frequency of ultrasound wave was 40kHz. The optimal yield of protein (2.7%) and (lipid 38%) were achieved at 20% osmotic agent concentration.

Keywords: extraction, lipid, osmotic shock, protein, ultrasound

Procedia PDF Downloads 359
35107 Mathematical Modelling of Drying Kinetics of Cantaloupe in a Solar Assisted Dryer

Authors: Melike Sultan Karasu Asnaz, Ayse Ozdogan Dolcek

Abstract:

Crop drying, which aims to reduce the moisture content to a certain level, is a method used to extend the shelf life and prevent it from spoiling. One of the oldest food preservation techniques is open sunor shade drying. Even though this technique is the most affordable of all drying methods, there are some drawbacks such as contamination by insects, environmental pollution, windborne dust, and direct expose to weather conditions such as wind, rain, hail. However, solar dryers that provide a hygienic and controllable environment to preserve food and extend its shelf life have been developed and used to dry agricultural products. Thus, foods can be dried quickly without being affected by weather variables, and quality products can be obtained. This research is mainly devoted to investigating the modelling of drying kinetics of cantaloupe in a forced convection solar dryer. Mathematical models for the drying process should be defined to simulate the drying behavior of the foodstuff, which will greatly contribute to the development of solar dryer designs. Thus, drying experiments were conducted and replicated five times, and various data such as temperature, relative humidity, solar irradiation, drying air speed, and weight were instantly monitored and recorded. Moisture content of sliced and pretreated cantaloupe were converted into moisture ratio and then fitted against drying time for constructing drying curves. Then, 10 quasi-theoretical and empirical drying models were applied to find the best drying curve equation according to the Levenberg-Marquardt nonlinear optimization method. The best fitted mathematical drying model was selected according to the highest coefficient of determination (R²), and the mean square of the deviations (χ^²) and root mean square error (RMSE) criterial. The best fitted model was utilized to simulate a thin layer solar drying of cantaloupe, and the simulation results were compared with the experimental data for validation purposes.

Keywords: solar dryer, mathematical modelling, drying kinetics, cantaloupe drying

Procedia PDF Downloads 127
35106 Unsupervised Text Mining Approach to Early Warning System

Authors: Ichihan Tai, Bill Olson, Paul Blessner

Abstract:

Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.

Keywords: early warning system, knowledge management, market prediction, topic modeling.

Procedia PDF Downloads 338
35105 Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Davood Domiri Danji

Abstract:

In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions.

Keywords: new approach, AGM, sets of coupled nonlinear differential equation, exact solutions, numerical

Procedia PDF Downloads 464
35104 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition

Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover

Abstract:

Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.

Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery

Procedia PDF Downloads 405
35103 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia PDF Downloads 225
35102 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks

Authors: K. Indra Gandhi

Abstract:

Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.

Keywords: data acquisition, model-driven development, separation of concern, wireless sensor networks

Procedia PDF Downloads 434
35101 Prioritizing Temporary Shelter Areas for Disaster Affected People Using Hybrid Decision Support Model

Authors: Ashish Trivedi, Amol Singh

Abstract:

In the recent years, the magnitude and frequency of disasters have increased at an alarming rate. Every year, more than 400 natural disasters affect global population. A large-scale disaster leads to destruction or damage to houses, thereby rendering a notable number of residents homeless. Since humanitarian response and recovery process takes considerable time, temporary establishments are arranged in order to provide shelter to affected population. These shelter areas are vital for an effective humanitarian relief; therefore, they must be strategically planned. Choosing the locations of temporary shelter areas for accommodating homeless people is critical to the quality of humanitarian assistance provided after a large-scale emergency. There has been extensive research on the facility location problem both in theory and in application. In order to deliver sufficient relief aid within a relatively short timeframe, humanitarian relief organisations pre-position warehouses at strategic locations. However, such approaches have received limited attention from the perspective of providing shelters to disaster-affected people. In present research work, this aspect of humanitarian logistics is considered. The present work proposes a hybrid decision support model to determine relative preference of potential shelter locations by assessing them based on key subjective criteria. Initially, the factors that are kept in mind while locating potential areas for establishing temporary shelters are identified by reviewing extant literature and through consultation from a panel of disaster management experts. In order to determine relative importance of individual criteria by taking into account subjectivity of judgements, a hybrid approach of fuzzy sets and Analytic Hierarchy Process (AHP) was adopted. Further, Technique for order preference by similarity to ideal solution (TOPSIS) was applied on an illustrative data set to evaluate potential locations for establishing temporary shelter areas for homeless people in a disaster scenario. The contribution of this work is to propose a range of possible shelter locations for a humanitarian relief organization, using a robust multi criteria decision support framework.

Keywords: AHP, disaster preparedness, fuzzy set theory, humanitarian logistics, TOPSIS, temporary shelters

Procedia PDF Downloads 202