Search results for: liquid organic hydrogen carriers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5090

Search results for: liquid organic hydrogen carriers

1610 Synthesis of Cellulose Nanocrystals from Oil Palm Empty Fruit Bunch by Using Phosphotungstic Acid

Authors: Yogi Wibisono Budhi, Ferry Iskandar, Veinardi Suendo, Muhammad Fakhrudin, Neng Tresna Umi Culsum

Abstract:

Oil palm empty fruit bunch (OPEFB), an abundant agro-waste in Indonesia, is being studied as raw material of Cellulose Nanocrystals (CNC) synthesis. Instead of conventional acid mineral, phosphotungstic acid (H₃PW₁₂O₄₀, HPW) was used to hydrolyze cellulose due to recycling ability and easy handling. Before hydrolysis process, dried EFB was treated by 4% NaOH solution at 90oC for 2 hours and then bleached using 2% NaClO₂ solution at 80oC for 3 hours to remove hemicellulose and lignin. Hydrolysis reaction parameters such as temperature, acid concentration, and reaction time were optimized with fixed solid-liquid ratio of 1:40. Response surface method was used for experimental design to determine the optimum condition of each parameter. HPW was extracted from the mixed solution and recycled with diethyl ether. CNC was separated from the solution by centrifuging and washing with distilled water and ethanol to remove degraded sugars and unreacted celluloses. In this study, pulp from dried EFB produced 44.8% yield of CNC. Dynamic Light Scattering (DLS) analysis showed that most of CNC equivalent diameter was 140 nm. Crystallinity index was observed at 73.3% using X-ray Diffraction (XRD) analysis. Thus, a green established process for the preparation of CNC was achieved.

Keywords: acid hydrolysis, cellulose nanocrystals, oil palm empty fruit bunch, phosphotungstic acid

Procedia PDF Downloads 203
1609 Smelling Our Way through Names: Understanding the Potential of Floral Volatiles as Taxonomic Traits in the Fragrant Ginger Genus Hedychium

Authors: Anupama Sekhar, Preeti Saryan, Vinita Gowda

Abstract:

Plants, due to their sedentary lifestyle, have evolved mechanisms to synthesize a huge diversity of complex, specialized chemical metabolites, a majority of them being volatile organic compounds (VOCs). These VOCs are heavily involved in their biotic and abiotic interactions. Since chemical composition could be under the same selection processes as other morphological characters, we test if VOCs can be used to taxonomically distinguish species in the well-studied, fragrant ginger genus -Hedychium (Zingiberaceae). We propose that variations in the volatile profiles are suggestive of adaptation to divergent environments, and their presence could be explained by either phylogenetic conservatism or ecological factors. In this study, we investigate the volatile chemistry within Hedychium, which is endemic to Asian palaeotropics. We used an unsupervised clustering approach which clearly distinguished most taxa, and we used ancestral state reconstruction to estimate phylogenetic signals and chemical trait evolution in the genus. We propose that taxonomically, the chemical composition could aid in species identification, especially in species complexes where taxa are not morphologically distinguishable, and extensive, targeted chemical libraries will help in this effort.

Keywords: chemotaxonomy, dynamic headspace sampling, floral fragrance, floral volatile evolution, gingers, Hedychium

Procedia PDF Downloads 74
1608 Electrochemical Studies of the Inhibition Effect of 2-Dimethylamine on the Corrosion of Austenitic Stainless Steel Type 304 in Dilute Hydrochloric Acid

Authors: Roland Tolulope Loto, Cleophas Akintoye Loto, Abimbola Patricia Popoola

Abstract:

The inhibiting action of 2-dimethylamine on the electrochemical behaviour of austenitic stainless steel (type 304) in dilute hydrochloric was evaluated through weight-loss method, open circuit potential measurement and potentiodynamic polarization tests at specific concentrations of the organic compound. Results obtained reveal that the compound performed effectively giving a maximum inhibition efficiency of 79% at 12.5% concentration from weight loss analysis and 80.9% at 12.5% concentration from polarization tests. The average corrosion potential of -321 mV was obtained the same concentration from other tests which is well within passivation potentials on the steel thus, providing good protection against corrosion in the acid solutions. 2-dimethylamine acted through physiochemical interaction at the steel/solution interface from thermodynamic calculations and obeyed the Langmuir adsorption isotherm. The values of the inhibition efficiency determined from the three methods are in reasonably good agreement. Polarization studies showed that the compounds behaved as cathodic type inhibitor.

Keywords: corrosion, 2-dimethylamine, inhibition, adsorption, hydrochloric acid, steel

Procedia PDF Downloads 299
1607 Continuous Plug Flow and Discrete Particle Phase Coupling Using Triangular Parcels

Authors: Anders Schou Simonsen, Thomas Condra, Kim Sørensen

Abstract:

Various processes are modelled using a discrete phase, where particles are seeded from a source. Such particles can represent liquid water droplets, which are affecting the continuous phase by exchanging thermal energy, momentum, species etc. Discrete phases are typically modelled using parcel, which represents a collection of particles, which share properties such as temperature, velocity etc. When coupling the phases, the exchange rates are integrated over the cell, in which the parcel is located. This can cause spikes and fluctuating exchange rates. This paper presents an alternative method of coupling a discrete and a continuous plug flow phase. This is done using triangular parcels, which span between nodes following the dynamics of single droplets. Thus, the triangular parcels are propagated using the corner nodes. At each time step, the exchange rates are spatially integrated over the surface of the triangular parcels, which yields a smooth continuous exchange rate to the continuous phase. The results shows that the method is more stable, converges slightly faster and yields smooth exchange rates compared with the steam tube approach. However, the computational requirements are about five times greater, so the applicability of the alternative method should be limited to processes, where the exchange rates are important. The overall balances of the exchanged properties did not change significantly using the new approach.

Keywords: CFD, coupling, discrete phase, parcel

Procedia PDF Downloads 250
1606 Chemical Kinetics and Computational Fluid-Dynamics Analysis of H2/CO/CO2/CH4 Syngas Combustion and NOx Formation in a Micro-Pilot-Ignited Supercharged Dual Fuel Engine

Authors: Ulugbek Azimov, Nearchos Stylianidis, Nobuyuki Kawahara, Eiji Tomita

Abstract:

A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a new reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. The chemical kinetics of NOx formation was analyzed for H2/CO/CO2/CH4 syngas mixtures by using counter flow burner and premixed laminar flame speed reactor models. The new mechanism showed a very good agreement with experimental measurements and accurately reproduced the effect of pressure, temperature and equivalence ratio on NOx formation. In order to identify the species important for NOx formation, a sensitivity analysis was conducted for pressures 4 bar, 10 bar and 16 bar and preheat temperature 300 K. The results show that the NOx formation is driven mostly by hydrogen based species while other species, such as N2, CO2 and CH4, have also important effects on combustion. Finally, the new mechanism was used in a multidimensional CFD simulation to predict the combustion of syngas in a micro-pilot-ignited supercharged dual-fuel engine and results were compared with experiments. The mechanism showed the closest prediction of the in-cylinder pressure and the rate of heat release (ROHR).

Keywords: syngas, chemical kinetics mechanism, internal combustion engine, NOx formation

Procedia PDF Downloads 393
1605 Quantification of Glucosinolates in Turnip Greens and Turnip Tops by Near-Infrared Spectroscopy

Authors: S. Obregon-Cano, R. Moreno-Rojas, E. Cartea-Gonzalez, A. De Haro-Bailon

Abstract:

The potential of near-infrared spectroscopy (NIRS) for screening the total glucosinolate (t-GSL) content, and also, the aliphatic glucosinolates gluconapin (GNA), progoitrin (PRO) and glucobrassicanapin (GBN) in turnip greens and turnip tops was assessed. This crop is grown for edible leaves and stems for human consumption. The reference values for glucosinolates, as they were obtained by high performance liquid chromatography on the vegetable samples, were regressed against different spectral transformations by modified partial least-squares (MPLS) regression (calibration set of samples n= 350). The resulting models were satisfactory, with calibration coefficient values from 0.72 (GBN) to 0.98 (tGSL). The predictive ability of the equations obtained was tested using a set of samples (n=70) independent of the calibration set. The determination coefficients and prediction errors (SEP) obtained in the external validation were: GNA=0.94 (SEP=3.49); PRO=0.41 (SEP=1.08); GBN=0.55 (SEP=0.60); tGSL=0.96 (SEP=3.28). These results show that the equations developed for total glucosinolates, as well as for gluconapin can be used for screening these compounds in the leaves and stems of this species. In addition, the progoitrin and glucobrassicanapin equations obtained can be used to identify those samples with high, medium and low contents. The calibration equations obtained were accurate enough for a fast, non-destructive and reliable analysis of the content in GNA and tGSL directly from NIR spectra. The equations for PRO and GBN can be employed to identify samples with high, medium and low contents.

Keywords: brassica rapa, glucosinolates, gluconapin, NIRS, turnip greens

Procedia PDF Downloads 124
1604 Investigating the Molecular Behavior of H₂O in Caso 4 -2h₂o Two-Dimensional Nanoscale System

Authors: Manal Alhazmi, Artem Mishchenko

Abstract:

A molecular fluids' behavior and interaction with other materials at the nanoscale is a complex process. Nanoscale fluids behave so differently than macroscale fluids and interact with other materials in unique ways. It is, therefore, feasible to understand the molecular behavior of H₂O in such two-dimensional nanoscale systems by studying (CaSO4-2H2O), commonly known as gypsum. In the present study, spectroscopic measurements on a 2D structure of exfoliated gypsum crystals are carried out by Raman and IR spectroscopy. An array of gypsum flakes with thicknesses ranging from 8nm to 100nm were observed and analyzed for their Raman and IR spectrum. Water molecules stretching modes spectra lines were also measured and observed in nanoscale gypsum flakes and compared with those of bulk crystals. CaSO4-2H2O crystals have Raman and infrared bands at 3341 cm-1 resulting from the weak hydrogen bonds between the water molecules. This internal vibration of water molecules, together with external vibrations with other atoms, are responsible for these bands. There is a shift of about 70 cm-1 In the peak position of thin flakes with respect to the bulk crystal, which is a result of the different atomic arrangement from bulk to thin flake on the nano scale. An additional peak was observed in Raman spectra around 2910-3137 cm⁻¹ in thin flakes but is missing in bulk crystal. This additional peak is attributed to a combined mode of water internal (stretching mode at 3394cm⁻¹) and external vibrations. In addition to Raman and infra- red analysis of gypsum 2D structure, electrical measurements were conducted to reveal the water molecules transport behavior in such systems. Electrical capacitance of the fabricated device is measured and found to be (0.0686 *10-12) F, and the calculated dielectric constant (ε) is (12.26).

Keywords: gypsum, infra-red spectroscopy, raman spectroscopy, H₂O behavior

Procedia PDF Downloads 89
1603 Correlation to Predict Thermal Performance According to Working Fluids of Vertical Closed-Loop Pulsating Heat Pipe

Authors: Niti Kammuang-lue, Kritsada On-ai, Phrut Sakulchangsatjatai, Pradit Terdtoon

Abstract:

The objectives of this paper are to investigate effects of dimensionless numbers on thermal performance of the vertical closed-loop pulsating heat pipe (VCLPHP) and to establish a correlation to predict the thermal performance of the VCLPHP. The CLPHPs were made of long copper capillary tubes with inner diameters of 1.50, 1.78, and 2.16mm and bent into 26 turns. Then, both ends were connected together to form a loop. The evaporator, adiabatic, and condenser sections length were equal to 50 and 150 mm. R123, R141b, acetone, ethanol, and water were chosen as variable working fluids with constant filling ratio of 50% by total volume. Inlet temperature of heating medium and adiabatic section temperature was constantly controlled at 80 and 50oC, respectively. Thermal performance was represented in a term of Kutateladze number (Ku). It can be concluded that when Prandtl number of liquid working fluid (Prl), and Karman number (Ka) increases, thermal performance increases. On contrary, when Bond number (Bo), Jacob number (Ja), and Aspect ratio (Le/Di) increases, thermal performance decreases. Moreover, the correlation to predict more precise thermal performance has been successfully established by analyzing on all dimensionless numbers that have effect on the thermal performance of the VCLPHP.

Keywords: vertical closed-loop pulsating heat pipe, working fluid, thermal performance, dimensionless parameter

Procedia PDF Downloads 401
1602 Voltage Polarity in Electrospinning: Way to Control Surface Properties of Polymer Fibers

Authors: Urszula Stachewicz

Abstract:

Surface properties of materials are the key parameter in many applications, especially in the biomedical field, to control cell-material interactions. In our work, we want to achieve the controllability of surface properties of polymer fibers via a single-step electrospinning process by alternating voltage polarities. Voltage polarity defines the charge accumulated on the surface of the liquid jet and the surface of the fibers. Positive polarity attracts negatively charged groups to fibers’ surface, whereas negative polarity moves the negatively charged functional groups away from the surface. This way, we can control the surface chemistry, wettability, and additionally surface potential of electrospun fibers. Within our research, we characterized surface chemistry using X-ray photoelectron microscopy (XPS) and surface potential with Kelvin probe force microscopy (KPFM) on electrospun fibers of commonly used polymers such as PCL, PVDF, and PMMA, often used as biomaterials. We proved the significant effect of fibers' surface potential on cell integration with the scaffolds and further cells development for the regeneration processes based on the osteoblast and fibroblast culture studies. Acknowledgments: The study was conducted within ‘Nanofiber-based sponges for atopic skin treatment’ project, which is carried out within the First TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund, project no POIR.04.04.00-00- 4571/18-00.

Keywords: cell attachment, fibers, fibroblasts, osteoblast, proliferation, surface potential

Procedia PDF Downloads 97
1601 Nonlinear Optics of Dirac Fermion Systems

Authors: Vipin Kumar, Girish S. Setlur

Abstract:

Graphene has been recognized as a promising 2D material with many new properties. However, pristine graphene is gapless which hinders its direct application towards graphene-based semiconducting devices. Graphene is a zero-gapp and linearly dispersing semiconductor. Massless charge carriers (quasi-particles) in graphene obey the relativistic Dirac equation. These Dirac fermions show very unusual physical properties such as electronic, optical and transport. Graphene is analogous to two-level atomic systems and conventional semiconductors. We may expect that graphene-based systems will also exhibit phenomena that are well-known in two-level atomic systems and in conventional semiconductors. Rabi oscillation is a nonlinear optical phenomenon well-known in the context of two-level atomic systems and also in conventional semiconductors. It is the periodic exchange of energy between the system of interest and the electromagnetic field. The present work describes the phenomenon of Rabi oscillations in graphene based systems. Rabi oscillations have already been described theoretically and experimentally in the extensive literature available on this topic. To describe Rabi oscillations they use an approximation known as rotating wave approximation (RWA) well-known in studies of two-level systems. RWA is valid only near conventional resonance (small detuning)- when the frequency of the external field is nearly equal to the particle-hole excitation frequency. The Rabi frequency goes through a minimum close to conventional resonance as a function of detuning. Far from conventional resonance, the RWA becomes rather less useful and we need some other technique to describe the phenomenon of Rabi oscillation. In conventional systems, there is no second minimum - the only minimum is at conventional resonance. But in graphene we find anomalous Rabi oscillations far from conventional resonance where the Rabi frequency goes through a minimum that is much smaller than the conventional Rabi frequency. This is known as anomalous Rabi frequency and is unique to graphene systems. We have shown that this is attributable to the pseudo-spin degree of freedom in graphene systems. A new technique, which is an alternative to RWA called asymptotic RWA (ARWA), has been invoked by our group to discuss the phenomenon of Rabi oscillation. Experimentally accessible current density shows different types of threshold behaviour in frequency domain close to the anomalous Rabi frequency depending on the system chosen. For single layer graphene, the exponent at threshold is equal to 1/2 while in case of bilayer graphene, it is computed to be equal to 1. Bilayer graphene shows harmonic (anomalous) resonances absent in single layer graphene. The effect of asymmetry and trigonal warping (a weak direct inter-layer hopping in bilayer graphene) on these oscillations is also studied in graphene systems. Asymmetry has a remarkable effect only on anomalous Rabi oscillations whereas the Rabi frequency near conventional resonance is not significantly affected by the asymmetry parameter. In presence of asymmetry, these graphene systems show Rabi-like oscillations (offset oscillations) even for vanishingly small applied field strengths (less than the gap parameter). The frequency of offset oscillations may be identified with the asymmetry parameter.

Keywords: graphene, Bilayer graphene, Rabi oscillations, Dirac fermion systems

Procedia PDF Downloads 280
1600 Evaluating the Prominence of Chemical Phenomena in Chemistry Courses

Authors: Vanessa R. Ralph, Leah J. Scharlott, Megan Y. Deshaye, Ryan L. Stowe

Abstract:

Given the traditions of chemistry teaching, one may not question whether chemical phenomena play a prominent role. Yet, the role of chemical phenomena in an introductory chemistry course may define the extent to which the course is introductory, chemistry, and equitable. Picture, for example, the classic Ideal Gas Law problem. If one envisions a prompt wherein students are tasked with calculating a missing variable, then one envisions a prompt that relies on chemical phenomena as a context rather than as a model to understand the natural world. Consider a prompt wherein students are tasked with applying molecular models of gases to explain why the vapor pressure of a gaseous solution of water differs from that of carbon dioxide. Here, the chemical phenomenon is not only the context but also the subject of the prompt. Deliveries of general and organic chemistry were identified as ranging wildly in the integration of chemical phenomena. The more incorporated the phenomena, the more equitable the assessment task was for students of varying access to pre-college math and science preparation. How chemical phenomena are integrated may very well define whether courses are chemistry, are introductory, and are equitable. Educators of chemistry are invited colleagues to discuss the role of chemical phenomena in their courses and consider the long-lasting impacts of replicating tradition for tradition’s sake.

Keywords: equitable educational practices, chemistry curriculum, content organization, assessment design

Procedia PDF Downloads 179
1599 Effect of Wettability Alteration in Low Salt Water Injection Modeling

Authors: H. Vahdani

Abstract:

By the adsorption of polar compounds and/or the deposition of organic material, the wettability of originally water-wet reservoir rock can be altered. The degree of alteration is determined by the interaction of the oil constituents, the mineral surface, and the brine chemistry. Recently improving oil recovery by tuning wettability alteration is believed as a new recovery method. Various researchers have demonstrated that low salt water injection has a significant impact on oil recovery. It has been shown, for instance, that additional oil can be produced from reservoir rock by managing the injection water. Large wettability sensitivity has been observed, indicating that the oil/water capillary pressure profiles play a major role during low saline water injection simulation. Although the exact physics on how this alteration occurs is still a research topic; however, it has been reported that some of its effect can be captured by a relative permeability shift from an oil-wet system to a water-wet system. Modeling of low salt water injection mainly is based on the theory of wettability alteration and is hence strongly dependent on the wettability of the reservoir. In this article, combination of different wettabilities has been simulated and it is observed that the highest recoveries were from the cases were the reservoir initially was water-wet, and the lowest recoveries was from the cases were the reservoir initially was considered oil-wet. However for the cases where the reservoir initially was oil-wet, the effect of low-salinity waterflooding was the largest.

Keywords: low salt water injection, wettability alteration, modelling, relative permeability

Procedia PDF Downloads 478
1598 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications

Authors: Ildar Akhmadullin, Mayank Tyagi

Abstract:

The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126℃, the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.

Keywords: downhole heat exchangers, geothermal power generation, organic rankine cycle, refrigerants, working fluids

Procedia PDF Downloads 302
1597 Baby Bed Sheets with a Nanofiber Membrane

Authors: Roman Knizek, Denisa Knizkova, Vladimir Bajzik

Abstract:

Nowadays there are countless kinds of bedsheets or mattress covers for little children which should stop any liquid getting into the mattress. It is quite easy to wash the cover of the mattress, but it is almost impossible to clean the body of a mattress which is made of latex foam, wool or synthetic materials. Children bedsheets or mattress covers are often made with plastic coating which is not steam or air permeable and therefore is not very hygienic. This is our goal: by laminating a nanofiber membrane to a suitable bedsheet textile material, we can create a bedsheet which is waterproof but at the same time steam permeable and also partially breathable, thanks to the membrane. For the same reason, nanofiber membranes are widely used in outdoor clothing. The comfort properties and durability of the new nano-membrane bedsheet were studied. The following comfort properties were investigated: steam permeability - measured in accordance with Standard ISO 11902 hydrostatic resistances - measured in accordance with Standard ISO 811 and air permeability - measured in accordance with Standard ISO 9237. The durability or more precisely the wash resistance of the nano-membrane bedsheet was also measured by submitting the sheet to 30 washing cycles. The result of our work is a children's bedsheet with a nano-membrane. The nano-membrane is made of polyurethane to keep maximum flexibility and elasticity which are essential for this product. The comfort properties of this new bedsheet are very good especially its steam permeability and hydrostatic resistance.

Keywords: bed sheet, hydrostatic resistance, nanofiber membrane, water vapour permeable

Procedia PDF Downloads 195
1596 Quantification of Peptides (linusorbs) in Gluten-free Flaxseed Fortified Bakery Products

Authors: Youn Young Shim, Ji Hye Kim, Jae Youl Cho, Martin JT Reaney

Abstract:

Flaxseed (Linumusitatissimum L.) is gaining popularity in the food industry as a superfood due to its health-promoting properties. Linusorbs (LOs, a.k.a. Cyclolinopeptide) are bioactive compounds present in flaxseed exhibiting potential health effects. The study focused on the effects of processing and storage on the stability of flaxseed-derived LOs added to various bakery products. The flaxseed meal fortified gluten-free (GF) bakery bread was prepared, and the changes of LOs during the bread-making process (meal, fortified flour, dough, and bread) and storage (0, 1, 2, and 4 weeks) at different temperatures (−18 °C, 4 °C, and 22−23 °C) were analyzed by high-performance liquid chromatography-diode array detection. The total oxidative LOs and LO1OB2 were almost kept stable in flaxseed meals at storage temperatures of 22−23 °C, −18 °C, and 4 °C for up to four weeks. Processing steps during GF-bread production resulted in the oxidation of LOs. Interestingly, no LOs were detected in the dough sample; however, LOs appeared when the dough was stored at −18 °C for one week, suggesting that freezing destroyed the sticky structure of the dough and resulted in the release of LOs. The final product, flaxseed meal fortified bread, could be stored for up to four weeks at −18 °C and 4 °C, and for one week at 22−23 °C. All these results suggested that LOs may change during processing and storage and that flaxseed flour-fortified bread should be stored at low temperatures to preserve effective LOs components.

Keywords: linum usitatissimum L., flaxseed, linusorb, stability, gluten-free, peptides, cyclolinopeptide

Procedia PDF Downloads 163
1595 Intelligent System and Renewable Energy: A Farming Platform in Precision Agriculture

Authors: Ryan B. Escorial, Elmer A. Maravillas, Chris Jordan G. Aliac

Abstract:

This study presents a small-scale water pumping system utilizing a fuzzy logic inference system attached to a renewable energy source. The fuzzy logic controller was designed and simulated in MATLAB fuzzy logic toolbox to examine the properties and characteristics of the input and output variables. The result of the simulation was implemented in a microcontroller, together with sensors, modules, and photovoltaic cells. The study used a grand rapid variety of lettuce, organic substrates, and foliar for observation of the capability of the device to irrigate crops. Two plant boxes intended for manual and automated irrigation were prepared with each box having 48 heads of lettuce. The observation of the system took 22-31 days, which is one harvest period of the crop. Results showed a 22.55% increase in agricultural productivity compared to manual irrigation. Aside from reducing human effort, and time, the smart irrigation system could help lessen some of the shortcomings of manual irrigations. It could facilitate the economical utilization of water, reducing consumption by 25%. The use of renewable energy could also help farmers reduce the cost of production by minimizing the use of diesel and gasoline.

Keywords: fuzzy logic, intelligent system, precision agriculture, renewable energy

Procedia PDF Downloads 108
1594 Studies on Dye Removal by Aspergillus niger Strain

Authors: M. S. Mahmoud, Samah A. Mohamed, Neama A. Sobhy

Abstract:

For color removal from wastewater containing organic contaminants, biological treatment systems have been widely used such as physical and chemical methods of flocculation, coagulation. Fungal decolorization of dye containing wastewater is one of important goal in industrial wastewater treatment. This work was aimed to characterize Aspergillus niger strain for dye removal from aqueous solution and from raw textile wastewater. Batch experiments were studied for removal of color using fungal isolate biomass under different conditions. Environmental conditions like pH, contact time, adsorbent dose and initial dye concentration were studied. Influence of the pH on the removal of azo dye by Aspergillus niger was carried out between pH 1.0 and pH 11.0. The optimum pH for red dye decolonization was 9.0. Results showed the decolorization of dye was decreased with the increase of its initial dye concentration. The adsorption data was analyzed based on the models of equilibrium isotherm (Freundlich model and Langmuir model). During the adsorption isotherm studies; dye removal was better fitted to Freundlich model. The isolated fungal biomass was characterized according to its surface area both pre and post the decolorization process by Scanning Electron Microscope (SEM) analysis. Results indicate that the isolated fungal biomass showed higher affinity for dye in decolorization process.

Keywords: biomass, biosorption, dye, isotherms

Procedia PDF Downloads 290
1593 Inhibition of Crystallization Lithiasis Phosphate (Struvite) by Extracts Zea mays

Authors: N. Benahmed, A. Cheriti

Abstract:

Kidney stones of infectious origin, in particular, the phosphate amoniaco-magnesian hexahydrate or struvite are one of the risk factors that most often leads of renal insufficiency. Many plants species, described in pharmacopoeias of several countries is used as a remedy for urinary stones, the latter is a disease resulting from the presence of stones in the kidneys or urinary tract. Our research is based on the existing relationship between the effect of extracts of medicinal plant used for the cure of urinary tract diseases in the region of Algeria south-west on urolithiasis especially Ammonium-Magnesium Phosphate Hexahydrate (Struvite). We have selected Zea mays L. (POACEAE) for this study. On the first stage, we have studied the crystallisation of struvite 'in vitro' without inhibitors, after we have compared to crystallization with inhibitors. Most of The organic and aqueous extracts of this plant give an effect on the crystal size of struvite. It is a very significant reduction in the size of the crystals of struvite in the presence of hexane and ethanol extract (12 to 5-6 μm). We’ve observed a decrease in the size of the aggregates in the presence of all the extracts. This reduction is important for the aqueous, acetone and chloroform extract (45 to 10-16μm). Finally, a deep study was conducted on the effective extract of Zea mays L.; for determine the influence of inhibitory phytochemical compounds.

Keywords: medicinal plants, struvite, urolithiasis, zea mays

Procedia PDF Downloads 435
1592 Diffusive Transport of VOCs Through Composite Liners

Authors: Christina Jery, R. K. Anjana, D. N. Arnepalli, R. Sobha

Abstract:

Modern landfills employ a composite liner consisting of a geomembrane overlying a compacted clay liner (CCL) or a geosynthetic clay liner (GCL) as a barrier system. The primary function of a barrier system is to control the contaminant transport from the leachate (dissolved phase) and landfill gas (vapour phase) out of the landfill thereby minimizing the environmental impact. This study is undertaken to investigate the diffusive migration of VOCs through composite liners. VOCs are known hazardous air pollutants were often existing in both the vapour phase and dissolved phase. These compounds are known to diffuse readily through the polymeric geomembranes. The objective of the research is to develop a comprehensive data set of diffusive parameters involved in the diffusion of VOCs in the composite liner (1.5 mm HDPE geomembrane overlying a 30mm compacted clay layer). For this purpose, the study aims to develop a new experimental setup for determining the diffusion characteristics. The key parameters of diffusion (partitioning, diffusion and permeation coefficients) are examined. The diffusion tests are carried out both in aqueous and vapor phase. Finally, an attempt is also made to study the effect of low temperature on the diffusion characteristics.

Keywords: diffusion, sorption, organic compounds, composite liners, geomembrane

Procedia PDF Downloads 346
1591 Effect of Nitrogen Source on Production of CMCase by Bacillus megaterium 1295S Isolated from Sewage Treatment Plants

Authors: Adel A. S. Al-Gheethi, M. O. Abdul-Monem

Abstract:

Cellulase-producing bacteria were isolated from wastewater and sludge, and identified as Bacillus megaterium 1295S, Sporosarcina pasteurii 586S, Bacillus subtilis 117S, Burkholderia cepacia 120S and Staphylococcus xylosus 222W. Among bacteria, B. megaterium 1295S was the best cellulase producer under the catabolic repression and was therefore selected to study the factors affecting cellulase production. The optimum conditions for cellulase production were observed in CMC-Yeast Extract (CYE) agar medium (pH 6.5) inoculated with 0.4 mL of bacterial culture and incubated at 45˚C for 72 h. Twenty amino acids were introduced into the production medium as nitrogen source to investigate the production of cellulase in presence of amino acids in comparison to peptone (as an organic source) and sodium nitrate (as an inorganic source). The results found that the maximum production of cellulase was recorded at 50 ppm when L-hydroxy proline, L-arginine, glycine, L-histidine, L-leucine, DL-isoleucine, DL-β-phenylalanine were used as sole nitrogen sources and at 100 ppm when DL-threonine, L-ornithine 12.29, L-proline were used as sole nitrogen sources. The highest biomass yield was found when glycine 5 ppm and DL-serine 100 ppm used as a nitrogen source.

Keywords: CMCase, Bacillus megaterium 1295S, factors, amino acids

Procedia PDF Downloads 430
1590 Evaluation of the Quality of Groundwater in the Zone of the Irrigated Perimeter Guelma-Bouchegouf, Northeast of Algeria

Authors: M. Benhamza, M. Touati, M. Aissaoui

Abstract:

The Guelma-Bouchegouf irrigated area is located in the north-east of the country; it extends about 80 km. It was commissioned in 1996, with an irrigable area of 9250 ha, it spreads on both banks of the Seybouse Wadi and it is subdivided into five autonomous distribution sectors. In order to assess the state of groundwater quality, physico-chemical and organic analyzes were carried out during the low water period in November 2017, at the level of fourteen wells in the Guelma-Bouchegouf irrigation area. The interpretation of the results of the chemical analyzes shows that the waters of the study area belong to two dominant chemical facies: sulphated-chlorinated-calcium and Sulfated-chlorinated-sodium. The mineral quality of the groundwater in the study area shows that Ca²⁺, Cl⁻ and SO₄²⁻ indicate little to significant pollution, Na⁺ and Mg²⁺ show moderate to significant mineralization of water, closely correlated with very high conductivities. NO₃⁻ and NH⁴⁺ show little to significant pollution throughout the study area. Phosphate represents a significant pollution, with excessive values exceeding the allowable standard. Phosphate concentrations indicate pollution caused by agricultural practices in the irrigated area, following the use of phosphates in the form of chemical fertilizers or pesticides.

Keywords: Algeria, groundwater, irrigated perimeter, pollution

Procedia PDF Downloads 109
1589 Inactivation of Rhodotorula spp. 74 with Cold Atmospheric Plasma

Authors: Zoran Herceg, Višnja Stulić, Tomislava Vukušić, Anet Režek Jambrak

Abstract:

High voltage electrical discharge is a new technology used for inactivation of pathogen microorganisms. Pathogen yeasts can cause diseases in humans if they are ingested. Nowadays new technologies have become the focus of researching all over the world. Rhodotorula is known as yeast that can cause diseases in humans. The aim of this study was to examine whether the high voltage electrical discharge treatment generated in gas phase has an influence on yeast reduction and recovery of Rhodotorula spp 74 in pure culture. Rhodotorula spp. 74 was treated in 200 mL of model solution. Treatment time (5 and 10 min), frequency (60 and 90 Hz) and injected gas (air or argon 99,99%) were changed. Titanium high voltage needle was used as high voltage electrode (positive polarity) through which air or argon was injected at the gas flow of 0.6 L/min. Experimental design and statistical analyses were obtained by Statgraphics Centurion software (StatPoint Technologies, Inc., VA, USA). The best inactivation rate 1.7 log10 reduction was observed after the 10 min of treatment, frequency of 90 Hz and injected air. Also with a longer treatment time inactivation rate was higher. After the 24 h recovery of treated samples was observed. Therefore the further optimization of method is needed to understand the mechanism of yeasts inactivation and cells recovery after the treatment. Acknowledgements: The authors would like to acknowledge the support by Croatian Science Foundation and research project ‘Application of electrical discharge plasma for preservation of liquid foods’.

Keywords: rhodotorula spp. 74, electrical discharge plasma, inactivation, stress response

Procedia PDF Downloads 220
1588 Design of Self-Heating Containers Using Sodium Acetate Trihydrate for Chemical Energy – Food Products

Authors: Rameshaiah Gowdara Narayanappa, Manikonda Prithvi, Manoj Kumar, Suraj Bhavani, Vikram Singh

Abstract:

Long ago heating of food was only related to fire or electricity. Heating and storage of consumer foods were satisfied by the use of vacuum thermo flaks, electric heating cans and DC powered heating cans. But many of which did not sustain the heat for a long period of time and were impractical for remote areas. The use of chemical energy for heating foods directed us to think about the applications of exothermic reactions as a source of heat. Initial studies of calcium oxide showed desirability but not feasible because the reaction was uncontrollable and irreversible. In this research work we viewed at crystallization of super saturated sodium acetate trihydrate solution. Supersaturated sodium acetate trihydrate has a freezing point of 540 C (1300 F), but it observed to be stable as a liquid at much lower temperatures. Mechanical work is performed to create an active chemical energy zone within the working fluid, when crystallization process is initiated. Due to this the temperature rises to its freezing point which in turn heats the contents in the storage container. Present work endeavor to design a self-heating storage container is suitable for consumer dedications.

Keywords: crystallization, exothermic reactions, self-heating container, super saturation, vacuum thermo flask

Procedia PDF Downloads 454
1587 An Analysis of Relation Between Soil Radon Anomalies and Geological Environment Change

Authors: Mengdi Zhang, Xufeng Liu, Zhenji Gao, Ying Li, Zhu Rao, Yi Huang

Abstract:

As an open system, the earth is constantly undergoing the transformation and release of matter and energy. Fault zones are relatively discontinuous and fragile geological structures, and the release of material and energy inside the Earth is strongest in relatively weak fault zones. Earthquake events frequently occur in fault zones and are closely related to tectonic activity in these zones. In earthquake precursor observation, monitoring the spatiotemporal changes in the release of related gases near fault zones (such as radon gas, hydrogen, carbon dioxide, helium), and analyzing earthquake precursor anomalies, can be effective means to forecast the occurrence of earthquake events. Radon gas, as an inert radioactive gas generated during the decay of uranium and thorium, is not only a indicator for monitoring tectonic and seismic activity, but also an important topic for ecological and environmental health, playing a crucial role in uranium exploration. At present, research on soil radon gas mainly focuses on the measurement of soil gas concentration and flux in fault zone profiles, while research on the correlation between spatiotemporal concentration changes in the same region and its geological background is relatively little. In this paper, Tangshan area in north China is chosen as research area. An analysis was conducted on the seismic geological background of Tangshan area firstly. Then based on quantitative analysis and comparison of measurement radon concentrations of 2023 and 2010, combined with the study of seismic activity and environmental changes during the time period, the spatiotemporal distribution characteristics and influencing factors were explored, in order to analyze the gas emission characteristics of the Tangshan fault zone and its relationship with fault activity, which aimed to be useful for the future work in earthquake monitor of Tangshan area.

Keywords: radon, Northern China, soil gas, earthquake

Procedia PDF Downloads 54
1586 Factors Affecting the Success of Premarital Screening Services in Middle Eastern Countries

Authors: Wafa Al Jabri

Abstract:

Background: In Middle Eastern Countries (MECs), there is a high prevalence of genetic blood disorders (GBDs), particularly sickle cell disease and thalassemia. The GBDs are considered a major public health concern that place a huge burden to individuals, families, communities, and health care systems. The high rates of consanguineous marriages, along with the unacceptable termination of at-risk pregnancy in MECs, reduce the possible solutions to control the high prevalence of GBDs. Since the early 1970s, most of MECs have started introducing premarital screening services (PSS) as a preventive measure to identify the asymptomatic carriers of GBDs and to provide genetic counseling to help couples plan for healthy families; yet, the success rate of PSS is very low. Purpose: This paper aims to highlight the factors that affect the success of PSS in MECs. Methods: An integrative review of articles located in CINAHL, PubMed, SCOPUS, and MedLine was carried out using the following terms: “premarital screening,” “success,” “effectiveness,” and “ genetic blood disorders”. Second, a hand search of the reference lists and Google searches were conducted to find studies that did not exist in the primary database searches. Only studies which are conducted in MECs and published after 2010 were included. Studies that were not published in English were excluded. Results: Eighteen articles were included in the review. The results showed that PSS in most of the MECs was successful in achieving its objective of identifying high-risk marriages; however, the service failed to meet its ultimate goal of reducing the prevalence of GBDs. Various factors seem to hinder the success of PSS, including poor public awareness, late timing of the screening, culture and social stigma, lack of prenatal diagnosis services and therapeutic abortion, emotional factors, religious beliefs, and lack of genetic counseling services. However, poor public awareness, late timing of the screening, religious misbeliefs, and the lack of adequate counseling services were the most common barriers identified. Conclusion and Implications: The review help in providing a framework for an effective preventive measure to reduce the prevalence of GBDs in MECS. This framework focuses primarily in overcoming the identified barriers by providing effective health education programs in collaboration with religious leaders, offering the screening test to young adults at an earlier stage, and tailoring the genetic counseling to consider people’s values, beliefs, and preferences.

Keywords: premarital screening, middle east, genetic blood disorders, factors

Procedia PDF Downloads 66
1585 Cultivation And Production of Insects, Especially Mealworms (Mealworms) and Investigating Its Potential as Food for Animals and Even Humans

Authors: Marzieh Eshaghi Koupaei

Abstract:

By cultivating mealworm, we reduce greenhouse gases and avoid the use of transgenic products such as soybeans, and we provide food resources rich in protein, amino acids, minerals, etc. for humans and animals, and it has created employment and entrepreneurship. We serve the environment by producing oil from mealworm in the cosmetic industry, using its waste as organic fertilizer and its powder in bodybuilding, and by breaking down plastic by mealworm. The production and breeding of mealworm requires very little infrastructure and does not require much trouble, and requires very little food, and reproduces easily and quickly, and a mealworm production workshop is noiseless, odorless, and pollution-free And the costs are very low. It is possible to use third grade fruits and unsalable fruits of farmers to feed the mealworms, which is completely economical and cost-effective. Mealworms can break down plastic in their intestines and turn it into carbon dioxide. . This process was done in only 16 days, which is a very short time compared to several centuries for plastic to decompose. By producing mealworm, we have helped to preserve the environment and provided the source of protein needed by humans and animals. This industrial insect has the ability and value of commercialization and creates employment and helps the economy of the society.

Keywords: breeding, production of insects, mealworms, research, animal feed, human feed

Procedia PDF Downloads 37
1584 Novel Method of In-Situ Tracking of Mechanical Changes in Composite Electrodes during Charging-Discharging by QCM-D

Authors: M. D. Levi, Netanel Shpigel, Sergey Sigalov, Gregory Salitra, Leonid Daikhin, Doron Aurbach

Abstract:

We have developed an in-situ method for tracking ions adsorption into composite nanoporous carbon electrodes based on quartz-crystal microbalance (QCM). In these first papers QCM was used as a simple gravimetric probe of compositional changes in carbon porous composite electrodes during their charging since variation of the electrode potential did not change significantly width of the resonance. In contrast, when we passed from nanoporous carbons to a composite Li-ion battery material such as LiFePO4 olivine, the change in the resonance width was comparable with change of the resonance frequency (polymeric binder PVdF was shown to be completely rigid when used in aqueous solutions). We have provided a quantitative hydrodynamic admittance model of ion-insertion processes into electrode host accompanied by intercalation-induced dimensional changes of electrode particles, and hence the entire electrode coating. The change in electrode deformation and the related porosity modify hydrodynamic solid-liquid interactions tracked by QCM with dissipation monitoring. Using admittance modeling, we are able to evaluate the changes of effective thickness and permeability/porosity of composite electrode caused by applied potential and as a function of cycle number. This unique non-destructive technique may have great advantage in early diagnostics of cycling life durability of batteries and supercapacitors.

Keywords: Li-ion batteries, particles deformations, QCM-D, viscoelasticity

Procedia PDF Downloads 426
1583 The Art and Science of Trauma-Informed Psychotherapy: Guidelines for Inter-Disciplinary Clinicians

Authors: Daphne Alroy-Thiberge

Abstract:

Trauma-impacted individuals present unique treatment challenges that include high reactivity, hyper-and hypo-arousal, poor adherence to therapy, as well as powerful transference and counter-transference experiences in therapy. This work provides an overview of the clinical tenets most often encountered in trauma-impacted individuals. Further, it provides readily applicable clinical techniques to optimize therapeutic rapport and facilitate accelerated positive mental health outcomes. Finally, integrated neuroscience and clinical evidence-based data are discussed to shed new light on crisis states in trauma-impacted individuals. This knowledge is utilized to provide effective and concrete interventions towards rapid and successful de-escalation of the impacted individual. A highly interactive, adult-learning-principles-based modality is utilized to provide an organic learning experience for participants. The information and techniques learned aim to increase clinical effectiveness, reduce staff injuries and burnout, and significantly enhance positive mental health outcomes and self-determination for the trauma-impacted individuals treated.

Keywords: clinical competencies, crisis interventions, psychotherapy techniques, trauma informed care

Procedia PDF Downloads 79
1582 Stability of Novel Peptides (Linusorbs) in Flaxseed Meal Fortified Gluten-Free Bread

Authors: Youn Young Shim, Martin J. T. Reaney

Abstract:

Flaxseed meal is rich in water-soluble gums and, as such, can improve texture in gluten-free products. Flaxseed bioactive-antioxidant peptides, linusorbs (LOs, a.k.a. cyclolinopeptides), are a class of molecules that may contribute health-promoting effects. The effects of dough preparation, baking, and storage on flaxseed-derived LOs stability in doughs and baked products are un-known. Gluten-free (GF) bread dough and bread were prepared with flaxseed meal and the LO content was determined in the flaxseed meal, bread flour containing the flaxseed meal, bread dough, and bread. The LO contents during storage (0, 1, 2, and 4 weeks) at different temperatures (−18 °C, 4 °C, and 22−23 °C) were determined by high-performance liquid chromatog-raphy-diode array detection (HPLC-DAD). The content of oxidized LOs like [1–9-NαC],[1(Rs, Ss)-MetO]-linusorb B2 (LO14) were substantially constant in flaxseed meal and flour produced from flaxseed meal under all conditions for up to 4 weeks. However, during GF-bread production LOs decreased. Due to microbial contamination dough could not be stored at either 4 or 21°C, and bread could only be stored for one week at 21°C. Up to 4 weeks storage was possible for bread and dough at −18 °C and bread at 4 °C without the loss of LOs. The LOs change mostly from processing and less so from storage. The concentration of reduced LOs in flour and meal were much higher than measured in dough and bread. There was not a corre-sponding increase in oxidized LOs. The LOs in flaxseed meal-fortified bread were stable for products stored at low temperatures. This study is the first of the impact of baking conditions on LO content and quality.

Keywords: flaxseed, stability, gluten-free, antioxidant

Procedia PDF Downloads 74
1581 Preparation and Characterization of Iron/Titanium-Pillared Clays

Authors: Rezala Houria, Valverde Jose Luis, Romero Amaya, Molinari Alessandra, Maldotti Andrea

Abstract:

The escalation of oil prices in 1973 confronted the oil industry with the problem of how to maximize the processing of crude oil, especially the heavy fractions, to give gasoline components. Strong impetus was thus given to the development of catalysts with relatively large pore sizes, which were able to deal with larger molecules than the existing molecular sieves, and with good thermal and hydrothermal stability. The oil embargo in 1973 therefore acted as a stimulus for the investigation and development of pillared clays. Iron doped titania-pillared montmorillonite clays was prepared using bentonite from deposits of Maghnia in western-Algeria. The preparation method consists of differents steps (purification of the raw bentonite, preparation of a pillaring agent solution and exchange of the cations located between the clay layers with the previously formed iron/titanium solution). The characterization of this material was carried out by X-ray fluorescence spectrometry, X-ray diffraction, textural measures by BET method, inductively coupled plasma atomic emission spectroscopy, diffuse reflectance UV visible spectroscopy, temperature- programmed desorption of ammonia and atomic absorption.This new material was investigated as photocatalyst for selective oxygenation of the liquid alkylaromatics such as: toluene, paraxylene and orthoxylene and the photocatalytic properties of it were compared with those of the titanium-pillared clays.

Keywords: iron doping, montmorillonite clays, pillared clays, oil industry

Procedia PDF Downloads 291