Search results for: surface properties
10368 Effect of Thickness on Structural and Electrical Properties of CuAlS2 Thin Films Grown by Two Stage Vacuum Thermal Evaporation Technique
Authors: A. U. Moreh, M. Momoh, H. N. Yahya, B. Hamza, I. G. Saidu, S. Abdullahi
Abstract:
This work studies the effect of thickness on structural and electrical properties of CuAlS2 thin films grown by two stage vacuum thermal evaporation technique. CuAlS2 thin films of thicknesses 50nm, 100nm and 200nm were deposited on suitably cleaned corning 7059 glass substrate at room temperature (RT). In the first stage Cu-Al precursors were grown at room temperature by thermal evaporation and in the second stage Cu-Al precursors were converted to CuAlS2 thin films by sulfurisation under sulfur atmosphere at the temperature of 673K. The structural properties of the films were examined by X-ray diffraction (XRD) technique while electrical properties of the specimens were studied using four point probe method. The XRD studies revealed that the films are of crystalline in nature having tetragonal structure. The variations of the micro-structural parameters, such as crystallite size (D), dislocation density ( ), and micro-strain ( ), with film thickness were investigated. The results showed that the crystallite sizes increase as the thickness of the film increases. The dislocation density and micro-strain decreases as the thickness increases. The resistivity ( ) of CuAlS2 film is found to decrease with increase in film thickness, which is related to the increase of carrier concentration with film thickness. Thus thicker films exhibit the lowest resistivity and high carrier concentration, implying these are the most conductive films. Low electrical resistivity and high carrier concentration are widely used as the essential components in various optoelectronic devices such as light-emitting diode and photovoltaic cells.Keywords: CuAlS2, evaporation, sulfurisation, thickness, resistivity, crystalline
Procedia PDF Downloads 48310367 Special Properties of the Zeros of the Analytic Representations of Finite Quantum Systems
Authors: Muna Tabuni
Abstract:
The paper contains an investigation on the special properties of the zeros of the analytic representations of finite quantum systems. These zeros and their paths completely define the finite quantum system. The present paper studies the construction of the analytic representation from its zeros. The analytic functions of finite quantum systems are introduced. The zeros of the analytic theta functions and their paths have been studied. The analytic function f(z) have exactly d zeros. The analytic function has been constructed from its zeros.Keywords: construction, analytic, representation, zeros
Procedia PDF Downloads 20710366 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source
Authors: Zdeněk Veselý, Milan Honner, Jiří Mach
Abstract:
The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.Keywords: computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source
Procedia PDF Downloads 39410365 Developing a Systemic Monoclonal Antibody Therapy for the Treatment of Large Burn Injuries
Authors: Alireza Hassanshahi, Xanthe Strudwick, Zlatko Kopecki, Allison J Cowin
Abstract:
Studies have shown that Flightless (Flii) is elevated in human wounds, including burns, and reducing the level of Flii is a promising approach for improving wound repair and reducing scar formation. The most effective approach has been to neutralise Flii activity using localized, intradermal application of function blocking monoclonal antibodies. However, large surface area burns are difficult to treat by intradermal injection of therapeutics, so the aim of this study was to investigate if a systemic injection of a monoclonal antibody against Flii could improve healing in mice following burn injury. Flii neutralizing antibodies (FnAbs) were labelled with Alxa-Fluor-680 for biodistribution studies and the healing effects of systemically administered FnAbs to mice with burn injuries. A partial thickness, 7% (70mm2) total body surface area scald burn injury was created on the dorsal surface of mice (n=10/group), and 100µL of Alexa-Flour-680-labeled FnAbs were injected into the intraperitoneal cavity (IP) at time of injury. The burns were imaged on days 0, 1, 2, 3, 4, and 7 using IVIS Lumina S5 Imaging System, and healing was assessed macroscopically, histologically, and using immunohistochemistry. Fluorescent radiance efficiency measurements showed that IP injected Alexa-Fluor-680-FnAbs localized at the site of burn injury from day 1, remaining there for the whole 7-day study. The burns treated with FnAbs showed a reduction in macroscopic wound area and an increased rate of epithelialization compared to controls. Immunohistochemistry for NIMP-R14 showed a reduction in the inflammatory infiltrate, while CD31/VEGF staining showed improved angiogenesis post-systemic FnAb treatment. These results suggest that systemically administered FnAbs are active within the burn site and can improve healing outcomes. The clinical application of systemically injected Flii monoclonal antibodies could therefore be a potential approach for promoting the healing of large surface area burns immediately after injury.Keywords: biodistribution, burn, flightless, systemic, fnAbs
Procedia PDF Downloads 17310364 Electrokinetic Transport of Power Law Fluid through Hydrophobic Micro-Slits
Authors: Ainul Haque, Ameeye Kumar Nayak
Abstract:
Flow enhancement and species transport in a slit hydrophobic microchannel is studied for non-Newtonian fluids with the externally imposed electric field and pressure gradient. The incompressible Poisson-Nernst-Plank equations and the Navier-Stokes equations are approximated by lubrication theory to quantify the flow structure due to hydrophobic and hydrophilic surfaces. The analytical quantification of velocity and pressure of electroosmotic flow (EOF) is made with the numerical results due to the staggered grid based finite volume method for flow governing equations. The resistance force due to fluid friction and shear force along the surface are decreased by the hydrophobicity, enables the faster movement of fluid particles. The resulting flow enhancement factor Ef is increased with the low viscous fluid and provides maximum species transport. Also, the analytical comparison of EOF with pressure driven EOF justifies the flow enhancement due to hydrophobicity and shear impact on flow variation.Keywords: electroosmotic flow, hydrophobic surface, power-law fluid, shear effect
Procedia PDF Downloads 37710363 Oryzanol Recovery from Rice Bran Oil: Adsorption Equilibrium Models Through Kinetics Data Approachments
Authors: A.D. Susanti, W. B. Sediawan, S.K. Wirawan, Budhijanto, Ritmaleni
Abstract:
Oryzanol content in rice bran oil (RBO) naturally has high antioxidant activity. Its reviewed has several health properties and high interested in pharmacy, cosmetics, and nutrition’s. Because of the low concentration of oryzanol in crude RBO (0.9-2.9%) then its need to be further processed for practical usage, such as via adsorption process. In this study, investigation and adjustment of adsorption equilibrium models were conducted through the kinetic data approachments. Mathematical modeling on kinetics of batch adsorption of oryzanol separation from RBO has been set-up and then applied for equilibrium results. The size of adsorbent particles used in this case are usually relatively small then the concentration in the adsorbent is assumed to be not different. Hence, the adsorption rate is controlled by the rate of oryzanol mass transfer from the bulk fluid of RBO to the surface of silica gel. In this approachments, the rate of mass transfer is assumed to be proportional to the concentration deviation from the equilibrium state. The equilibrium models applied were Langmuir, coefficient distribution, and Freundlich with the values of the parameters obtained from equilibrium results. It turned out that the models set-up can quantitatively describe the experimental kinetics data and the adjustment of the values of equilibrium isotherm parameters significantly improves the accuracy of the model. And then the value of mass transfer coefficient per unit adsorbent mass (kca) is obtained by curve fitting.Keywords: adsorption equilibrium, adsorption kinetics, oryzanol, rice bran oil
Procedia PDF Downloads 32310362 Thermodynamic Trends in Co-Based Alloys via Inelastic Neutron Scattering
Authors: Paul Stonaha, Mariia Romashchenko, Xaio Xu
Abstract:
Magnetic shape memory alloys (MSMAs) are promising technological materials for a range of fields, from biomaterials to energy harvesting. We have performed inelastic neutron scattering on two powder samples of cobalt-based high-entropy MSMAs across a range of temperatures in an effort to compare calculations of thermodynamic properties (entropy, specific heat, etc.) to the measured ones. The measurements were correct for multiphonon scattering and multiple scattering contributions. We present herein the neutron-weighted vibrational density of states. Future work will utilize DFT calculations of the disordered lattice to correct for the neutron weighting and retrieve the true thermodynamical properties.Keywords: neutron scattering, vibrational dynamics, computational physics, material science
Procedia PDF Downloads 3210361 The Effect of Proper Drainage on the Cost of Building and Repairing Roads
Authors: Seyed Abbas Tabatabaei, Saeid Amini, Hamid Reza Ghafouri
Abstract:
One of the most important factors in flexible pavement failure is the lack of proper drainage along the roads. Water on the Paving Systems is one of the main parameters of pavement failure. Though, if water is discharged without delay and prior to discharge in order to prevent damaging the pavement the lifetime of the pavement will be considerably increased. In this study, duration of water stay and materials properties in pavement systems and the effects of aggregate gradation, and hydraulic conductivity of the drainage rate and Effects of subsurface drainage systems, drainage and reduction in the lifetime of the pavement have been studied. The study conducted in accordance with the terms offered can be concluded as under. The more hydraulic conductivity the less drainage time and the use of sub-surface drainage system causes two to three times of the pavement lifetime. In this research it has been tried by study and calculate the drained and undrained pavements lifetime by considering the effectiveness of water and drainage coefficient on flexible materials modulus and by using KENLAYER software to compare the present value cost of these pavements has been paid for a 20 year lifetime design. In this study, 14 pavement sections have been considered, of which 7 sections have been drained and 7 other not. Results show that drained pavements have more initial costs but the failure severity is so little in them and have longer lifetime for a 20 year lifetime design, the drained pavements seem so economic.Keywords: drainage, base and sub-base, elasticity modulus, aggregation
Procedia PDF Downloads 36910360 Generation of Charged Nanoparticles and Their Contribution to the Thin Film and Nanowire Growth during Chemical Vapour Deposition
Authors: Seung-Min Yang, Seong-Han Park, Sang-Hoon Lee, Seung-Wan Yoo, Chan-Soo Kim, Nong-Moon Hwang
Abstract:
The theory of charged nanoparticles suggested that in many Chemical Vapour Depositions (CVD) processes, Charged Nanoparticles (CNPs) are generated in the gas-phase and become a building block of thin films and nanowires. Recently, the nanoparticle-based crystallization has become a big issue since the growth of nanorods or crystals by the building block of nanoparticles was directly observed by transmission electron microscopy observations in the liquid cell. In an effort to confirm charged gas-phase nuclei, that might be generated under conventional processing conditions of thin films and nanowires during CVD, we performed an in-situ measurement using differential mobility analyser and particle beam mass spectrometer. The size distribution and number density of CNPs were affected by process parameters such as precursor flow rate and working temperature. It was shown that many films and nanostructures, which have been believed to grow by individual atoms or molecules, actually grow by the building blocks of such charged nuclei. The electrostatic interaction between CNPs and the growing surface induces the self-assembly into films and nanowires. In addition, the charge-enhanced atomic diffusion makes CNPs liquid-like quasi solid. As a result, CNPs tend to land epitaxial on the growing surface, which results in the growth of single crystalline nanowires with a smooth surface.Keywords: chemical vapour deposition, charged nanoparticle, electrostatic force, nanostructure evolution, differential mobility analyser, particle beam mass spectrometer
Procedia PDF Downloads 45210359 Modeling of the Cellular Uptake of Rigid Nanoparticles: Investigating the Influence of the Adaptation of the Cell’s Mechanical Properties during Endocytosis
Authors: Sarah Iaquinta, Christophe Blanquart, Elena Ishow, Sylvain Freour, Frederic Jacquemin, Shahram Khazaie
Abstract:
Nanoparticles have recently emerged as a possible cancer treatment tool. Several formulations have been used to enhance the uptake of these nanoparticles by cancer cells and avoid their immediate clearance when administrated in vivo. Most of the previous studies focus on the investigation of the influence of the mechanical properties of the cell membrane and the particle. However, these studies do not account for the variation of adhesion and tension during the wrapping of the nanoparticle by the membrane. These couplings should be considered since the cell adapts to the interaction with the nanoparticle by, e.g., increasing the number of interactions (consequently leading to an increase of the cell membrane/nanoparticle adhesion) and by reorganizing its cytoskeleton, leading to the releasing of the tension of the cell membrane. The main contribution of this work is the proposal of a novel model for representing the cellular uptake of rigid circular nanoparticles based on an energetic model tailored to take into account the adaptation of the nanoparticle/cell membrane adhesion and of the membrane stress during wrapping. Several coupling models using sigmoidal functions are considered and compared. The study calculations revealed that the results considering constant parameters underestimated the final wrapping degree of the particle by up to 50%.Keywords: adhesion, cellular adaptation, cellular uptake, mechanical properties, tension
Procedia PDF Downloads 21310358 Estimating Solar Irradiance on a Tilted Surface Using Artificial Neural Networks with Differential Outputs
Authors: Hsu-Yung Cheng, Kuo-Chang Hsu, Chi-Chang Chan, Mei-Hui Tseng, Chih-Chang Yu, Ya-Sheng Liu
Abstract:
Photovoltaics modules are usually not installed horizontally to avoid water or dust accumulation. However, the measured irradiance data on tilted surfaces are rarely available since installing pyranometers with various tilt angles induces high costs. Therefore, estimating solar irradiance on tilted surfaces is an important research topic. In this work, artificial neural networks (ANN) are utilized to construct the transfer model to estimate solar irradiance on tilted surfaces. Instead of predicting tilted irradiance directly, the proposed method estimates the differences between the horizontal irradiance and the irradiance on a tilted surface. The outputs of the ANNs in the proposed design are differential values. The experimental results have shown that the proposed ANNs with differential outputs can substantially improve the estimation accuracy compared to ANNs that estimate the titled irradiance directly.Keywords: photovoltaics, artificial neural networks, tilted irradiance, solar energy
Procedia PDF Downloads 39710357 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging
Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs
Abstract:
Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.Keywords: biocomposites, nanocellulose, starch, wheat
Procedia PDF Downloads 21210356 Hysteresis Behavior and Microstructure in Nanostructured Alloys Cu-Fe and Cu-Fe-Co
Authors: Laslouni Warda, M. Azzaz
Abstract:
The intermetallic-based on transition metal compounds present interesting magnetic properties for the technological applications (permanent magnets, magnetic recording…). Cu70 Fe18Co12 and Cu70 Fe30 nanostructured with crystallite size vary from 10 a 12 nanometers have been developed by a mechanical milling method. For Cu-Fe samples, the iron and copper distribution was clear. The distribution showed a homogeneous distribution of iron and copper in a Cu-Fe obtained after 36 h milling. The structural properties have been performed with X-ray diffraction. With increasing milling times, Fe and Co diffuse into the Cu matrix, which accelerates the formation of the magnetic nanostructure Cu- Fe-Co and Cu-Fe alloys. The magnetic behavior is investigated using Vibrating Sample Magnetometer (VSM). The two alloys nanocrystals possess ferromagnetic character at room temperatureKeywords: Cu-Fe-Co, Cu-Fe, nanocrystals, SEM, hysteresis loops, VSM, anisotropy theory
Procedia PDF Downloads 33410355 Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals
Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks
Abstract:
Metal-enhanced luminescence of silicon nano crystals (SiNCs) was determined using two different particle sizes of silver nano particles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to ×9 and ×3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.Keywords: silver nanoparticles, surface enhanced raman spectroscopy (SERS), silicon nanocrystals, luminescence
Procedia PDF Downloads 42110354 Quantifying the Rapid Urbanization Impact on Potential Stormwater Runoff of Dhaka City, Bangladesh
Authors: Md. Kumruzzaman, Anutosh Das, Md. Mosharraf Hossain
Abstract:
Historically, rapid urban growth activities are considered one of the main culprits behind urban floods or waterlogging. The increased unplanned urbanization of many areas of Dhaka has resulted in waterlogging, urban floods, and increasing groundwater depth. To determine potential groundwater recharge from precipitation, the study is being conducted to examine the changes in land use/land cover (LULC) and urban runoff extent based on the NRCS-CN from 2005–2021. Four kinds of land use are used to examine the LULC change: built-up, bare land, vegetation, and water body. These categories are used for the years 2005, 2010, 2015, and 2021. The built-up area is growing at a relatively fast rate: 7.43%, 17.4%, and 5.21%, respectively, between the years 2005 and 2010, 2010 and 2015, and 2015 and 2021. As the amount of impervious surface rose in Dhaka city, stormwater discharge increased from 2005 to 2021. In 2005, 2010, 2015, and 2021, heavy stormwater runoff regions made up around 24.873%, 32.616%, 49.118%, and 55.986% of the entire Dhaka city. Stormwater runoff accounted for around 53.738%, 55.092%, 63.472%, and 67.061% of the total rainfall in 2005, 2010, 2015, and 2021, respectively. Between 2005 and 2021, a significant portion of the natural land cover was altered because of the expanding impervious surface, which also harmed the natural drainage system. Due to careless growth, the potential for stormwater runoff and groundwater recharge in Dhaka city worsens every year. Concerning this situation, a sustainable urban drainage system (SUDS) can be the best possible solution for minimizing the stormwater runoff and groundwater recharge problem.Keywords: LULC, impervious surface, stormwater runoff, groundwater recharge, SUDS
Procedia PDF Downloads 8010353 Effect of Slip Condition and Magnetic Field on Unsteady MHD Thin Film Flow of a Third Grade Fluid with Heat Transfer down an Inclined Plane
Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal
Abstract:
The analysis has been carried out to study unsteady MHD thin film flow of a third grade fluid down an inclined plane with heat transfer when the slippage between the surface of plane and the lower surface of the fluid is valid. The governing nonlinear partial differential equations involved are reduced to linear partial differential equations using regular perturbation method. The resulting equations were solved analytically using method of separation of variable and eigenfunctions expansion. The solutions obtained were examined and discussed graphically. It is interesting to find that the variation of the velocity and temperature profile with the slip and magnetic field parameter depends on time.Keywords: non-Newtonian fluid, MHD flow, thin film flow, third grade fluid, slip boundary condition, heat transfer, separation of variable, eigenfunction expansion
Procedia PDF Downloads 38310352 Effect of Pristine Graphene on Developmental Toxicity in Zebrafish (Danio rerio) Embryos: Cardiovascular Defects, Apoptosis, and Globin Expression Analysis
Authors: Manjunatha Bangeppagari, Lee Sang Joon
Abstract:
Recently, graphene-related nanomaterials are receiving fast-increasing attention with augmented applications in various fields. Especially, graphene-related materials have been widely applied to the biomedical field in the past years. In the present study, we evaluated the adverse effects of pristine graphene (pG) in zebrafish (Danio rerio) embryos in various aspects, such as mortality rate, heart rate, hatching rate, cardiotoxicity, cardiovascular defect, cardiac looping, apoptosis, and globin expression. For various trace concentrations of pG (1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 μg/L), early life-stage parameters were observed at 24, 48, 72, and 96 hpf. As a result, pG induces significant developmental defects including yolk sac edema, pericardial edema, embryonic mortality, delayed hatching, heartbeat, several morphological defects, pericardial toxicity, and bradycardia. Moreover, the exposure to pG was found to be a potential risk factor to the cardiovascular system of zebrafish embryos. However, further study on their properties which vary according to production methods and surface functionalization is essentially required. In addition, the possible risks of pG flakes to aquatic animals, and public health should be evaluated before releasing them to the surrounding environment.Keywords: apoptosis, cardiovascular toxicity, globin expression, pristine graphene, zebrafish embryos
Procedia PDF Downloads 13210351 Properties of Bacterial Nanocellulose for Scenic Arts
Authors: Beatriz Suárez López, Gabriela Forman
Abstract:
Kombucha (a symbiotic culture of bacteria and yeast) produces material capable of acquiring multiple shapes and textures that change significantly under different environment or temperature variations (e.g., when it is exposed to wet conditions), properties that may be explored in the scenic industry. This paper presents an analysis of its specific characteristics, exploring them as a non-conventional material for arts and performance. Costume Design uses surfaces as a powerful way of expression to represent concepts and stories; it may apply the unique features of nano bacterial cellulose (NBC) as assets in this artistic context. A mix of qualitative and quantitative (interventionist) methodology approaches were used -review of relevant literature to deepen knowledge on the research topic (crossing bibliography from different fields of studies: Biology, Art, Costume Design, etc.); as well as descriptive methods: laboratorial experiments, document quantities, observation to identify material properties and possibilities used to express a multiple narrative ideas, concepts and feelings. The results confirmed that NBC is an interactive and versatile material viable to be used in an alternative scenic context; its unique aesthetic and performative qualities, which change in contact to moisture, is a resource that can be used to show a visual and poetic impact on stage.Keywords: biotechnological materials, contemporary dance, costume design, nano bacterial cellulose, performing arts
Procedia PDF Downloads 10110350 Computational Study of Composite Films
Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova
Abstract:
Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.Keywords: composite films, computer modelling, image analysis, nanocomposite films
Procedia PDF Downloads 39310349 Effects of Knitting Variables for Pressure Controlling of Tubular Compression Fabrics
Authors: Shi Yu, Rong Liu, Jingyun Lv
Abstract:
Compression textiles with ergonomic-fit and controllable pressure performance have demonstrated positive effect on prevention and treatment of chronic venous insufficiency (CVI). Well-designed compression textile products contribute to improving user compliance in their daily application. This study explored the effects of multiple knitting variables (yarn-machinery settings) on the physical-mechanical properties and the produced pressure magnitudes of tubular compression fabrics (TCFs) through experimental testing and multiple regression modeling. The results indicated that fabric physical (stitch densities and circumference) and mechanical (tensile) properties were affected by the linear density (yarn diameters) of inlay yarns, which, to some extent, influenced pressure magnitudes of the TCFs. Knitting variables (e.g., feeding velocity of inlay yarns and loop size settings) can alter circumferences and tensile properties of tubular fabrics, respectively, and significantly varied pressure values of the TCFs. This study enhanced the understanding of the effects of knitting factors on pressure controlling of TCFs, thus facilitating dimension and pressure design of compression textiles in future development.Keywords: laid-in knitted fabric, yarn-machinery settings, pressure magnitudes, quantitative analysis, compression textiles
Procedia PDF Downloads 21010348 Mathematical Modeling of the Effect of Pretreatment on the Drying Kinetics, Energy Requirement and Physico-Functional Properties of Yam (Dioscorea Rotundata) and Cocoyam (Colocasia Esculenta)
Authors: Felix U. Asoiro, Kingsley O. Anyichie, Meshack I. Simeon, Chinenye E. Azuka
Abstract:
The work was aimed at studying the effects of microwave drying (450 W) and hot air oven drying on the drying kinetics and physico-functional properties of yams and cocoyams species. The yams and cocoyams were cut into chips of thicknesses of 3mm, 5mm, 7mm, 9mm, and 11mm. The drying characteristics of yam and cocoyam chips were investigated under microwave drying and hot air oven temperatures (50oC – 90oC). Drying methods, temperature, and thickness had a significant effect on the drying characteristics and physico-functional properties of yam and cocoyam. The result of the experiment showed that an increase in the temperature increased the drying time. The result also showed that the microwave drying method took lesser time to dry the samples than the hot air oven drying method. The iodine affinity of starch for yam was higher than that of cocoyam for the microwaved dried samples over those of hot air oven-dried samples. The results of the analysis would be useful in modeling the drying behavior of yams and cocoyams under different drying methods. It could also be useful in the improvement of shelf life for yams and cocoyams as well as designs of efficient systems for drying, handling, storage, packaging, processing, and transportation of yams and cocoyams.Keywords: coco yam, drying, microwave, modeling, energy consumption, iodine affinity, drying ate
Procedia PDF Downloads 10610347 Investigation of the Mechanical and Thermal Properties of a Silver Oxalate Nanoporous Structured Sintered Joint for Micro-joining in Relation to the Sintering Process Parameters
Authors: L. Vivet, L. Benabou, O. Simon
Abstract:
With highly demanding applications in the field of power electronics, there is an increasing need to have interconnection materials with properties that can ensure both good mechanical assembly and high thermal/electrical conductivities. So far, lead-free solders have been considered an attractive solution, but recently, sintered joints based on nano-silver paste have been used for die attach and have proved to be a promising solution offering increased performances in high-temperature applications. In this work, the main parameters of the bonding process using silver oxalates are studied, i.e., the heating rate and the bonding pressure mainly. Their effects on both the mechanical and thermal properties of the sintered layer are evaluated following an experimental design. Pairs of copper substrates with gold metallization are assembled through the sintering process to realize the samples that are tested using a micro-traction machine. In addition, the obtained joints are examined through microscopy to identify the important microstructural features in relation to the measured properties. The formation of an intermetallic compound at the junction between the sintered silver layer and the gold metallization deposited on copper is also analyzed. Microscopy analysis exhibits a nanoporous structure of the sintered material. It is found that higher temperature and bonding pressure result in higher densification of the sintered material, with higher thermal conductivity of the joint but less mechanical flexibility to accommodate the thermo-mechanical stresses arising during service. The experimental design allows hence the determination of the optimal process parameters to reach sufficient thermal/mechanical properties for a given application. It is also found that the interphase formed between silver and gold metallization is the location where the fracture occurred after the mechanical testing, suggesting that the inter-diffusion mechanism between the different elements of the assembly leads to the formation of a relatively brittle compound.Keywords: nanoporous structure, silver oxalate, sintering, mechanical strength, thermal conductivity, microelectronic packaging
Procedia PDF Downloads 9310346 Lanthanide-Mediated Aggregation of Glutathione-Capped Gold Nanoclusters Exhibiting Strong Luminescence and Fluorescence Turn-on for Sensing Alkaline Phosphatase
Authors: Jyun-Guo You, Wei-Lung Tseng
Abstract:
Herein, this study represents a synthetic route for producing highly luminescent AuNCs based on the integration of two concepts, including thiol-induced luminescence enhancement of ligand-insufficient GSH-AuNCs and Ce3+-induced aggregation of GSH-AuNCs. The synthesis of GSH-AuNCs was conducted by modifying the previously reported procedure. To produce more Au(I)-GSH complexes on the surface of ligand-insufficient GSH-AuNCs, the extra GSH is added to attach onto the AuNC surface. The formed ligand-sufficient GSH-AuNCs (LS-GSH-AuNCs) emit relatively strong luminescence. The luminescence of LS-GSH-AuNCs is further enhanced by the coordination of two carboxylic groups (pKa1 = 2 and pKa2 = 3.5) of GSH and lanthanide ions, which induce the self-assembly of LS-GSH-AuNCs. As a result, the quantum yield of the self-assembled LS-GSH-AuNCs (SA-AuNCs) was improved to be 13%. Interestingly, the SA-AuNCs were dissembled into LS-GSH-AuNCs in the presence of adenosine triphosphate (ATP) because of the formation of the ATP- lanthanide ion complexes. Our assay was employed to detect alkaline phosphatase (ALP) activity over the range of 0.1−10 U/mL with a limit of detection (LOD) of 0.03 U/mL.Keywords: self-assembly, lanthanide ion, adenosine triphosphate, alkaline phosphatase
Procedia PDF Downloads 17010345 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface
Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi
Abstract:
By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard.Keywords: bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating, tensile adhesion test
Procedia PDF Downloads 26010344 Robust Method for Evaluation of Catchment Response to Rainfall Variations Using Vegetation Indices and Surface Temperature
Authors: Revalin Herdianto
Abstract:
Recent climate changes increase uncertainties in vegetation conditions such as health and biomass globally and locally. The detection is, however, difficult due to the spatial and temporal scale of vegetation coverage. Due to unique vegetation response to its environmental conditions such as water availability, the interplay between vegetation dynamics and hydrologic conditions leave a signature in their feedback relationship. Vegetation indices (VI) depict vegetation biomass and photosynthetic capacity that indicate vegetation dynamics as a response to variables including hydrologic conditions and microclimate factors such as rainfall characteristics and land surface temperature (LST). It is hypothesized that the signature may be depicted by VI in its relationship with other variables. To study this signature, several catchments in Asia, Australia, and Indonesia were analysed to assess the variations in hydrologic characteristics with vegetation types. Methods used in this study includes geographic identification and pixel marking for studied catchments, analysing time series of VI and LST of the marked pixels, smoothing technique using Savitzky-Golay filter, which is effective for large area and extensive data. Time series of VI, LST, and rainfall from satellite and ground stations coupled with digital elevation models were analysed and presented. This study found that the hydrologic response of vegetation to rainfall variations may be shown in one hydrologic year, in which a drought event can be detected a year later as a suppressed growth. However, an annual rainfall of above average do not promote growth above average as shown by VI. This technique is found to be a robust and tractable approach for assessing catchment dynamics in changing climates.Keywords: vegetation indices, land surface temperature, vegetation dynamics, catchment
Procedia PDF Downloads 28710343 Improved Wetting for Improved Solubility and Dissolution of Candesartan Cilexetil
Authors: Shilpa Bhilegaonkar, Ram Gaud
Abstract:
Candesartan cilexetil is a poorly soluble antihypertensive agent with solubility limited bioavailability (15%). To initiate process of solubilisation, it is very much necessary to displace the air at the surface and wet the drug surface with a solvent, with which drug is compatible. Present research adopts the same principle to improve solubility and dissolution of candesartan cilexetil. Solvents used here are surfactant and modified surfactant in different drug: solvent (1:1-1:9) ratio’s for preparation of adsorbates. Adsorbates were then converted into free flowing powders as liquisolid compacts and compressed to form tablets. Liquisolid compacts were evaluated for improvement in saturation solubility and dissolution of candesartan cilexetil. All systems were evaluated for improvement in saturation solubility and dissolution in different medias such as water, 0.1 N HCl, Phosphate buffer pH 6.8 and media given by office of generic drugs along with other physicochemical testing. All systems exhibited a promising advantage in terms of solubility and dissolution without affecting the drug structure as confirmed by IR and XRD. No considerable advantage was seen of increasing solvent ratio with drug.Keywords: candesartan cilexetil, improved dissolution, solubility, liquisolid
Procedia PDF Downloads 32810342 Carbon Capture and Storage Using Porous-Based Aerogel Materials
Authors: Rima Alfaraj, Abeer Alarawi, Murtadha AlTammar
Abstract:
The global energy landscape heavily relies on the oil and gas industry, which faces the critical challenge of reducing its carbon footprint. To address this issue, the integration of advanced materials like aerogels has emerged as a promising solution to enhance sustainability and environmental performance within the industry. This study thoroughly examines the application of aerogel-based technologies in the oil and gas sector, focusing particularly on their role in carbon capture and storage (CCS) initiatives. Aerogels, known for their exceptional properties, such as high surface area, low density, and customizable pore structure, have garnered attention for their potential in various CCS strategies. The review delves into various fabrication techniques utilized in producing aerogel materials, including sol-gel, supercritical drying, and freeze-drying methods, to assess their suitability for specific industry applications. Beyond fabrication, the practicality of aerogel materials in critical areas such as flow assurance, enhanced oil recovery, and thermal insulation is explored. The analysis spans a wide range of applications, from potential use in pipelines and equipment to subsea installations, offering valuable insights into the real-world implementation of aerogels in the oil and gas sector. The paper also investigates the adsorption and storage capabilities of aerogel-based sorbents, showcasing their effectiveness in capturing and storing carbon dioxide (CO₂) molecules. Optimization of pore size distribution and surface chemistry is examined to enhance the affinity and selectivity of aerogels towards CO₂, thereby improving the efficiency and capacity of CCS systems. Additionally, the study explores the potential of aerogel-based membranes for separating and purifying CO₂ from oil and gas streams, emphasizing their role in the carbon capture and utilization (CCU) value chain in the industry. Emerging trends and future perspectives in integrating aerogel-based technologies within the oil and gas sector are also discussed, including the development of hybrid aerogel composites and advanced functional components to further enhance material performance and versatility. By synthesizing the latest advancements and future directions in aerogel used for CCS applications in the oil and gas industry, this review offers a comprehensive understanding of how these innovative materials can aid in transitioning towards a more sustainable and environmentally conscious energy landscape. The insights provided can assist in strategic decision-making, drive technology development, and foster collaborations among academia, industry, and policymakers to promote the widespread adoption of aerogel-based solutions in the oil and gas sector.Keywords: CCS, porous, carbon capture, oil and gas, sustainability
Procedia PDF Downloads 4410341 Synthesis of Highly Porous Cyclowollastonite Bioactive Ceramic
Authors: Mehieddine Bouatrous
Abstract:
Recently bioactive ceramic materials have been applied in the biomedical field as bulk, granular, or coating materials for more than half a century. More recently, bone tissue engineering scaffolds made of highly porous bioactive ceramic, glass-ceramic, and composite materials have also been created. As a result, recent bioactive ceramic structures have a high bioactivity rate, an open pores network, and good mechanical characteristics simulating cortical bone. Cyclowollastonite frameworks are also suggested for use as a graft material. As a porogenous agent, various amounts of the polymethyl methacrylate (PMMA) powders were used in this study successfully to synthesize a highly interrelated, nanostructured porous cyclowollastonite with a large specific surface area where the morphology and porosity were investigated. Porous cyclowollastonite bioactive ceramics were synthesized with a cost-effective and eco-friendly wet chemical method. The synthesized biomaterial is bioactive according to in vitro tests and can be used for bone tissue engineering scaffolds where cyclowollastonite sintered dense discs were submerged in simulated body fluid (S.B.F.) for various periods of time (1-4 weeks), resulting in the formation of a dense and consistent layer of hydroxyapatite on the surface of the ceramics, indicating its good in vitro bioactivity. Therefore, the cyclowollastonite framework exhibits good in vitro bioactivity due to its highly interconnecting porous structure and open macropores. The results demonstrate that even after soaking for several days, the surface of cyclowollastonite ceramic can generate a dense and consistent layer of hydroxyapatite. The results showed that cyclowollastonite framework exhibits good in vitro bioactivity due to highly interconnecting porous structure and open macropores.Keywords: porous, bioactive, biomaterials, S.B.F, cyclowollastonite, biodegradability
Procedia PDF Downloads 7710340 Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers
Authors: Shota Nagata, Kazuya Okubo, Toru Fujii
Abstract:
The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method.Keywords: CFRP, recycled carbon fiber, injection molding, mechanical properties, fiber orientation, failure mechanism
Procedia PDF Downloads 44510339 Evaluating Water Quality Index of Euphrates River South-West Part of Iraq, Najaf, Alhadaria by Using GIS Technique
Authors: Ali Abojassim, Nabeel Kadhim, Adil Jaber, Ali Hussein
Abstract:
Water quality index (WQI) is valuable and unique rating to depict the total water quality status in a single term that is helpful for the selection of appropriate treatment technique to meet the concerned issues. Fifteen surface water samples were collected from the Euphrates river within AlHaydria is sub district of AL-Najaf (Iraq). The quality of surface water were evaluated by testing various physicochemical parameters such as pH, Total Dissolved Solid (TDS), , Calcium, Chloride, Sulphate and Electrical conductivity. The WQI for all samples were found in the range of 25.92 to 47.22. The highest value of WQI was observed in the Ali Hajj Hassan(SW4,SW8), El Haj Abdel Sayed (SW 10 to SW 12)and Hasan alsab(SW 14) sampling locations. Most of the water samples within study area were found good to moderate categories. most of the water samples for study area were found good as well as moderate categoriesKeywords: water quality index, GIS, physicochemical parameters, Iraq Standards for irrigation purpose 2012
Procedia PDF Downloads 157