Search results for: medical surveillance process
15109 A Statistical Analysis on the Comparison of First and Second Waves of COVID-19 and Importance of Early Actions in Public Health for Third Wave in India
Authors: Maitri Dave
Abstract:
Coronaviruses (CoV) is such infectious virus which has impacted globally in a more dangerous manner causing severe lung problems and leaving behind more serious diseases among the people. This pandemic has affected globally and created severe respiratory problems, and damaged the lungs. India has reported the first case of COVID-19 in January 2020. The first wave of COVID-19 took place from April to September of 2020. Soon after, a second peak is also noticed in the month of March 2021, which in turn becomes more dangerous due to a lack of supply of medical equipment. It created resource deficiency globally, specifically in India, where some necessary life-saving equipment like ventilators and oxygenators were not sufficient to cater to the demand-supply ratio effectively. Through carefully examining such a situation, India began to execute the process of vaccination in the month of January 2021 and successfully administered 25,46,71,259 doses of vaccines till now, which is only 15.5% of the total population while only 3.6% of the total population is fully vaccinated. India has authorized the British Oxford–AstraZeneca vaccine (Covishield), the Indian BBV152 (Covaxin) vaccine, and the Russian Sputnik V vaccine for emergency use. In the present study, we have collected all the data state wisely of both first and second wave and analyzed them using MS Excel Version 2019 and SPSS Statistics Version 26. Following the trends, we have predicted the characteristics of the upcoming third wave of COVID-19 and recommended some strategies, early actions, and measures that can be taken by the public health system in India to combat the third wave more effectively.Keywords: COVID-19, vaccination, Covishiled, Coronavirus
Procedia PDF Downloads 21915108 Modelling and Simulation Efforts in Scale-Up and Characterization of Semi-Solid Dosage Forms
Authors: Saurav S. Rath, Birendra K. David
Abstract:
Generic pharmaceutical industry has to operate in strict timelines of product development and scale-up from lab to plant. Hence, detailed product & process understanding and implementation of appropriate mechanistic modelling and Quality-by-design (QbD) approaches are imperative in the product life cycle. This work provides example cases of such efforts in topical dosage products. Topical products are typically in the form of emulsions, gels, thick suspensions or even simple solutions. The efficacy of such products is determined by characteristics like rheology and morphology. Defining, and scaling up the right manufacturing process with a given set of ingredients, to achieve the right product characteristics presents as a challenge to the process engineer. For example, the non-Newtonian rheology varies not only with CPPs and CMAs but also is an implicit function of globule size (CQA). Hence, this calls for various mechanistic models, to help predict the product behaviour. This paper focusses on such models obtained from computational fluid dynamics (CFD) coupled with population balance modelling (PBM) and constitutive models (like shear, energy density). In a special case of the use of high shear homogenisers (HSHs) for the manufacture of thick emulsions/gels, this work presents some findings on (i) scale-up algorithm for HSH using shear strain, a novel scale-up parameter for estimating mixing parameters, (ii) non-linear relationship between viscosity and shear imparted into the system, (iii) effect of hold time on rheology of product. Specific examples of how this approach enabled scale-up across 1L, 10L, 200L, 500L and 1000L scales will be discussed.Keywords: computational fluid dynamics, morphology, quality-by-design, rheology
Procedia PDF Downloads 27115107 Personal Data Protection: A Legal Framework for Health Law in Turkey
Authors: Veli Durmus, Mert Uydaci
Abstract:
Every patient who needs to get a medical treatment should share health-related personal data with healthcare providers. Therefore, personal health data plays an important role to make health decisions and identify health threats during every encounter between a patient and caregivers. In other words, health data can be defined as privacy and sensitive information which is protected by various health laws and regulations. In many cases, the data are an outcome of the confidential relationship between patients and their healthcare providers. Globally, almost all nations have own laws, regulations or rules in order to protect personal data. There is a variety of instruments that allow authorities to use the health data or to set the barriers data sharing across international borders. For instance, Directive 95/46/EC of the European Union (EU) (also known as EU Data Protection Directive) establishes harmonized rules in European borders. In addition, the General Data Protection Regulation (GDPR) will set further common principles in 2018. Because of close policy relationship with EU, this study provides not only information on regulations, directives but also how they play a role during the legislative process in Turkey. Even if the decision is controversial, the Board has recently stated that private or public healthcare institutions are responsible for the patient call system, for doctors to call people waiting outside a consultation room, to prevent unlawful processing of personal data and unlawful access to personal data during the treatment. In Turkey, vast majority private and public health organizations provide a service that ensures personal data (i.e. patient’s name and ID number) to call the patient. According to the Board’s decision, hospital or other healthcare institutions are obliged to take all necessary administrative precautions and provide technical support to protect patient privacy. However, this application does not effectively and efficiently performing in most health services. For this reason, it is important to draw a legal framework of personal health data by stating what is the main purpose of this regulation and how to deal with complicated issues on personal health data in Turkey. The research is descriptive on data protection law for health care setting in Turkey. Primary as well as secondary data has been used for the study. The primary data includes the information collected under current national and international regulations or law. Secondary data include publications, books, journals, empirical legal studies. Consequently, privacy and data protection regimes in health law show there are some obligations, principles and procedures which shall be binding upon natural or legal persons who process health-related personal data. A comparative approach presents there are significant differences in some EU member states due to different legal competencies, policies, and cultural factors. This selected study provides theoretical and practitioner implications by highlighting the need to illustrate the relationship between privacy and confidentiality in Personal Data Protection in Health Law. Furthermore, this paper would help to define the legal framework for the health law case studies on data protection and privacy.Keywords: data protection, personal data, privacy, healthcare, health law
Procedia PDF Downloads 22815106 Image Analysis for Obturator Foramen Based on Marker-controlled Watershed Segmentation and Zernike Moments
Authors: Seda Sahin, Emin Akata
Abstract:
Obturator foramen is a specific structure in pelvic bone images and recognition of it is a new concept in medical image processing. Moreover, segmentation of bone structures such as obturator foramen plays an essential role for clinical research in orthopedics. In this paper, we present a novel method to analyze the similarity between the substructures of the imaged region and a hand drawn template, on hip radiographs to detect obturator foramen accurately with integrated usage of Marker-controlled Watershed segmentation and Zernike moment feature descriptor. Marker-controlled Watershed segmentation is applied to seperate obturator foramen from the background effectively. Zernike moment feature descriptor is used to provide matching between binary template image and the segmented binary image for obturator foramens for final extraction. The proposed method is tested on randomly selected 100 hip radiographs. The experimental results represent that our method is able to segment obturator foramens with % 96 accuracy.Keywords: medical image analysis, segmentation of bone structures on hip radiographs, marker-controlled watershed segmentation, zernike moment feature descriptor
Procedia PDF Downloads 43915105 Software Assessment Using Ant Colony Optimization Algorithm
Authors: Saad M. Darwish
Abstract:
Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However,these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.Keywords: optimization technique, quality assurance, software certification model, software assessment
Procedia PDF Downloads 49315104 Impact of Relocation on Cultural Landscape around Reservoir Projects in Sri Lanka: A Case Study on Uma Oya Multipurpose Development Project
Authors: P. L. Madhushi Kavindya
Abstract:
Sri Lanka is a developing country where hydrology plays an important role in its economic and social growth, followed by irrigation and power generation. Therefore, reservoirs are a principal element of the culture and social status of Sri Lankans. The emergence of a newly built reservoir goes along with a community relocation process which eventually causes alterations in the cultural landscape around it. From the 18th century, the emergence of reservoirs has caused major impacts on the landscape of Sri Lanka. Foremost aspects can be identified as the increased and decreased value of the cultural landscape around a reservoir. Community relocation in regard to reservoir projects is discussed as a key factor in the research. The study further carries out observations and findings of the relocation process of reservoirs in global and local contexts. Consequently, the study discusses the vast study area of ‘cultural landscape’ in brief and its behavior overall. Besides, specific data about reservoir-related cultural landscapes in a worldwide context, along with facts about the evolution, has been discussed. The significance and diversity of the Sri Lankan reservoir-related cultural landscape are explored in the succeeding study. This study will mainly identify the existing constraints and tendencies regarding the relocation process in an overall status. The base for the research has been laid thereafter by broadening the study on alterations which occur in the cultural landscape in relevance to reservoir-related relocation. Uma Oya multipurpose development project is selected as the exemplary study area considering its visible impacts. This analysis will indicate strategies, theories, and methods that can be applied to apprehend the impact of the relocation process on the cultural landscape of reservoirs. The research was carried out by conducting the Uma Oya multipurpose development project case study and by defining its cultural landscape and process of relocation. A suitable theoretical framework is developed in order to assess the set of vulnerable areas of a cultural landscape which are likely to change due to relocation. A questionnaire survey is done in order to assess socio-economic aspects, and a GIS data analysis is conducted to analyze the impact on physical aspects. Findings show that the impacts of the cultural landscape fall under both positive and negative categories. It also shows that the previous condition before resettlement and post stages have significant changes, where the previous condition had more socio-economic benefits for the community. And it also shows a clear alteration pattern of physical environment changes. These specifically developed theories, areas of assessment, and strategies, along with the outcomes, can be used for any location with geographical similarities worldwide.Keywords: cultural diffusion theory, cultural landscape, physical aspects, relocation, reservoirs, socio-economic aspects
Procedia PDF Downloads 18415103 Effect of Welding Current on Mechanical Properties and Microstructure of Tungsten Inert Gas Welding of Type-304 Austenite Stainless Steel
Authors: Emmanuel Ogundimu, Esther Akinlabi, Mutiu Erinosho
Abstract:
The aim of this paper is to study the effect of welding current on the microstructure and the mechanical properties. Material characterizations were conducted on a 6 mm thick plates of type-304 austenite stainless steel, welded by TIG welding process at two different welding currents of 150 A (Sample F3) and 170 A (Sample F4). The tensile strength and the elongation obtained from sample F4 weld were approximately 584 MPa and 19.3 %; which were higher than sample F3 weld. The average microhardness value of sample F4 weld was found to be 235.7 HV, while that of sample F3 weld was 233.4 HV respectively. Homogenous distribution of iron (Fe), chromium (Cr) and nickel (Ni) were observed at the welded joint of the two samples. The energy dispersive spectroscopy (EDS) analysis revealed that Fe, Cr, and Ni made up the composition formed in the weld zone. The optimum welding current of 170 A for TIG welding of type-304 austenite stainless steel can be recommended for high-tech industrial applications.Keywords: microhardness, microstructure, tensile, MIG welding, process, tensile, shear stress TIG welding, TIG-MIG welding
Procedia PDF Downloads 19915102 Data Integrity: Challenges in Health Information Systems in South Africa
Authors: T. Thulare, M. Herselman, A. Botha
Abstract:
Poor system use, including inappropriate design of health information systems, causes difficulties in communication with patients and increased time spent by healthcare professionals in recording the necessary health information for medical records. System features like pop-up reminders, complex menus, and poor user interfaces can make medical records far more time consuming than paper cards as well as affect decision-making processes. Although errors associated with health information and their real and likely effect on the quality of care and patient safety have been documented for many years, more research is needed to measure the occurrence of these errors and determine the causes to implement solutions. Therefore, the purpose of this paper is to identify data integrity challenges in hospital information systems through a scoping review and based on the results provide recommendations on how to manage these. Only 34 papers were found to be most suitable out of 297 publications initially identified in the field. The results indicated that human and computerized systems are the most common challenges associated with data integrity and factors such as policy, environment, health workforce, and lack of awareness attribute to these challenges but if measures are taken the data integrity challenges can be managed.Keywords: data integrity, data integrity challenges, hospital information systems, South Africa
Procedia PDF Downloads 19015101 Modelling of Moisture Loss and Oil Uptake during Deep-Fat Frying of Plantain
Authors: James A. Adeyanju, John O. Olajide, Akinbode A. Adedeji
Abstract:
A predictive mathematical model based on the fundamental principles of mass transfer was developed to simulate the moisture content and oil content during Deep-Fat Frying (DFF) process of dodo. The resulting governing equation, that is, partial differential equation that describes rate of moisture loss and oil uptake was solved numerically using explicit Finite Difference Technique (FDT). Computer codes were written in MATLAB environment for the implementation of FDT at different frying conditions and moisture loss as well as oil uptake simulation during DFF of dodo. Plantain samples were sliced into 5 mm thickness and fried at different frying oil temperatures (150, 160 and 170 ⁰C) for periods varying from 2 to 4 min. The comparison between the predicted results and experimental data for the validation of the model showed reasonable agreement. The correlation coefficients between the predicted and experimental values of moisture and oil transfer models ranging from 0.912 to 0.947 and 0.895 to 0.957, respectively. The predicted results could be further used for the design, control and optimization of deep-fat frying process.Keywords: frying, moisture loss, modelling, oil uptake
Procedia PDF Downloads 45215100 Dynamic Reliability for a Complex System and Process: Application on Offshore Platform in Mozambique
Authors: Raed KOUTA, José-Alcebiades-Ernesto HLUNGUANE, Eric Châtele
Abstract:
The search for and exploitation of new fossil energy resources is taking place in the context of the gradual depletion of existing deposits. Despite the adoption of international targets to combat global warming, the demand for fuels continues to grow, contradicting the movement towards an energy-efficient society. The increase in the share of offshore in global hydrocarbon production tends to compensate for the depletion of terrestrial reserves, thus constituting a major challenge for the players in the sector. Through the economic potential it represents, and the energy independence it provides, offshore exploitation is also a challenge for States such as Mozambique, which have large maritime areas and whose environmental wealth must be considered. The exploitation of new reserves on economically viable terms depends on available technologies. The development of deep and ultra-deep offshore requires significant research and development efforts. Progress has also been made in managing the multiple risks inherent in this activity. Our study proposes a reliability approach to develop products and processes designed to live at sea. Indeed, the context of an offshore platform requires highly reliable solutions to overcome the difficulties of access to the system for regular maintenance and quick repairs and which must resist deterioration and degradation processes. One of the characteristics of failures that we consider is the actual conditions of use that are considered 'extreme.' These conditions depend on time and the interactions between the different causes. These are the two factors that give the degradation process its dynamic character, hence the need to develop dynamic reliability models. Our work highlights mathematical models that can explicitly manage interactions between components and process variables. These models are accompanied by numerical resolution methods that help to structure a dynamic reliability approach in a physical and probabilistic context. The application developed makes it possible to evaluate the reliability, availability, and maintainability of a floating storage and unloading platform for liquefied natural gas production.Keywords: dynamic reliability, offshore plateform, stochastic process, uncertainties
Procedia PDF Downloads 12415099 Synthesis and Characterization of Cellulose-Based Halloysite-Carbon Adsorbent
Authors: Laura Frydel, Piotr M. Slomkiewicz, Beata Szczepanik
Abstract:
Triclosan has been used as a disinfectant in many medical products, such as: hand disinfectant soaps, creams, mouthwashes, pastes and household cleaners. Due to its strong antimicrobial activity, triclosan is becoming more and more popular and the consumption of disinfectants with triclosan in it is increasing. As a result, this compound increasingly finds its way into waters and soils in an unchanged form, pollutes the environment and may have a negative effect on organisms. The aim of this study was to investigate the synthesis of cellulose-based halloysite-carbon adsorbent and perform its characterization. The template in the halloysite-carbon adsorbent was halloysite nanotubes and the carbon precursor was microcrystalline cellulose. Scanning electron microscope (SEM) images were obtained and the elementary composition (qualitative and quantitative) of the sample was determined by energy dispersion spectroscopy (EDS). The identification of the crystallographic composition of the halloysite nanotubes and the sample of the halloysite-carbon composite was carried out using the X-ray powder diffraction (XRPD) method. The FTIR spectra were acquired before and after the adsorption process in order to determine the functional groups on the adsorbent surface and confirm the interactions between adsorbent and adsorbate molecules. The parameters of the porous structure of the adsorbent, such as the specific surface area (Brunauer-Emmett-Teller method), the total pore volume and the volume of mesopores and micropores were determined. Total carbon and total organic carbon were also determined in the samples. A cellulose-based halloysite-carbon adsorbent was used to remove triclosan from water. The degree of removal of triclosan from water was approximately 90%. The results indicate that the halloysite-carbon composite can be successfully used as an effective adsorbent for removing triclosan from water.Keywords: Adsorption, cellulose, halloysite, triclosan
Procedia PDF Downloads 13215098 Label Free Detection of Small Molecules Using Surface-Enhanced Raman Spectroscopy with Gold Nanoparticles Synthesized with Various Capping Agents
Authors: Zahra Khan
Abstract:
Surface-Enhanced Raman Spectroscopy (SERS) has received increased attention in recent years, focusing on biological and medical applications due to its great sensitivity as well as molecular specificity. In the context of biological samples, there are generally two methodologies for SERS based applications: label-free detection and the use of SERS tags. The necessity of tagging can make the process slower and limits the use for real life. Label-free detection offers the advantage that it reports direct spectroscopic evidence associated with the target molecule rather than the label. Reproducible, highly monodisperse gold nanoparticles (Au NPs) were synthesized using a relatively facile seed-mediated growth method. Different capping agents (TRIS, citrate, and CTAB) were used during synthesis, and characterization was performed. They were then mixed with different analyte solutions before drop-casting onto a glass slide prior to Raman measurements to see which NPs displayed the highest SERS activity as well as their stability. A host of different analytes were tested, both non-biomolecules and biomolecules, which were all successfully detected using this method at concentrations as low as 10-3M with salicylic acid reaching a detection limit in the nanomolar range. SERS was also performed on samples with a mixture of analytes present, whereby peaks from both target molecules were distinctly observed. This is a fast and effective rapid way of testing samples and offers potential applications in the biomedical field as a tool for diagnostic and treatment purposes.Keywords: gold nanoparticles, label free, seed-mediated growth, SERS
Procedia PDF Downloads 13015097 Mesalazine-Induced Myopericarditis in a Professional Athlete
Authors: Tristan R. Fraser, Christopher D. Steadman, Christopher J. Boos
Abstract:
Myopericarditis is an inflammation syndrome characterised by clinical diagnostic criteria for pericarditis, such as chest pain, combined with evidence of myocardial involvement, such as elevation of biomarkers of myocardial damage, e.g., troponins. It can rarely be a complication of therapeutics used for dysregulated immune-mediated diseases such as inflammatory bowel disease (IBD), for example, mesalazine. The infrequency of mesalazine-induced myopericarditis adds to the challenge in its recognition. Rapid diagnosis and the early introduction of treatment are crucial. This case report follows a 24-year-old professional footballer with a past medical history of ulcerative colitis, recently started on mesalazine for disease control. Three weeks after mesalazine was initiated, he was admitted with fever, shortness of breath, and chest pain worse whilst supine and on deep inspiration, as well as elevated venous blood cardiac troponin T level (cTnT, 288ng/L; normal: <13ng/L). Myocarditis was confirmed on initial inpatient cardiac MRI, revealing the presence of florid myocarditis with preserved left ventricular systolic function and an ejection fraction of 67%. This was a longitudinal case study following the progress of a single individual with myopericarditis over four acute hospital admissions over nine weeks, with admissions ranging from two to five days. Parameters examined included clinical signs and symptoms, serum troponin, transthoracic echocardiogram, and cardiac MRI. Serial measurements of cardiac function, including cardiac MRI and transthoracic echocardiogram, showed progressive deterioration of cardiac function whilst mesalazine was continued. Prior to cessation of mesalazine, transthoracic echocardiography revealed a small global pericardial effusion of < 1cm and worsening left ventricular systolic function with an ejection fraction of 45%. After recognition of mesalazine as a potential cause and consequent cessation of the drug, symptoms resolved, with cardiac MRI performed as an outpatient showing resolution of myocardial oedema. The patient plans to make a return to competitive sport. Patients suffering from myopericarditis are advised to refrain from competitive sport for at least six months in order to reduce the risk of cardiac remodelling and sudden cardiac death. Additional considerations must be taken in individuals for whom competitive sport is an essential component of their livelihood, such as professional athletes. Myopericarditis is an uncommon, however potentially serious medical condition with a wide variety of aetiologies, including viral, autoimmune, and drug-related causes. Management is mainly supportive and relies on prompt recognition and removal of the aetiological process. Mesalazine-induced myopericarditis is a rare condition; as such increasing awareness of mesalazine as a precipitant of myopericarditis is vital for optimising the management of these patients.Keywords: myopericarditis, mesalazine, inflammatory bowel disease, professional athlete
Procedia PDF Downloads 14215096 The Effectiveness of Kinesiotaping Methods in Rehabilitation Therapy
Authors: Ana-Katarina Nikich
Abstract:
Background: The kinesiotaping method is often used in physiotherapy and rehabilitation. The purpose of this study was to evaluate the effectiveness of taping in the rehabilitation process of patients. Materials and methods: The study involved 90 male and female patients (the average age was 40-50 years) with various conditions requiring rehabilitation, such as injuries of the musculoskeletal system, sports injuries and other ailments. All patients were divided into two groups: experimental (n=40) and control (n=50). Both groups received 20 days of standard rehabilitation. In the experimental group, kinesiotaping methods were used, taking into account the individual characteristics of each patient. The control group performed regular exercises and physical therapy, but without using kinesiotape. During the study, physical parameters were monitored, interviews were conducted and the conditions of patients from both groups were compared. Results and discussion: The use of the kinesiotaping method in the rehabilitation process led to a significant improvement in physical parameters and pain reduction in patients. Significant improvement (p <0.005) was observed in all evaluated parameters among the patients of the experimental group. The control group also showed sufficient improvement (p <0.005), but the percentage of the experimental group was higher. As a result of the observation, the patients of the experimental group showed faster and more complete rehabilitation compared to the control group. The use of the kinesiotaping method allows to reduce the load on the damaged areas, improve blood circulation and lymphatic drainage, as well as increase stability and coordination of movements. Conclusions: Kinesiotaping as one of the modern therapeutic methods has shown its effectiveness in the rehabilitation process, contributing to the optimal recovery of patients with various conditions requiring rehabilitation. The use of tapes should be included in a comprehensive rehabilitation program to achieve the best results and reduce recovery time.Keywords: kinesiotaping, rehabilitation, therapy, pain
Procedia PDF Downloads 7815095 The Antibacterial Efficacy of Gold Nanoparticles Derived from Gomphrena celosioides and Prunus amygdalus (Almond) Leaves on Selected Bacterial Pathogens
Authors: M. E. Abalaka, S. Y. Daniyan, S. O. Adeyemo, D. Damisa
Abstract:
Gold nanoparticles (AuNPs) have gained increasing interest in recent times. This is greatly due to their special features, which include unusual optical and electronic properties, high stability and biological compatibility, controllable morphology and size dispersion, and easy surface functionalization. In typical synthesis, AuNPs were produced by reduction of gold salt AuCl4 in an appropriate solvent. A stabilizing agent was added to prevent the particles from aggregating. The antibacterial activity of different sizes of gold nanoparticles was investigated against Staphylococcus aureus, Salmonella typhi and Pseudomonas pneumonia using the disk diffusion method in a Müeller–Hinton Agar. The Au-NPs were effective against all bacteria tested. That the Au-NPs were successfully synthesized in suspension and were used to study the antibacterial activity of the two medicinal plants against some bacterial pathogens suggests that Au-NPs can be employed as an effective bacteria inhibitor and may be an effective tool in medical field. The study clearly showed that the Au-NPs exhibiting inhibition towards the tested pathogenic bacteria in vitro could have the same effects in vivo and thus may be useful in the medical field if well researched into.Keywords: gold nanoparticles, Gomphrena celesioides, Prunus amygdalus, pathogens
Procedia PDF Downloads 31715094 Research on Strategies of Building a Child Friendly City in Wuhan
Authors: Tianyue Wan
Abstract:
Building a child-friendly city (CFC) contributes to improving the quality of urbanization. It also forms a local system committed to fulfilling children's rights and development. Yet, the work related to CFC is still at the initial stage in China. Therefore, taking Wuhan, the most populous city in central China, as the pilot city would offer some reference for other cities. Based on the analysis of theories and practice examples, this study puts forward the challenges of building a child-friendly city under the particularity of China's national conditions. To handle these challenges, this study uses four methods to collect status data: literature research, site observation, research inquiry, and semantic differential (SD). And it adopts three data analysis methods: case analysis, geographic information system (GIS) analysis, and analytic hierarchy process (AHP) method. Through data analysis, this study identifies the evaluation system and appraises the current situation of Wuhan. According to the status of Wuhan's child-friendly city, this study proposes three strategies: 1) construct the evaluation system; 2) establish a child-friendly space system integrating 'point-line-surface'; 3) build a digitalized service platform. At the same time, this study suggests building a long-term mechanism for children's participation and multi-subject supervision from laws, medical treatment, education, safety protection, social welfare, and other aspects. Finally, some conclusions of strategies about CFC are tried to be drawn to promote the highest quality of life for all citizens in Wuhan.Keywords: action plan, child friendly city, construction strategy, urban space
Procedia PDF Downloads 9615093 Mediation as an Effective Tool for Resolving Sports Disputes
Authors: Mohd Akram Shair Mohamad
Abstract:
The relation to the infinite variety issues sprouting in sports or lex sportiva, like lex mercatoria in the early centuries, has now come of age and even begun a maturing process in the past thirty-five years or so. Lex sportiva now straddles sports management, sports medicine, tort, criminal law, employment contract, competition law and a host of multifarious activities related to sports. This has catapulted a host of legal issue and problems, demanding urgent legal solutions to actual or potential disputes. This paper discusses the nature and development of lex sportiva, and how it is able to resolve sports disputes. Resolving sports dispute via the tiresome, dilatory and expensive process of litigation is most unsuitable. Arbitration may not be equally a satisfactory solution. The paper strongly advocates the far the most effective and resolution friendly mode of settling sports disputes namely, mediation. In support it highlights numerous advantages mediation has to offer and with reference to many significant sports disputes which had been successfully resolved via mediation.Keywords: alternative dispute resolution, mediation, arbitration, litigation
Procedia PDF Downloads 44015092 Designing Space through Narratives: The Role of the Tour Description in the Architectural Design Process
Authors: A. Papadopoulou
Abstract:
When people are asked to provide an oral description of a space they usually provide a Tour description, which is a dynamic type of spatial narrative centered on the narrator’s body, rather than a Map description, which is a static type of spatial narrative focused on the organization of the space as seen from above. Also, subjects with training in the architecture discipline tend to adopt a Tour perspective of space when the narrative refers to a space they have actually experienced but tend to adopt a Map perspective when the narrative refers to a space they have merely imagined. This pilot study aims to investigate whether the Tour description, which is the most common mode in the oral descriptions of experienced space, is a cognitive perspective taken in the process of designing a space. The study investigates whether a spatial description provided by a subject with architecture training in the type of a Tour description would be accurately translated into a spatial layout by other subjects with architecture training. The subjects were given the Tour description in written form and were asked to make a plan drawing of the described space. The results demonstrate that when we conceive and design space we do not adopt the same rules and cognitive patterns that we adopt when we reconstruct space from our memory. As shown by the results of this pilot study, the rules that underlie the Tour description were not detected in the translation from narratives to drawings. In a different phase, the study also investigates how would subjects with architecture training describe space when forced to take a Tour perspective in their oral description of a space. The results of this second phase demonstrate that if intentionally taken, the Tour perspective leads to descriptions of space that are more detailed and focused on experiential aspects.Keywords: architecture, design process, embodied cognition, map description, oral narratives, tour description
Procedia PDF Downloads 16315091 In-Silico Fusion of Bacillus Licheniformis Chitin Deacetylase with Chitin Binding Domains from Chitinases
Authors: Keyur Raval, Steffen Krohn, Bruno Moerschbacher
Abstract:
Chitin, the biopolymer of the N-acetylglucosamine, is the most abundant biopolymer on the planet after cellulose. Industrially, chitin is isolated and purified from the shell residues of shrimps. A deacetylated derivative of chitin i.e. chitosan has more market value and applications owing to it solubility and overall cationic charge compared to the parent polymer. This deacetylation on an industrial scale is performed chemically using alkalis like sodium hydroxide. This reaction not only is hazardous to the environment owing to negative impact on the marine ecosystem. A greener option to this process is the enzymatic process. In nature, the naïve chitin is converted to chitosan by chitin deacetylase (CDA). This enzymatic conversion on the industrial scale is however hampered by the crystallinity of chitin. Thus, this enzymatic action requires the substrate i.e. chitin to be soluble which is technically difficult and an energy consuming process. We in this project wanted to address this shortcoming of CDA. In lieu of this, we have modeled a fusion protein with CDA and an auxiliary protein. The main interest being to increase the accessibility of the enzyme towards crystalline chitin. A similar fusion work with chitinases had improved the catalytic ability towards insoluble chitin. In the first step, suitable partners were searched through the protein data bank (PDB) wherein the domain architecture were sought. The next step was to create the models of the fused product using various in silico techniques. The models were created by MODELLER and evaluated for properties such as the energy or the impairment of the binding sites. A fusion PCR has been designed based on the linker sequences generated by MODELLER and would be tested for its activity towards insoluble chitin.Keywords: chitin deacetylase, modeling, chitin binding domain, chitinases
Procedia PDF Downloads 24515090 Influence of Iron Content in Carbon Nanotubes on the Intensity of Hyperthermia in the Cancer Treatment
Authors: S. Wiak, L. Szymanski, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska
Abstract:
The term ‘cancer’ is given to a collection of related diseases that may affect any part of the human body. It is a pathological behaviour of cells with the potential to undergo abnormal breakdown in the processes that control cell proliferation, differentiation, and death of particular cells. Although cancer is commonly considered as modern disease, there are beliefs that drastically growing number of new cases can be linked to the extensively prolonged life expectancy and enhanced techniques for cancer diagnosis. Magnetic hyperthermia therapy is a novel approach to cancer treatment, which may greatly contribute to higher efficiency of the therapy. Employing carbon nanotubes as nanocarriers for magnetic particles, it is possible to decrease toxicity and invasiveness of the treatment by surface functionalisation. Despite appearing in recent years, magnetic particle hyperthermia has already become of the highest interest in the scientific and medical environment. The reason why hyperthermia therapy brings so much hope for future treatment of cancer lays in the effect that it produces in malignant cells. Subjecting them to thermal shock results in activation of numerous degradation processes inside and outside the cell. The heating process initiates mechanisms of DNA destruction, protein denaturation and induction of cell apoptosis, which may lead to tumour shrinkage, and in some cases, it may even cause complete disappearance of cancer. The factors which have the major impact on the final efficiency of the treatment include temperatures generated inside the tissues, time of exposure to the heating process, and the character of an individual cancer cell type. The vast majority of cancer cells is characterised by lower pH, persistent hypoxia and lack of nutrients, which can be associated to abnormal microvasculature. Since in healthy tissues we cannot observe presence of these conditions, they should not be seriously affected by elevation of the temperature. The aim of this work is to investigate the influence of iron content in iron filled Carbon Nanotubes on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon- ferromagnetic nanocontainers (FNCs) includes the synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013.Keywords: hyperthermia, carbon nanotubes, cancer colon cells, radio frequency field
Procedia PDF Downloads 12715089 Porosities Comparison between Production and Simulation in Motorcycle Fuel Caps of Aluminum High Pressure Die Casting
Authors: P. Meethum, C. Suvanjumrat
Abstract:
Many aluminum motorcycle parts produced by a high pressure die casting. Some parts such as fuel caps were a thin and complex shape. This part risked for porosities and blisters on surface if it only depended on an experience of mold makers for mold design. This research attempted to use CAST-DESIGNER software simulated the high pressure die casting process with the same process parameters of a motorcycle fuel cap production. The simulated results were compared with fuel cap products and expressed the same porosity and blister locations on cap surface. An average of absolute difference of simulated results was obtained 0.094 mm when compared the simulated porosity and blister defect sizes on the fuel cap surfaces with the experimental micro photography. This comparison confirmed an accuracy of software and will use the setting parameters to improve fuel cap molds in the further work.Keywords: aluminum, die casting, fuel cap, motorcycle
Procedia PDF Downloads 37015088 Meditation, Mental States, Quantum Mechanics and Enlightenment
Authors: Ven. Bhikkhu Ananda
Abstract:
Mind emerged from the quantum field. The practice of mediation can take one to the state of enlightenment. During meditation, the change in the very behaviour of electrons, protons, and photons and their fields, known to be quantum fields, create mental states. This could well be expressed in the mathematical language of quantum mechanics. This paper qualifies and quantifies mental states created during meditation and is explained by quantum mechanics. In meditation, phenomenology can be seen as the process of enlightenment. In this process, the emptiness shown in Buddhist philosophy and the emptiness of quantum fields is compared. The methodologies used here are mindfulness meditation and metta mediation (compassion meditation ). The research findings suggest not only quantumness and change are consciousness, but well-founded behaviour of an individual in the society, which can amplify the positive behaviour caused by mental states, and that emptiness and impermanence of phenomenon are based on dependent arisings. The presence of quantum coherence indicates that quantum mechanics has a role in the evolution of the pure mind and the phenomenology created thereof in mediation.Keywords: meditation, mental states, quantum mechanics, enlightenment
Procedia PDF Downloads 7315087 Integrated Design in Additive Manufacturing Based on Design for Manufacturing
Authors: E. Asadollahi-Yazdi, J. Gardan, P. Lafon
Abstract:
Nowadays, manufactures are encountered with production of different version of products due to quality, cost and time constraints. On the other hand, Additive Manufacturing (AM) as a production method based on CAD model disrupts the design and manufacturing cycle with new parameters. To consider these issues, the researchers utilized Design For Manufacturing (DFM) approach for AM but until now there is no integrated approach for design and manufacturing of product through the AM. So, this paper aims to provide a general methodology for managing the different production issues, as well as, support the interoperability with AM process and different Product Life Cycle Management tools. The problem is that the models of System Engineering which is used for managing complex systems cannot support the product evolution and its impact on the product life cycle. Therefore, it seems necessary to provide a general methodology for managing the product’s diversities which is created by using AM. This methodology must consider manufacture and assembly during product design as early as possible in the design stage. The latest approach of DFM, as a methodology to analyze the system comprehensively, integrates manufacturing constraints in the numerical model in upstream. So, DFM for AM is used to import the characteristics of AM into the design and manufacturing process of a hybrid product to manage the criteria coming from AM. Also, the research presents an integrated design method in order to take into account the knowledge of layers manufacturing technologies. For this purpose, the interface model based on the skin and skeleton concepts is provided, the usage and manufacturing skins are used to show the functional surface of the product. Also, the material flow and link between the skins are demonstrated by usage and manufacturing skeletons. Therefore, this integrated approach is a helpful methodology for designer and manufacturer in different decisions like material and process selection as well as, evaluation of product manufacturability.Keywords: additive manufacturing, 3D printing, design for manufacturing, integrated design, interoperability
Procedia PDF Downloads 31915086 Managing the Water Projects and Controlling Its Boundary Disturbances Which Affect the Water Supply
Authors: Sead A. Bakheet, Salah M. Elkoum, Asharaf A. Almaghribi
Abstract:
Disturbance defined as activity that malfunction, intrusion, or interruption. We have to look around for the source of the disturbance affecting the inputs and outputs of engineering projects, take the necessary actions to control them. In this paper we will present and discuss a production system consisting of three elements, inputs, the production process and outputs. The production process which we chose is the production of large diameter pre-stressed concrete cylinder pipes (out puts), in reality, the outputs are the starting points of the operation (laying the concrete pipes for transporting drinkable water). The main objective also to address the controlling methods of the natural resources and raw materials (basic inputs), study the disturbances affecting them as well as the output quality. The importance of making the right decision, which effect the final product quality will be summarized. Finally, we will address the proposals regarding the managing of secure water supply to the customers.Keywords: disturbances, management, inputs, outputs, decision
Procedia PDF Downloads 6815085 A Profile of Out-of-Hospital Cardiac Arrest in ‘Amang’ Rodriguez Memorial Medical Center: A Prospective Cohort Study
Authors: Donna Erika E. De Jesus
Abstract:
Introduction: Cardiac arrest occurs when abrupt cessation of cardiac function results in loss of effective circulation and complete cardiovascular collapse. For every minute of cardiac arrest without early intervention (cardiopulmonary resuscitation [CPR], defibrillation), chances of survival drop by 7-10%. It is crucial that CPR be initiated within 4-6 minutes to avoid brain death. Most out-of-hospital cardiac arrests (OHCA) occur in a residential setting where access to trained personnel and equipment is not readily available, resulting in poor victim outcomes. Methods: This is a descriptive study done from August to November 2021 using a prospective cohort design. Participants of the study include adult patients aged 18 years and above brought to the emergency room who suffered from out-of-hospital cardiac arrest. Out of the total 102 cases of OHCA, 63 participants were included in the study. Descriptive statistics were used to summarize the demographic and clinical characteristics of the patients. Results: 43 were male patients, comprising the majority at 73.02%. Hypertension was identified as the top co-morbidity, followed by diabetes mellitus, heart failure, and chronic kidney disease (CKD). Medical causes of arrest were identified in 96.83% of the cases. 90.48% of cardiac arrests occurred at home. Only 26 patients (41.27%) received pre-hospital intervention prior to ER arrival, which comprised only hands-only CPR. Twenty-three of which were performed by individuals with background knowledge of CPR. 60.32% were brought via self-conduction, the remainder by ambulances, which were noted to have no available equipment necessary to provide proper resuscitation. The average travel time from dispatch to ER arrival is 20 minutes. Conclusion: Overall survival of OHCA in our local setting remains dismal, as a return of spontaneous circulation was not achieved in any of the patients. The small number of patients having pre-hospital CPR indicates the need for emphasis on training and community education.Keywords: out-of-hospital cardiac arrest, cardiopulmonary resuscitation, basic life support, emergency medical services
Procedia PDF Downloads 11015084 Volatile Organic Compounds from Decomposition of Local Food Waste and Potential Health Risk
Authors: Siti Rohana Mohd Yatim, Ku Halim Ku Hamid, Kamariah Noor Ismail, Zulkifli Abdul Rashid
Abstract:
The aim of this study is to investigate odour emission profiles from storage of food waste and to assess the potential health risk caused by exposure to volatile compounds. Food waste decomposition process was conducted for 14 days and kept at 20°C and 30°C in self-made bioreactor. VOCs emissions from both samples were collected at different stages of decomposition starting at day 0, day 1, day 3, day 5, day 7, day 10, day 12 and day 14. It was analyzed using TD-GC/MS. Findings showed that various VOCs were released during decomposition of food waste. Compounds produced were influenced by time, temperature and the physico-chemical characteristics of the compounds. The most abundant compound released was dimethyl disulfide. Potential health risk of exposure to this compound is represented by hazard ratio, HR, calculated at 1.6 x 1011. Since HR equal to or less than 1.0 is considered negligible risk, this indicates that the compound posed a potential risk to human health.Keywords: volatile organic compounds, decomposition process, food waste, health risk
Procedia PDF Downloads 52515083 A Comparative Study of the Effects of Vibratory Stress Relief and Thermal Aging on the Residual Stress of Explosives Materials
Authors: Xuemei Yang, Xin Sun, Cheng Fu, Qiong Lan, Chao Han
Abstract:
Residual stresses, which can be produced during the manufacturing process of plastic bonded explosive (PBX), play an important role in weapon system security and reliability. Residual stresses can and do change in service. This paper mainly studies the influence of vibratory stress relief (VSR) and thermal aging on residual stress of explosives. Firstly, the residual stress relaxation of PBX via different physical condition of VSR, such as vibration time, amplitude and dynamic strain, were studied by drill-hole technique. The result indicated that the vibratory amplitude, time and dynamic strain had a significant influence on the residual stress relief of PBX. The rate of residual stress relief of PBX increases first and then decreases with the increase of dynamic strain, amplitude and time, because the activation energy is too small to make the PBX yield plastic deformation at first. Then the dynamic strain, time and amplitude exceed a certain threshold, the residual stress changes show the same rule and decrease sharply, this sharply drop of residual stress relief rate may have been caused by over vibration. Meanwhile, the comparison between VSR and thermal aging was also studied. The conclusion is that the reduction ratio of residual stress after VSR process with applicable vibratory parameters could be equivalent to 73% of thermal aging with 7 days. In addition, the density attenuation rate, mechanical property, and dimensional stability with 3 months after VSR process was almost the same compared with thermal aging. However, compared with traditional thermal aging, VSR only takes a very short time, which greatly improves the efficiency of aging treatment for explosive materials. Therefore, the VSR could be a potential alternative technique in the industry of residual stress relaxation of PBX explosives.Keywords: explosives, residual stresses, thermal aging, vibratory stress relief, VSR
Procedia PDF Downloads 16415082 Wind Power Forecast Error Simulation Model
Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus
Abstract:
One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation
Procedia PDF Downloads 48815081 An End-to-end Piping and Instrumentation Diagram Information Recognition System
Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha
Abstract:
Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.Keywords: object recognition system, P&ID, symbol recognition, text recognition
Procedia PDF Downloads 15815080 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects
Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh
Abstract:
The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.Keywords: deep learning, opinion mining, natural language processing, sentiment analysis
Procedia PDF Downloads 176