Search results for: service learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10457

Search results for: service learning

7037 UAV Based Visual Object Tracking

Authors: Vaibhav Dalmia, Manoj Phirke, Renith G

Abstract:

With the wide adoption of UAVs (unmanned aerial vehicles) in various industries by the government as well as private corporations for solving computer vision tasks it’s necessary that their potential is analyzed completely. Recent advances in Deep Learning have also left us with a plethora of algorithms to solve different computer vision tasks. This study provides a comprehensive survey on solving the Visual Object Tracking problem and explains the tradeoffs involved in building a real-time yet reasonably accurate object tracking system for UAVs by looking at existing methods and evaluating them on the aerial datasets. Finally, the best trackers suitable for UAV-based applications are provided.

Keywords: deep learning, drones, single object tracking, visual object tracking, UAVs

Procedia PDF Downloads 159
7036 Study on the Pavement Structural Performance of Highways in the North China Region Based on Pavement Distress and Ground Penetrating Radar

Authors: Mingwei Yi, Liujie Guo, Zongjun Pan, Xiang Lin, Xiaoming Yi

Abstract:

With the rapid expansion of road construction mileage in China, the scale of road maintenance needs has concurrently escalated. As the service life of roads extends, the design of pavement repair and maintenance emerges as a crucial component in preserving the excellent performance of the pavement. The remaining service life of asphalt pavement structure is a vital parameter in the lifecycle maintenance design of asphalt pavements. Based on an analysis of pavement structural integrity, this study introduces a characterization and assessment of the remaining life of existing asphalt pavement structures. It proposes indicators such as the transverse crack spacing and the length of longitudinal cracks. The transverse crack spacing decreases with an increase in maintenance intervals and with the extended use of semi-rigid base layer structures, although this trend becomes less pronounced after maintenance intervals exceed 4 years. The length of longitudinal cracks increases with longer maintenance intervals, but this trend weakens after five years. This system can support the enhancement of standardization and scientific design in highway maintenance decision-making processes.

Keywords: structural integrity, highways, pavement evaluation, asphalt concrete pavement

Procedia PDF Downloads 70
7035 Investigating Safe Operation Condition for Iterative Learning Control under Load Disturbances Effect in Singular Values

Authors: Muhammad A. Alsubaie

Abstract:

An iterative learning control framework designed in state feedback structure suffers a lack in investigating load disturbance considerations. The presented work discusses the controller previously designed, highlights the disturbance problem, finds new conditions using singular value principle to assure safe operation conditions with error convergence and reference tracking under the influence of load disturbance. It is known that periodic disturbances can be represented by a delay model in a positive feedback loop acting on the system input. This model can be manipulated by isolating the delay model and finding a controller for the overall system around the delay model to remedy the periodic disturbances using the small signal theorem. The overall system is the base for control design and load disturbance investigation. The major finding of this work is the load disturbance condition found which clearly sets safe operation condition under the influence of load disturbances such that the error tends to nearly zero as the system keeps operating trial after trial.

Keywords: iterative learning control, singular values, state feedback, load disturbance

Procedia PDF Downloads 158
7034 Proposition of an Intelligent System Based on the Augmented Reality for Warehouse Logistics

Authors: Safa Gharbi, Hayfa Zgaya, Nesrine Zoghlami, Slim Hammadi, Cyril De Barbarin, Laurent Vinatier, Christiane Coupier

Abstract:

Increasing productivity and quality of service, improving the working comfort and ensuring the efficiency of all processes are important challenges for every warehouse. The order picking is recognized to be the most important and costly activity of all the process in warehouses. This paper presents a new approach using Augmented Reality (AR) in the field of logistics. It aims to create a Head-Up Display (HUD) interface with a Warehouse Management System (WMS), using AR glasses. Integrating AR technology allows the optimization of order picking by reducing time of picking process, increasing the efficiency and delivering quickly. The picker will be able to access immediately to all the information needed for his tasks. All the information is displayed when needed in the field of vision (FOV) of the operator, without any action requested from him. These research works are part of the industrial project RASL (Réalité Augmentée au Service de la Logistique) which gathers two major partners: the LAGIS (Laboratory of Automatics, Computer Engineering and Signal Processing in Lille-France) and Genrix Group, European leader in warehouses logistics, who provided his software for implementation, and his logistics expertise.

Keywords: Augmented Reality (AR), logistics and optimization, Warehouse Management System (WMS), Head-Up Display (HUD)

Procedia PDF Downloads 483
7033 Enhancing Students’ Performance in Basic Science and Technology in Nigeria Using Moodle LMS

Authors: Olugbade Damola, Adekomi Adebimbo, Sofowora Olaniyi Alaba

Abstract:

One of the major problems facing education in Nigeria is the provision of quality Science and Technology education. Inadequate teaching facilities, non-usage of innovative teaching strategies, ineffective classroom management, lack of students’ motivation and poor integration of ICT has resulted in the increase in percentage of students who failed Basic Science and Technology in Junior Secondary Certification Examination for National Examination Council in Nigeria. To address these challenges, the Federal Government came up with a road map on education. This was with a view of enhancing quality education through integration of modern technology into teaching and learning, enhancing quality assurance through proper monitoring and introduction of innovative methods of teaching. This led the researcher to investigate how MOODLE LMS could be used to enhance students’ learning outcomes in BST. A sample of 120 students was purposively selected from four secondary schools in Ogbomoso. The experimental group was taught using MOODLE LMS, while the control group was taught using the conventional method. Data obtained were analyzed using mean, standard deviation and t-test. The result showed that MOODLE LMS was an effective learning platform in teaching BST in junior secondary schools (t=4.953, P<0.05). Students’ attitudes towards BST was also enhanced through MOODLE LMS (t=15.632, P<0.05). The use of MOODLE LMS significantly enhanced students’ retention (t=6.640, P<0.05). In conclusion, the Federal Government efforts at enhancing quality assurance through integration of modern technology and e-learning in Secondary schools proved to have yielded good result has students found MOODLE LMS to be motivating and interactive. Attendance was improved.

Keywords: basic science and technology, MOODLE LMS, performance, quality assurance

Procedia PDF Downloads 303
7032 Issues in the Learning and Construction of a National Music Identity in Multiracial Malaysia: Diversity, Complexity, and Contingency

Authors: Loo Fung Ying, Loo Fung Chiat

Abstract:

The formation of a musical identity that shapes the nation in this multiracial country reveals many complexities, conundrums, and contingencies. Creativity and identity formation at the level of an individual or a collective group further diversified musical expression, representation, and style, which has led to an absence of regularities. In addition, ‘contemporizing accretion,’ borrowing a term used by Schnelle in theology (2009), further complicates musical identity, authenticity, conception, and realization. Thus, in this paper, we attempt to define the issues surrounding the teaching and learning of the multiracial Malaysian national music identity. We also discuss unnecessary power hierarchies, interracial conflicts, and sentiments in the construct of a multiracial national music identity by referring to genetic origins, the evolution of music, and the neglected issues of representation and reception at a global level from a diachronic perspective. Lastly, by synthesizing Ladson-Billings, Gay, Kruger, and West-Burns’s culturally relevant/responsive pedagogical theories, we discuss possible analytic tools for consideration that are more multiculturally relevant and responsive for the teaching, learning, and construction of a multiracial Malaysian national music identity.

Keywords: Malaysia, music, multiracial, national music identity, culturally relevant/responsive pedagogy

Procedia PDF Downloads 201
7031 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 125
7030 Metamorphosis of Teaching-Learning During COVID-19 Crisis and Challenges of Education in India

Authors: Saroj Pandey

Abstract:

COVID-19, declared by the World Health Organization a pandemic (WHO,2020), has created an unprecedented crisis world over endangering the human survival itself. Corona induced lockdowns forced approximately 140 million students of 190 countries at various levels of education from preprimary to higher education to remain confined to their homes. In India, approximately 360 million students were affected by the forced shut down of schools due to the countrywide lockdown in March 2020 and resultant disruption of education. After the initial shock and anxiety the Indian polity and education system bounced back with a number of initiatives, and online education came as a major rescuer for the education system of the country. The distance and online mode of learning that was treated as the poor cousin of conventional mode and often criticized for its quality became the major crusader overnight changing the entire ecosystem of traditional teaching -leaning towards the virtual mode. Teachers who were averse to technology were forced to remodel their educational pedagogies and reorient themselves overnight to use various online platforms such as Zoom, Google meet, and other such platforms to reach the learners. This metamorphosis through ensured students was meaningfully engaged in their studies during the lockdown period but it has its own set of challenges. This paper deals with the government initiatives, and teachers' self-efforts to keep the channel of teaching learning on providing academic and socio emotional support to students during the most difficult period of their life as well as the digital divide between the rich and poor, rural and urban, and boys and girls in India and resultant challenges. It also provides an overview of few significant self-initiatives of teachers to reach their students during the crisis period, who did not have internet and smartphone facilities as well as the initiatives being taken at the government level to address the learning needs and mitigate the learning gaps of learners, bridge the digital divide, strategic planning and upskilling of teachers to overcome the effect of COVID-19 crisis.

Keywords: COVID-19, online education, initiatives, challenges

Procedia PDF Downloads 114
7029 Transmission of Food Wisdom for Salaya Community

Authors: Supranee Wattanasin

Abstract:

The objectives of this research are to find and collect the knowledge in order to transmit the food wisdom of Salaya community. The research is qualitative tool to gather the data. Phase 1: Collect and analyze related literature review on food wisdom including documents about Salaya community to have a clear picture on Salaya community context. Phase 2: Conduct an action research, stage a people forum to exchange knowledge in food wisdom of Salaya community. Learning stage on cooking, types, and benefits of the food wisdom of Salaya community were also set up, as well as a people forum to find ways to transmit and add value to the food wisdom of Salaya community. The result shows that Salaya old market community was once a marketplace located by Mahasawat canal. The old market had become sluggish due to growing development of land transportation. This had affected the ways of food consumption. Residents in the community chose 3 menus that represent the community’s unique food: chicken green curry, desserts in syrup and Khanom Sai-Sai (steamed flour with coconut filling). The researcher had the local residents train the team on how to make these meals. It was found that people in the community transmit the wisdom to the next generation by teaching and telling from parents to children. ‘Learning through the back door’ is one of the learning methods that the community used and still does.

Keywords: transmission, food wisdom, Salaya, cooking

Procedia PDF Downloads 399
7028 Shift from Distance to In-Person Learning of Indigenous People’s Schools during the COVID 19 Pandemic: Gains and Challenges

Authors: May B. Eclar, Romeo M. Alip, Ailyn C. Eay, Jennifer M. Alip, Michelle A. Mejica, Eloy C.eclar

Abstract:

The COVID-19 pandemic has significantly changed the educational landscape of the Philippines. The groups affected by these changes are the poor and those living in the Geographically Isolated and Depressed Areas (GIDA), such as the Indigenous Peoples (IP). This was heavily experienced by the ten IP schools in Zambales, a province in the country. With this in mind, plus other factors relative to safety, the Schools Division of Zambales selected these ten schools to conduct the pilot implementation of in-person classes two (2) years after the country-wide school closures. This study aimed to explore the lived experiences of the school heads of the first ten Indigenous People’s (IP) schools that shifted from distance learning to limited in-person learning. These include the challenges met and the coping mechanism they set to overcome the challenges. The study is linked to experiential learning theory as it focuses on the idea that the best way to learn things is by having experiences). It made use of qualitative research, specifically phenomenology. All the ten school heads from the IP schools were chosen as participants in the study. Afterward, participants underwent semi-structured interviews, both individual and focus group discussions, for triangulation. Data were analyzed through thematic analysis. As a result, the study found that most IP schools did not struggle to convince parents to send their children back to school as they downplay the pandemic threat due to their geographical location. The parents struggled the most during modular learning since many of them are either illiterate, too old to teach their children, busy with their lands, or have too many children to teach. Moreover, there is a meager vaccination rate in the ten barangays where the schools are located because of local beliefs. In terms of financial needs, school heads did not find it difficult even though funding is needed to adjust the schools to the new normal because of the financial support coming from the central office. Technical assistance was also provided to the schools by division personnel. Teachers also welcomed the idea of shifting back to in-person classes, and minor challenges were met but were solved immediately through various mechanisms. Learning losses were evident since most learners struggled with essential reading, writing, and counting skills. Although the community has positively received the conduct of in-person classes, the challenges these IP schools have been experiencing pre-pandemic were also exacerbated due to the school closures. It is therefore recommended that constant monitoring and provision of support must continue to solve other challenges the ten IP schools are still experiencing due to in-person classes

Keywords: In-person learning, indigenous peoples, phenomenology, philippines

Procedia PDF Downloads 110
7027 The Motivating and Limiting Factors of Learners’ Engagement in an Online Discussion Forum

Authors: K. Durairaj, I. N. Umar

Abstract:

Lately, asynchronous discussion forum is integrated in higher educational institutions as it may increase learning process, learners’ understanding, achievement and knowledge construction. Asynchronous discussion forum is used to complement the traditional, face-to-face learning session in hybrid learning courses. However, studies have proven that students’ engagement in online forum are still unconvincing. Thus, the aim of this study is to investigate the motivating factors and obstacles that affect the learners’ engagement in asynchronous discussion forum. This study is carried out in one of the public higher educational institutions in Malaysia with 18 postgraduate students as samples. The authors have developed a 40-items questionnaire based on literature review. The results indicate several factors that have encouraged or limited students’ engagement in asynchronous discussion forum: (a) the practices or behaviors of peers, or instructors, (b) the needs for the discussions, (c) the learners’ personalities, (d) constraints in continuing the discussion forum, (e) lack of ideas, (f) the level of thoughts, (g) the level of knowledge construction, (h) technical problems, (i) time constraints and (j) misunderstanding. This study suggests some recommendations to increase the students’ engagement in online forums. Finally, based upon the findings, some implications are proposed for further research.

Keywords: asynchronous discussion forum, engagement, factors, motivating, limiting

Procedia PDF Downloads 327
7026 Comparative Assessment of Bus Rapid Transit System in India

Authors: Namrata Ghosh, Sapan Tiwari

Abstract:

Public transport service plays an important role in people's transportation needs in urban areas. Bus Rapid Transit System (BRTS) is a transport service that provides passengers with a quick and efficient mode of transport. It is developed by changing the existing infrastructure, vehicles, route, or by developing a new dedicated corridor for the bus route. This dedicated lanes transport passengers to their destination quickly and efficiently and flexible in meeting demand. However, with rapid urbanization and increasing population density in Indian cities, traffic congestion has become a significant issue. In a few Indian cities, the BRTS concept is implemented to address the issue of traffic congestion that eventually resulted in less road congestion. The research aims to provide a literature review on the overall outlook of the BRTS system and its practical implementation in mass urban transit. First, it reflects a literature review on the concept of the BRTS system in both developed and developing countries. Afterward, comparative analysis of BRTS, hindrances associated with the permanent integrated system, and the need for establishing the Bus Rapid Transit System in Indian cities is demonstrated. The research concludes with some recommendations that could help in improving the loopholes in the existing system.

Keywords: bus rapid transit system(BRTS), dedicated corridor, public transport, traffic congestion

Procedia PDF Downloads 286
7025 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study

Authors: Kasim Görenekli, Ali Gülbağ

Abstract:

This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.

Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management

Procedia PDF Downloads 15
7024 Investor Sentiment and Satisfaction in Automated Investment: A Sentimental Analysis of Robo-Advisor Platforms

Authors: Vertika Goswami, Gargi Sharma

Abstract:

The rapid evolution of fintech has led to the rise of robo-advisor platforms that utilize artificial intelligence (AI) and machine learning to offer personalized investment solutions efficiently and cost-effectively. This research paper conducts a comprehensive sentiment analysis of investor experiences with these platforms, employing natural language processing (NLP) and sentiment classification techniques. The study investigates investor perceptions, engagement, and satisfaction, identifying key drivers of positive sentiment such as clear communication, low fees, consistent returns, and robust security. Conversely, negative sentiment is linked to issues like inconsistent performance, hidden fees, poor customer support, and a lack of transparency. The analysis reveals that addressing these pain points—through improved transparency, enhanced customer service, and ongoing technological advancements—can significantly boost investor trust and satisfaction. This paper contributes valuable insights into the fields of behavioral finance and fintech innovation, offering actionable recommendations for stakeholders, practitioners, and policymakers. Future research should explore the long-term impact of these factors on investor loyalty, the role of emerging technologies, and the effects of ethical investment choices and regulatory compliance on investor sentiment.

Keywords: artificial intelligence in finance, automated investment, financial technology, investor satisfaction, investor sentiment, robo-advisors, sentimental analysis

Procedia PDF Downloads 18
7023 The Impact of Sensory Overload on Students on the Autism Spectrum in Italian Inclusive Classrooms: Teachers' Perspectives and Training Needs

Authors: Paola Molteni, Luigi d’Alonzo

Abstract:

Background: Sensory issues are now considered one of the key aspects in defining and diagnosing autism, changing the perspectives on behavioural analysis and intervention in mainstream educational services. However, Italian teachers’ training is yet not specific on the topic of autism and its sensory-related effects and this research investigates the teacher’s capability in understanding the student’s needs and his/her challenging behaviours considering sensory perceptions. Objectives: The research aims to analyse mainstream schools teachers’ awareness on students’ sensory perceptions and how this affects classroom inclusion and learning process. The research questions are: i) Are teachers able to identify student’s sensory issues?; ii) Are trained teachers more able to identify sensory problems then untrained ones?; iii) What is the impact of sensory issues on inclusion in mainstream classrooms?; iv) What should teachers know about autistic sensory dimensions? Methods: This research was designed as a pilot study that involves a multi-methods approach, including action and collaborative research methodology. The designed research allows the researcher to catch the complexity of a province school district (from kindergarten to high school) through a deep detailed analysis of selected aspects. The researcher explored the questions described above through 133 questionnaires and 6 focus groups. The qualitative and quantitative data collected during the research were analysed using the Interpretative Phenomenological Analysis (IPA). Results: Mainstream schools teachers are not able to confidently recognise sensory issues of children included in the classroom. The research underlines: how professionals with no specific training on autism are not able to recognise sensory problems in students on the spectrum; how hearing and sight issues have higher impact on classroom inclusion and student’s learning process; how a lack of understanding is often followed by misinterpretations of the impact of sensory issues and challenging behaviours. Conclusions: As this research has shown, promoting and enhancing the importance of understanding sensory issues related to autism is fundamental to enable mainstream schools teachers to define educational and life-long plans able to properly answer the student’s needs and support his/her real inclusion in the classroom. This study is a good example of how the educational research can meet and help the daily practice in working with people on the autism spectrum and support the training design for mainstream school teachers: the emerging need of designed preparation on sensory issues is fundamental to be considered when planning school district in-service training programmes, specifically declined for inclusive services.

Keywords: autism spectrum condition, scholastic inclusion, sensory overload, teacher's training

Procedia PDF Downloads 317
7022 Bio-Medical Equipment Technicians: Crucial Workforce to Improve Quality of Health Services in Rural Remote Hospitals in Nepal

Authors: C. M. Sapkota, B. P. Sapkota

Abstract:

Background: Continuous developments in science and technology are increasing the availability of thousands of medical devices – all of which should be of good quality and used appropriately to address global health challenges. It is obvious that bio medical devices are becoming ever more indispensable in health service delivery and among the key workforce responsible for their design, development, regulation, evaluation and training in their use: biomedical technician (BMET) is the crucial. As a pivotal member of health workforce, biomedical technicians are an essential component of the quality health service delivery mechanism supporting the attainment of the Sustainable Development Goals. Methods: The study was based on cross sectional descriptive design. Indicators measuring the quality of health services were assessed in Mechi Zonal Hospital (MZH) and Sagarmatha Zonal Hospital (SZH). Indicators were calculated based on the data about hospital utilization and performance of 2018 available in Medical record section of both hospitals. MZH had employed the BMET during 2018 but SZH had no BMET in 2018.Focus Group Discussion with health workers in both hospitals was conducted to validate the hospital records. Client exit interview was conducted to assess the level of client satisfaction in both the hospitals. Results: In MZH there was round the clock availability and utilization of Radio diagnostics equipment, Laboratory equipment. Operation Theater was functional throughout the year. Bed Occupancy rate in MZH was 97% but in SZH it was only 63%.In SZH, OT was functional only 54% of the days in 2018. CT scan machine was just installed but not functional. Computerized X-Ray in SZH was functional only in 72% of the days. Level of client satisfaction was 87% in MZH but was just 43% in SZH. MZH performed all (256) the Caesarean Sections but SZH performed only 36% of 210 Caesarean Sections in 2018. In annual performance ranking of Government Hospitals, MZH was placed in 1st rank while as SZH was placed in 19th rank out of 32 referral hospitals nationwide in 2018. Conclusion: Biomedical technicians are the crucial member of the human resource for health team with the pivotal role. Trained and qualified BMET professionals are required within health-care systems in order to design, evaluate, regulate, acquire, maintain, manage and train on safe medical technologies. Applying knowledge of engineering and technology to health-care systems to ensure availability, affordability, accessibility, acceptability and utilization of the safer, higher quality, effective, appropriate and socially acceptable bio medical technology to populations for preventive, promotive, curative, rehabilitative and palliative care across all levels of the health service delivery.

Keywords: biomedical equipment technicians, BMET, human resources for health, HRH, quality health service, rural hospitals

Procedia PDF Downloads 126
7021 Enhancing Project Performance Forecasting using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

Accurate forecasting of project performance metrics is crucial for successfully managing and delivering urban road reconstruction projects. Traditional methods often rely on static baseline plans and fail to consider the dynamic nature of project progress and external factors. This research proposes a machine learning-based approach to forecast project performance metrics, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category in an urban road reconstruction project. The proposed model utilizes time series forecasting techniques, including Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance based on historical data and project progress. The model also incorporates external factors, such as weather patterns and resource availability, as features to enhance the accuracy of forecasts. By applying the predictive power of machine learning, the performance forecasting model enables proactive identification of potential deviations from the baseline plan, which allows project managers to take timely corrective actions. The research aims to validate the effectiveness of the proposed approach using a case study of an urban road reconstruction project, comparing the model's forecasts with actual project performance data. The findings of this research contribute to the advancement of project management practices in the construction industry, offering a data-driven solution for improving project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, earned value management

Procedia PDF Downloads 49
7020 ARCS Model for Enhancing Intrinsic Motivation in Learning Biodiversity Subjects: A Case Study of Tertiary Level Students in Malaysia

Authors: Nadia Nisha Musa, Nur Atirah Hasmi, Hasnun Nita Ismail, Zulfadli Mahfodz

Abstract:

In Malaysian Education System, subject related to biodiversity has started in the curriculum from Foundation Study until tertiary education. Biodiversity become the focus of attention due to awareness on global warming which potentially leads to a loss of biodiversity. A loss in biodiversity means a loss in medicinal discoveries and reduces food supply. It is of great important to ensure that young generations become aware of biodiversity conservation. The more interactive approaches are needed to build society with a high awareness for biodiversity conservation. To address this challenge, the goal of this study is to enhance intrinsic motivation of biological students via ARCS model of instruction. Self-access learning materials such as tutorial, module and fieldwork were designed with ARCS elements to a sample size of 70 university students from the beginning of the semester. Both paper and online surveys were used to collect data from the respondents. The results showed that elements of attention, relevance, confidence and satisfaction have a positive impact on intrinsic motivation of students and their academic performance.

Keywords: intrinsic motivation, ARCS model of instruction, biodiversity, self-access learning

Procedia PDF Downloads 222
7019 STEAM and Project-Based Learning: Equipping Young Women with 21st Century Skills

Authors: Sonia Saddiqui, Maya Marcus

Abstract:

UTS STEAMpunk Girls is an educational program for young women (aged 12-16), to empower them to be more informed and active members of the 21st century workforce. With the number of STEM graduates on the decline, especially among young women, an additional aim of the program is to trial a STEAM (Science, Technology, Engineering, Arts/Humanities/Social Sciences, Mathematics), inter-disciplinary approach to improving STEM engagement. In-line with UNESCO’s recent focus on promoting ‘transversal competencies’ in future graduates, the program utilised co-design, project-based learning, entrepreneurial processes, and inter-disciplinary learning. The program consists of two phases. Taking a participatory design approach, the first phase (co-design workshops) provided valuable insight into student perspectives around engaging young women in STEM and inter-disciplinary thinking. The workshops positioned 26 young women from three schools as subject matter experts (SMEs), providing a platform for them to share their opinions, experiences and findings around the STEAM disciplines. The second (pilot) phase put the co-design phase findings into practice, with 64 students from four schools working in groups to articulate problems with real-world implications, and utilising design-thinking to solve them. The pilot phase utilised project-based learning to engage young women in entrepreneurial and STEAM frameworks and processes. Scalable program design and educational resources were trialed to determine appropriate mechanisms for engaging young women in STEM and in STEAM thinking. Across both phases, data was collected via longitudinal surveys to obtain pre-program, baseline attitudinal information, and compare that against post-program responses. Preliminary findings revealed students’ improved understanding of the STEM disciplines, industries and professions, improved awareness of STEAM as a concept, and improved understanding regarding inter-disciplinary and design thinking. Program outcomes will be of interest to high-school educators in both STEM and the Arts, Humanities and Social Sciences fields, and will hopefully inform future programmatic approaches to introducing inter-disciplinary STEAM learning in STEM curriculum.

Keywords: co-design, STEM, STEAM, project-based learning, inter-disciplinary

Procedia PDF Downloads 199
7018 Investigation of the Influence of Student’s Characteristics on Mathematics Achievement in Junior Secondary School in Ibadan, Nigeria

Authors: Babatunde Kasim Oladele

Abstract:

This current study investigated students’ characteristics as factors that influence Mathematics Achievement of junior secondary school students. The study adopted a descriptive survey design. The population of the study was one hundred and twenty-three (123) JSS students of secondary schools in Ibadan North Local Government in Oyo State. A Mathematics achievement test and three questionnaires on student’s self-efficacy belief, attitude, and learning style were the instruments used. Prior to the administration of the constructed mathematics achievement test, 100-item mathematics was subjected to the expert review, and items analysis was carried out. Fifty items were retained. The Cronbach Alpha reliability coefficients of the instruments were 0.71, 0.76, and 0.83, respectively. Collected data were analysed using the frequency count, percentages, mean, standard deviation, and Path Analysis in Amos SPSS Version 20. Students characteristics: gender, age, self-efficacy, attitude and learning style had positive direct effects on students’ achievement in Mathematics as indicated by their respective beta weights (β = 0.36, 0.203, 0.92, 0.079, 0.69 p < 0.05). Consequently, the study concluded that student’s characteristics (Age, gender, and learning style) explained a significant part of the variability in students’ achievement in Mathematics.

Keywords: mathematics achievement, students’ characteristics, junior secondary school, Ibadan

Procedia PDF Downloads 332
7017 Learning Made Right: Building World Class Engineers in Tunisia

Authors: Zayen Chagra

Abstract:

Several educational institutions are experimenting new approaches in learning in order to guarantee the success of its students. In Tunisia, and since 2011, the experience of making a new software engineering branch called mobile software engineering began at ESPRIT: Higher School of Engineering and Technology. The project was surprisingly a success since its creation, and even before the graduation of the first generation, partnerships were held with the biggest mobile technology manufacturers and several international awards were won by teams of students. This session presents this experience with details of the approaches made from idea stage to the actual stage where the project counts 32 graduated engineers, 90 graduate students and 120 new participants.

Keywords: innovation, education, engineering education, mobile

Procedia PDF Downloads 426
7016 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation

Authors: Yang Yang, Dan Liu

Abstract:

Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.

Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning

Procedia PDF Downloads 122
7015 An Investigation into the Role of School Social Workers and Psychologists with Children Experiencing Special Educational Needs in Libya

Authors: Abdelbasit Gadour

Abstract:

This study explores the function of schools’ psychosocial services within Libyan mainstream schools in relation to children’s special educational needs (SEN). This is with the aim to examine the role of school social workers and psychologists in the assessment procedure of children with special educational needs. A semi-structured interview was used in this study, with 21 professionals working in the schools’ psychosocial services, of whom thirteen were school social workers (SSWs) and eight were school psychologists (SPs). The results of the interviews with SSWs and SPs provided insights into how SEN children are identified, assessed, and dealt with by school professionals. It appears from the results that what constitutes a problem has not changed significantly, and the link between learning difficulties and behavioral difficulties is also evident from this study. Children with behavior difficulties are more likely to be referred to school psychosocial services than children with learning difficulties. Yet, it is not clear from the interviews with SSWs and SPs whether children are excluded merely because of their behavior problems. Instead, they would surely be expelled from the school if they failed academically. Furthermore, the interviews with SSWs and SPs yield a rather unusual source accountable for children’s SEN; school-related difficulties were a major factor in which almost all participants attributed children’s learning and behavior problems to teachers’ deficiencies, followed by school lack of resources.

Keywords: psychologist, school, social workers, special education

Procedia PDF Downloads 107
7014 Mothers' Perspective on Services for Children with Autism in Indonesia

Authors: Wike Wike

Abstract:

The aim of this study is to investigate the experience of mothers of autistic children in Indonesia in raising the children and obtaining services for them through the adequate of information. The study seeks to contribute to the knowledge emerging from the women as a mother of children with autism on health and disability area. There is silence in the Indonesian literature on this perspective, especially about the parents and/or mothers of autistic children that is the focus of this analysis. Therefore, in order to capture the points of view emerging from the mothers, a qualitative study design has been applied. The main data for this qualitative study was collected from interviews (semi-structured interview and focus group discussion) with the mothers of children with autism who are member of parenting group in autistic schools and rehabilitation centers in one of Indonesian regional cities. This study reveals that the mothers’ experience in raising a child who is diagnosed with autism is rooted in limited knowledge on autism, limited knowledge on availability of services and limited knowledge on service options. Compounding this is limited availability and accessibility of the services that are important to their child's development. An important contribution of this study is to show how tapping into the experience of mothers can provide much needed information to policy making and service planners and implementers that can improve the services for children with autism and their families.

Keywords: mothers, children with autism, disability services and policy, services

Procedia PDF Downloads 232
7013 Production and Leftovers Usage Policies to Minimize Food Waste under Uncertain and Correlated Demand

Authors: Esma Birisci, Ronald McGarvey

Abstract:

One of the common problems in food service industry is demand uncertainty. This research presents a multi-criteria optimization approach to identify the efficient frontier of points lying between the minimum-waste and minimum-shortfall solutions within uncertain demand environment. It also addresses correlation across demands for items (e.g., hamburgers are often demanded with french fries). Reducing overproduction food waste (and its corresponding environmental impacts) and an aversion to shortfalls (leave some customer hungry) need to consider as two contradictory objectives in an all-you-care-to-eat environment food service operation. We identify optimal production adjustments relative to demand forecasts, demand thresholds for utilization of leftovers, and percentages of demand to be satisfied by leftovers, considering two alternative metrics for overproduction waste: mass; and greenhouse gas emissions. Demand uncertainty and demand correlations are addressed using a kernel density estimation approach. A statistical analysis of the changes in decision variable values across each of the efficient frontiers can then be performed to identify the key variables that could be modified to reduce the amount of wasted food at minimal increase in shortfalls. We illustrate our approach with an application to empirical data from Campus Dining Services operations at the University of Missouri.

Keywords: environmental studies, food waste, production planning, uncertain and correlated demand

Procedia PDF Downloads 372
7012 Creativity in Development of Multimedia Presentation

Authors: Mahathir Sarjan, Ramos Radzly, Noor Baiti Jamaluddin, Mohd Hafiz Zakaria, Hisham Suhadi

Abstract:

Creativity is marked by the ability or power, to produce through imaginative skill and create something anew. The University is one of the great places to improve the talent in imaginative skill. Thus, it is important that for the student have a creativity to adapt the multimedia element in the development of presentation products for learning and teaching the process. The purpose of this study was to identify a creativity of the student in presentation product development. Two hundred seventeen Technical and Vocational Education (TVE) students in Universiti Tun Hussein Onn had chosen as a respondent. This study is to survey the level of creativity which is focused on knowledge, skills, presentation style and character of creative personnel. The level of creativity was measured based on the scale at low, medium and high followed by mean score level. The data collected by questionnaire then analyzed using SPSS version 20.0. The result of the study indicated that the students showed a higher of creativity (mean score in Knowledge = 4.12 and Skills= 4.02). In conjunction with the findings s implications and recommendations were suggested forward like to ensconce the research and improve with a more creativity concept in presentation product of development for learning and teaching the process.

Keywords: creativity, technical, vocational education, presentation products and development for learning and teaching process

Procedia PDF Downloads 426
7011 Forensic Nursing in the Emergency Department: The Overlooked Roles

Authors: E. Tugba Topcu

Abstract:

The emergency services are usually the first places to encounter forensic cases. Hence, it is important to consider forensics from the perspective of the emergency services staff and the physiological and psychological consequences that may arise as a result of behaviour by itself or another person. Accurate and detailed documentation of the situation in which the patient first arrives at the emergency service and preservation of the forensic findings is pivotal for the subsequent forensic investigation. The first step in determining whether or not a forensic case exists is to perform a medical examination of the patient. For each individual suspected to be part of a forensic case, police officers should be informed at the same time as the medical examination is being conducted. Violent events are increasing every year and with an increase in the number of forensic cases, emergency service workers have increasing responsibility and consequently play a key role in protecting, collecting and arranging the forensic evidence. In addition, because the emergency service workers involved in forensic events typically have information about the accused and/or victim, as well as evidence related to the events and the cause of injuries, police officers often require their testimony. However, both nurses and other health care personnel do not typically have adequate expertise in forensic medicine. Emergency nurses should take an active role for determining that whether any patient admitted to the emergency services is a clinical forensic patient the emergency service with injury and requiring possible punishment and knowing of their roles and responsibilities in this area provides legal protection as well as the protection of the judicial affair. Particularly, in emergency services, where rapid patient turnover and high workload exists, patient registration and case reporting may not exist. In such instances, the witnesses, typically the nurses, are often consulted for information. Knowledge of forensic medical matters plays a vital role in achieving justice. According to the Criminal Procedure Law, Article 75, Paragraph 3, ‘an internal body examination or the taking of blood or other biological samples from the body can be performed only by a doctor or other health professional member’. In favour of this item, the clinic nurse and doctor are mainly responsible for evaluating forensic cases in emergency departments, performing the examination, collecting evidence, and storing and reporting data. The courts place considerable importance on determining whether a suspect is the victim or accused and, thus, in terms of illuminating events, it is crucial that any evidence is gathered carefully and appropriately. All the evidence related to the forensic case including the forensic report should be handed over to the police officers. In instances where forensic evidence cannot be collected and the only way to obtain the evidence is the hospital environment, health care personnel in emergency services need to have knowledge about the diagnosis of forensic evidence, the collection of evidence, hiding evidence and provision of the evidence delivery chain.

Keywords: emergency department, emergency nursing, forensic cases, forensic nursing

Procedia PDF Downloads 252
7010 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 537
7009 The Student's Satisfaction toward Web Based Instruction on Puppet Show

Authors: Piyanut Suchit

Abstract:

The purposes of this study was to investigate students’ satisfaction learning with the web based instruction on the puppet show. The population of this study includes 53 students in the Program of Library and Information Sciences who registered in the subject of Puppet for Assisting Learning Development in semester 2/2011, Suansunandha Rajabhat University, Bangkok, Thailand. The research instruments consist of web based instruction on the puppet show, and questionnaires for students’ satisfaction. The research statistics includes arithmetic mean, and standard deviation. The results revealed that the students reported very high satisfaction with mean = 4.63, SD = 0.52, on the web based instruction.

Keywords: puppet show, web based instruction, satisfaction, Suansunandha Rajabhat University

Procedia PDF Downloads 387
7008 Problems concerning Formation of Institutional Framework for Electronic Democracy in Georgia

Authors: Giorgi Katamadze

Abstract:

Open public service and accountability towards citizens is an important feature of democratic state based on rule of law. Effective use of electronic resources simplifies bureaucratic procedures, makes direct communications, helps exchange information, ensures government’s openness and in general helps develop electronic/digital democracy. Development of electronic democracy should be a strategic dimension of Georgian governance. Formation of electronic democracy, its functional improvement should become an important dimension of the state’s information policy. Electronic democracy is based on electronic governance and implies modern information and communication systems, their adaptation to universal standards. E-democracy needs involvement of governments, voters, political parties and social groups in an electronic form. In the last years the process of interaction between the citizen and the state becomes simpler. This process is achieved by the use of modern technological systems which gives to a citizen a possibility to use different public services online. For example, the website my.gov.ge makes interaction between the citizen, business and the state more simple, comfortable and secure. A higher standard of accountability and interaction is being established. Electronic democracy brings new forms of interactions between the state and the citizen: e-engagement – participation of society in state politics via electronic systems; e-consultation – electronic interaction among public officials, citizens and interested groups; e-controllership – electronic rule and control of public expenses and service. Public transparency is one of the milestones of electronic democracy as well as representative democracy as only on mutual trust and accountability can democracy be established. In Georgia, institutional changes concerning establishment and development of electronic democracy are not enough. Effective planning and implementation of a comprehensive and multi component e-democracy program (central, regional, local levels) requires telecommunication systems, institutional (public service, competencies, logical system) and informational (relevant conditions for public involvement) support. Therefore, a systematic project of formation of electronic governance should be developed which will include central, regional, municipal levels and certain aspects of development of instrumental basis for electronic governance.

Keywords: e-democracy, e-governance, e-services, information technology, public administration

Procedia PDF Downloads 337