Search results for: Si-based double-junction solar cells
1022 Colour Change and melenophores response in ateleost: Balantiochilous melenopterus (Bleeker) with Certain Chemicals and Drugs
Authors: Trapti Pathak
Abstract:
Fishes can change their body colour according to their surroundings by. They do so by either aggregation or dispersion of melanosomes within the skin. These movements can regulate by means of sympathetic nerves with the help of cytoskeleton. Employing the melanophores on isolated scales of the fingerling of teleost fish, it is attempted to characterise the concerned nerves and the receptors located on melenocytes along with implication of microtubules a part of cytoskeleton in the pigmentary translocation in the fish. The scales from dorso-lateral trunk of the fish represented the sympathetic– neuromelanophore preparations which were stimulated by chemical means, such as adrenergic agonist, antagonist and the microtubule-disrupting drugs such as yuhombine, dopamine, colchicine etc. Adrenaline is an adrenergic agonist which is strongly induced the dorse-dependent concentration of pigment in innervated melanophores while Yohimbine is an adrenergic antagonist which is known to block effectively the α2-adrenoceptors inhibited the action of adrenaline. Colchicine effectively interferes with melanosome aggregating action of adrenaline. From these results it is concluded that the chromatic fibres of adrenergic nature innervate the melanophores and these cells do possess α2-adrenoceptors which mediate the melanosome aggregation and the movements of pigment granules through microtubules means of transport within the cell. These movements of pigment are linked to paling or darkening achieved of teleost fish respectively when they approach to their background.Keywords: melenophores, agonists, antagonist, colour change
Procedia PDF Downloads 741021 Fabrication and Characterization of PPy/rGO|PPy/ZnO Composite with Varying Zno Concentration as Anode for Fuel Cell Applications
Authors: Bryan D. Llenarizas, Maria Carla F. Manzano
Abstract:
The rapid growth of electricity demand has led to a pursuit of alternative energy sources with high power output and not harmful to the environment. The fuel cell is a device that generates electricity via chemical reactions between the fuel and oxidant. Fuel cells have been known for decades, but the development of high-power output and durability was still one of the drawbacks of this energy source. This study investigates the potential of layer-by-layer composite for fuel cell applications. A two-electrode electrochemical cell was used for the galvanostatic electrochemical deposition method to fabricate a Polypyrrole/rGO|Polypyrrole/ZnO layer-by-layer composite material for fuel cell applications. In the synthesis, the first layer comprised 0.1M pyrrole monomer and 1mg of rGO, while the second layer had 0.1M pyrrole monomer and variations of ZnO concentration ranging from 0.08M up to 0.12M. A constant current density of 8mA/cm² was applied for 1 hour in fabricating each layer. Scanning electron microscopy (SEM) for the fabricated LBL material shows a globular surface with white spots. These white spots are the ZnO particles confirmed by energy-dispersive X-ray spectroscopy, indicating a successful deposition of the second layer onto the first layer. The observed surface morphology was consistent for each variation of ZnO concentrations. AC measurements were conducted to obtain the AC resistance of the fabricated film. Results show a decrease in AC resistance as the concentration of ZnO increases.Keywords: anode, composite material, electropolymerization, fuel cell, galvanostatic, polypyrrole
Procedia PDF Downloads 771020 Graphene Reinforced Magnesium Metal Matrix Composites for Biomedical Applications
Authors: Khurram Munir, Cuie Wen, Yuncang Li
Abstract:
Magnesium (Mg) metal matrix composites (MMCs) reinforced with graphene nanoplatelets (GNPs) have been developed by powder metallurgy (PM). In this study, GNPs with different concentrations (0.1-0.3 wt.%) were dispersed into Mg powders by high-energy ball-milling processes. The microstructure and resultant mechanical properties of the fabricated nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy (RS), compression and nano-wear tests. The corrosion resistance of the fabricated composites was evaluated by electrochemical tests and hydrogen evolution measurements. Finally, the biological response of Mg-GNPs composites was assessed using osteoblast-like SaOS2 cells. The results indicate that GNPs are excellent candidates as reinforcements in Mg matrices for the manufacture of biodegradable Mg-based composite implants. GNP addition improved the mechanical properties of Mg via synergetic strengthening modes. Moreover, retaining the structural integrity of GNPs during PM processing improved the ductility, compressive strength, and corrosion resistance of the Mg-GNP composites as compared to monolithic Mg. Cytotoxicity assessments did not reveal any significant toxicity with the addition of GNPs to Mg matrices. This study demonstrates that Mg-xGNPs with x < 0.3 wt.%, may constitute novel biodegradable implant materials for load-bearing applications.Keywords: magnesium-graphene composites, strengthening mechanisms, In vitro cytotoxicity, biocorrosion
Procedia PDF Downloads 1561019 A Novel Peptide Showing Universal Effect against Multiple Viruses in Vitro and in Vivo
Authors: Hanjun Zhao, Ke Zhang, Bojian Zheng
Abstract:
Background: So far, there is no universal antiviral agent which can inhibit multiple viral infections. More and more drug-resistant viral strains emerge after the antiviral drug application for treatment. Defensins are the front line of host innate immunity and have broad spectrum antibacterial and antiviral effects. However, there is limited data to show if these defensins have good antiviral activity in vivo and what the antiviral mechanism is. Subjects: To investigate a peptide with widespread antivirus activity in vitro and in vivo and illustrate the antiviral mechanism. Methods: Antiviral peptide library designed from mouse beta defensins was synthesized by the company. Recombinant beta defensin was obtained from E. coli. Antiviral activity in vitro was assayed by plaque assay, qPCR. Antiviral activity in vivo was detected by animal challenge with 2009 pandemic H1N1 influenza A virus. The antiviral mechanism was assayed by western blot, ELISA, and qPCR. Conclusions: We identify a new peptide which has widespread effects against multiple viruses (H1N1, H5N1, H7N9, MERS-CoV) in vitro and has efficient antivirus activity in vivo. This peptide inhibits viral entry into target cells and subsequently blocks viral replication. The in vivo study of the antiviral peptide against other viral infections and the investigation of its more detail antiviral mechanism are ongoing.Keywords: antiviral peptide, defensin, Influenza A virus, mechanism
Procedia PDF Downloads 3981018 Expression of Hypoxia-Inducible Transmembrane Carbonic Anhydrases IX, Ca XII and Glut 1 in Ovarian Cancer
Authors: M. Sunitha, B. Nithyavani, Mathew Yohannan, S. Thiruvieni Balajji, M. A. Rathi, C. Arul Raj, P. Ragavendran, V. K. Gopalkrishnan
Abstract:
Establishment of an early and reliable biomarker for ovarian carcinogenesis whose expression can be monitored through noninvasive techniques will enable early diagnosis of cancer. Carbonic anhydrases (CA) isozymes IX and XII have been suggested to play a role in oncogenic processes. In von Hippel-Lindau (VHL)-defective tumors, the cell surface transmembrane carbonic anhydrase (CA) CA XI and CA XII genes are overexpressed because of the absence of pVHL. These enzymes are involved in causing a hypoxia condition, thereby providing an environment for metastasis. Aberrant expression of the facilitative glucose transporter GLUT I is found in a wide spectrum of epithelial malignancies. Studying the mRNA expression of CA IX, CA XII and Glut I isozymes in ovarian cancer cell lines (OAW-42 and PA-1) revealed the expression of these hypoxia genes. Immunohistochemical staining of carbonic anhydrases was also performed in 40 ovarian cancer tissues. CA IX and CA XII were expressed at 540 bp and 520 bp in OAW42, PA1 in ovarian cancer cell lines. GLUT-1 was expressed at 325bp in OAW 42, PA1 genes in ovarian cancer cell lines. Immunohistochemistry revealed high to moderate levels of expression of these enzymes. The immuostaining was seen predominantly on the cell surface membrane. The study concluded that these genes CA IX, CA XII and Glut I are expressed under hypoxic condition in tumor cells. From the present results expression of CA IX, XII and Glut I may represent potential targets in ovarian cancer therapy.Keywords: ovarian cancer, carbonic anhydrase IX, XII, Glut I, tumor markers
Procedia PDF Downloads 3671017 CoFe₂O₄ as Anode for Enhanced Energy Recovery in Microbial Fuel Cell
Authors: Mehak Munjal, Raj Kishore Sharma, Gurmeet Singh
Abstract:
Microbial Fuel Cells (MFCs) are an alternative sustainable approach that utilize bacteria present in waste water as a bio-catalyst for the production of energy. It is a promising growing technology with minimal requirement for chemical supplements. Here electrode material plays a vital role in its performance. The present study represents CoFe2O4 spinel as a novel anode material in the MFC. It not only improve the bacterial metabolics but also enhance the power output. Generally, biocompatible conductive carbon paper/cloth, graphite and stainless steel are utilised as anode in MFCs. However, these materials lack electrochemical activity for anodic microbial reaction. Therefore, we developed CoFe2O4 on graphite sheet which enhanced the anodic charge transfer process. Redox pair in CoFe2O4 helped in improvement of extracellular electron transfer, thereby enhancing the performance. The physical characterizations (FT-IR, XRD, Raman) and electrochemical measurements demonstrate the strong interaction with E.coli bacteria and thus providing an excellent power density i.e. 1850 mW/m2 .The maximum anode half -cell potential is measured to be 0.65V. Therefore, use of noble metal free anodic material further decrease the cost and the long term cell stability makes it an effective material for practical applications.Keywords: microbial fuel cell, cobalt ferrite, E. coli, bioelectricity
Procedia PDF Downloads 1421016 Effects of Gelatin on Characteristics and Dental Pathogen Inhibition by Silver Nanoparticles Synthesized from Ascorbic Acid
Authors: Siriporn Okonogi, Temsiri Suwan, Sakornrat Khongkhunthian, Jakkapan Sirithunyalug
Abstract:
In this study, silver nanoparticles (AgNPs) were prepared using ascorbic acid as a reducing agent and silver nitrate as a precursor. The effects of gelatin (G) on particle characteristics and dental pathogen inhibition were investigated. The spectra of AgNPs and G-AgNPs were compared using UV-Vis and Energy-dispersive X-ray (EDX) spectroscopy. The obtained AgNPs and G-AgNPs showed the maximum absorption at 410 and 430 nm, respectively, and EDX spectra of both systems confirmed Ag element. Scanning electron microscope showed that AgNPs and G-AgNPs were spherical in shape. Particles size, size distribution, and zeta potential were determined using dynamic light scattering approach. The size of AgNPs and G-AgNPs were 56 ± 2.4 and 67 ± 3.6 nm, respectively with a size distribution of 0.23 ± 0.03 and 0.19 ± 0.02, respectively. AgNPs and G-AgNPs exhibited negative zeta potential of 24.1 ± 2.7 mV and 32.7 ± 1.2 mV, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the obtained AgNPs and G-AgNPs against three strains of dental pathogenic bacteria; Streptococcus gordonii, Streptococcus mutans, and Staphylococcus aureus were determined using broth dilution method. AgNPs and G-AgNPs showed the strongest inhibition against S. gordonii with the MIC of 0.05 and 0.025 mg/mL, respectively and the MBC of 0.1 and 0.05 mg/mL, respectively. Cytotoxicity test of AgNPs and G-AgNPs on human breast cancer cells using MTT assay indicated that G-AgNPs (0.1 mg/mL) was significantly stronger toxic than AgNPs with the cell inhibition of 91.1 ± 5.4%. G-AgNPs showed significantly less aggregation after storage at room temperature for 90 days than G-AgNPs.Keywords: antipathogenic activity, ascorbic acid, cytotoxicity, stability
Procedia PDF Downloads 1481015 Estrogen Controls Hepatitis C Virus Entry and Spread through the GPR30 Pathway
Authors: Laura Ulitzky, Dougbeh-Chris Nyan, Manuel M. Lafer, Erica Silberstein, Nicoleta Cehan, Deborah R. Taylor
Abstract:
Hepatitis C virus (HCV)-associated hepatocellular carcinoma, fibrosis and cirrhosis are more frequent in men and postmenopausal women than in premenopausal women and women receiving hormone replacement therapy, suggesting that β-estradiol (estrogen) plays an innate role in preventing viral infection and liver disease. Estrogen classically acts through nuclear estrogen receptors or, alternatively, through the membrane-bound G-protein-coupled estrogen receptor (GPR30 or GPER). We observed a marked decrease in detectable virus when HCV-infected human hepatoma cells were treated with estrogen. The effect was mimicked by both Tamoxifen (Tam) and G1, a GPR30-specific agonist, and was reversed by the GPR30-specific antagonist, G15. Through GPR30, estrogen-mediated the down-regulation of occludin; a tight junction protein and HCV receptor, by promoting activation of matrix metalloproteinases (MMPs). Activated MMP-9 was secreted in response to estrogen, cleaving occludin in the extracellular Domain D, the motif required for HCV entry and spread. This pathway gives new insight into a novel innate immune pathway and the disparate host-virus responses to HCV demonstrated by the two sexes. Moreover, these data suggest that hormone replacement therapy may have beneficial antiviral properties for HCV-infected postmenopausal women and show promise for new antiviral treatments for both men and women.Keywords: HCV, estrogen, occludin, MMPs
Procedia PDF Downloads 4351014 Effect of Coronary Insulators in Increasing the Lifespan of Electrolytic Cells: Short-circuit and Heat Resistance
Authors: Robert P. Dufresne, Hamid Arabzadeh
Abstract:
The current study investigates the effectiveness of a new form of permanent baseboard insulators with an umbrella action, hereinafter referred to as Coronary Insulator, in supporting and protecting the assembly of electrodes immersed in an electrolytic cell and in increasing the lifespan of the lateral sides of the electrolytic cell, in both electro-winning and electro-refinery method. The advantages of using a coronary insulator in addition to the top capping board (equipotential insulator) were studied compared to the conventional assembly of an electrolytic cell. Then, a thermal imaging technique was utilized during high-temperature thermal (heat transfer) tests for sample cell walls with and without coronary insulators in their assembly to show the effectiveness of coronary insulators in protecting the cell wall under extreme conditions. It was shown that, unlike the conventional assembly, which is highly prone to damages to the cell wall under thermal shocks, the presence of coronary insulator can significantly increase the level of protection of the cell due to their ultra-high thermal and chemical resistance, as well as decreasing the replacement frequency of insulators to almost zero. Besides, the results of the study showed that the test assembly with the coronary insulator provides better consistency in positioning and, subsequently, better contact, compared to the conventional method, which reduces the chance of electric short-circuit in the system.Keywords: capping board, coronary insulator, electrolytic cell, thermal shock.
Procedia PDF Downloads 1871013 Enhancement of Long Term Peak Demand Forecast in Peninsular Malaysia Using Hourly Load Profile
Authors: Nazaitul Idya Hamzah, Muhammad Syafiq Mazli, Maszatul Akmar Mustafa
Abstract:
The peak demand forecast is crucial to identify the future generation plant up needed in the long-term capacity planning analysis for Peninsular Malaysia as well as for the transmission and distribution network planning activities. Currently, peak demand forecast (in Mega Watt) is derived from the generation forecast by using load factor assumption. However, a forecast using this method has underperformed due to the structural changes in the economy, emerging trends and weather uncertainty. The dynamic changes of these drivers will result in many possible outcomes of peak demand for Peninsular Malaysia. This paper will look into the independent model of peak demand forecasting. The model begins with the selection of driver variables to capture long-term growth. This selection and construction of variables, which include econometric, emerging trend and energy variables, will have an impact on the peak forecast. The actual framework begins with the development of system energy and load shape forecast by using the system’s hourly data. The shape forecast represents the system shape assuming all embedded technology and use patterns to continue in the future. This is necessary to identify the movements in the peak hour or changes in the system load factor. The next step would be developing the peak forecast, which involves an iterative process to explore model structures and variables. The final step is combining the system energy, shape, and peak forecasts into the hourly system forecast then modifying it with the forecast adjustments. Forecast adjustments are among other sales forecasts for electric vehicles, solar and other adjustments. The framework will result in an hourly forecast that captures growth, peak usage and new technologies. The advantage of this approach as compared to the current methodology is that the peaks capture new technology impacts that change the load shape.Keywords: hourly load profile, load forecasting, long term peak demand forecasting, peak demand
Procedia PDF Downloads 1711012 Similitude for Thermal Scale-up of a Multiphase Thermolysis Reactor in the Cu-Cl Cycle of a Hydrogen Production
Authors: Mohammed W. Abdulrahman
Abstract:
The thermochemical copper-chlorine (Cu-Cl) cycle is considered as a sustainable and efficient technology for a hydrogen production, when linked with clean-energy systems such as nuclear reactors or solar thermal plants. In the Cu-Cl cycle, water is decomposed thermally into hydrogen and oxygen through a series of intermediate reactions. This paper investigates the thermal scale up analysis of the three phase oxygen production reactor in the Cu-Cl cycle, where the reaction is endothermic and the temperature is about 530 oC. The paper focuses on examining the size and number of oxygen reactors required to provide enough heat input for different rates of hydrogen production. The type of the multiphase reactor used in this paper is the continuous stirred tank reactor (CSTR) that is heated by a half pipe jacket. The thermal resistance of each section in the jacketed reactor system is studied to examine its effect on the heat balance of the reactor. It is found that the dominant contribution to the system thermal resistance is from the reactor wall. In the analysis, the Cu-Cl cycle is assumed to be driven by a nuclear reactor where two types of nuclear reactors are examined as the heat source to the oxygen reactor. These types are the CANDU Super Critical Water Reactor (CANDU-SCWR) and High Temperature Gas Reactor (HTGR). It is concluded that a better heat transfer rate has to be provided for CANDU-SCWR by 3-4 times than HTGR. The effect of the reactor aspect ratio is also examined in this paper and is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Finally, a comparison between the results of heat balance and existing results of mass balance is performed and is found that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.Keywords: sustainable energy, clean energy, Cu-Cl cycle, heat transfer, hydrogen, oxygen
Procedia PDF Downloads 2941011 Green Amphiphilic Nanostructures from CNSL
Authors: Ermelinda Bloise, Giuseppe Mele
Abstract:
In recent years, Cashew Nut Shell Liquid (CNSL) has received great attention from researchers because it is an abundant waste material from the agri-food industry that fits perfectly into the idea of reusing waste from renewable resources for the production of new functional materials. The different components of this waste showed a certain chemical versatility and, above all, various biological activities. Take advantage of their surface-active capacity in particular conditions, various amphiphilic nanostructures have been prepared through sustainable chemical processes using cardanol (CA) and anacardic acid (AA) as two main components of the CNSL. In-batch solvent-free method has been developed to obtain new versatile green nanovesicles capable of effectively incorporating and stabilizing both hydrophobic and hydrophilic bioactive molecules. Furthermore, these nanosystems have shown antioxidant and cytotoxic properties and, in vitroinvestigations, established that they efficiently taken-up some human cells. With the idea of meeting the principles of green chemistry, even more, some improvements of the synthetic procedure have been implemented in terms of milder temperature and pH conditions, producing one-component nanovesicles, in which the AA and CA-derivatives are the sole building block of the green nanosystems. Finally, a new experimental approach has been carried out by a microfluidic route, with the advantage to operate at continuous flows, with a reduced amount of reagents, waste, and at lower temperatures, ensuring the achievement of size-monodisperse amphiphilic nanostructures that do not need further purification steps.Keywords: bioactive nanosystems, bio-based renewables, cashew oil, green nanoformulations
Procedia PDF Downloads 871010 Study on Capability of the Octocopter Configurations in Finite Element Analysis Simulation Environment
Authors: Jeet Shende, Leonid Shpanin, Misko Abramiuk, Mattew Goodwin, Nicholas Pickett
Abstract:
Energy harvesting on board the Unmanned Ariel Vehicle (UAV) is one of the most rapidly growing emerging technologies and consists of the collection of small amounts of energy, for different applications, from unconventional sources that are incidental to the operation of the parent system or device. Different energy harvesting techniques have already been investigated in the multirotor drones, where the energy collected comes from the systems surrounding ambient environment and typically involves the conversion of solar, kinetic, or thermal energies into electrical energy. The energy harvesting from the vibrated propeller using the piezoelectric components inside the propeller has also been proven to be feasible. However, the impact on the UAV flight performance using this technology has not been investigated. In this contribution the impact on the multirotor drone operation has been investigated at different flight control configurations which support the efficient performance of the propeller vibration energy harvesting. The industrially made MANTIS X8-PRO octocopter frame kit was used to explore the octocopter operation which was modelled using SolidWorks 3D CAD package for simulation studies. The octocopter flight control strategy is developed through integration of the SolidWorks 3D CAD software and MATLAB/Simulink simulation environment for evaluation of the octocopter behaviour under different simulated flight modes and octocopter geometries. Analysis of the two modelled octocopter geometries and their flight performance is presented via graphical representation of simulated parameters. The possibility of not using the landing gear in octocopter geometry is demonstrated. The conducted study evaluates the octocopter’s flight control technique and its impact on the energy harvesting mechanism developed on board the octocopter. Finite Element Analysis (FEA) simulation results of the modelled octocopter in operation are presented exploring the performance of the octocopter flight control and structural configurations. Applications of both octocopter structures and their flight control strategy are discussed.Keywords: energy harvesting, flight control modelling, object modeling, unmanned aerial vehicle
Procedia PDF Downloads 741009 A Cross-Disciplinary Educational Model in Biomanufacturing to Sustain a Competitive Workforce Ecosystem
Authors: Rosa Buxeda, Lorenzo Saliceti-Piazza, Rodolfo J. Romañach, Luis Ríos, Sandra L. Maldonado-Ramírez
Abstract:
Biopharmaceuticals manufacturing is one of the major economic activities worldwide. Ninety-three percent of the workforce in a biomanufacturing environment concentrates in production-related areas. As a result, strategic collaborations between industry and academia are crucial to ensure the availability of knowledgeable workforce needed in an economic region to become competitive in biomanufacturing. In the past decade, our institution has been a key strategic partner with multinational biotechnology companies in supplying science and engineering graduates in the field of industrial biotechnology. Initiatives addressing all levels of the educational pipeline, from K-12 to college to continued education for company employees have been established along a ten-year span. The Amgen BioTalents Program was designed to provide undergraduate science and engineering students with training in biomanufacturing. The areas targeted by this educational program enhance their academic development, since these topics are not part of their traditional science and engineering curricula. The educational curriculum involved the process of producing a biomolecule from the genetic engineering of cells to the production of an especially targeted polypeptide, protein expression and purification, to quality control, and validation. This paper will report and describe the implementation details and outcomes of the first sessions of the program.Keywords: biomanufacturing curriculum, interdisciplinary learning, workforce development, industry-academia partnering
Procedia PDF Downloads 2901008 Alternative Biocides to Reduce Algal Fouling in Seawater Industrial Cooling Towers
Authors: Mohammed Al-Bloushi, Sanghyun Jeong, Torove Leiknes
Abstract:
Biofouling in the open recirculating cooling water systems may cause biological corrosion, which can reduce the performance, increase the energy consummation and lower heat exchange efficiencies of the cooling tower. Seawater cooling towers are prone to biofouling due to the presences of organic and inorganic compounds in the seawater. The availability of organic and inorganic nutrients, along with sunlight and continuous aeration of the cooling tower contributes to an environment that is ideal for microbial growth. Various microorganisms (algae, fungi, and bacteria) can grow in a cooling tower system under certain environmental conditions. The most commonly being used method to control the biofouling in the cooling tower is the addition of biocides such as chlorination. In this study, algae containing diatom and green algae were added to the cooling tower basin, and its viability was monitored in the recirculating cooling seawater loop as well as in the cooling tower basin. Continuous addition of biocides was employed in pilot-scale seawater cooling towers, and it was operated continuously for 2 months. Three different types of oxidizing biocides, namely chlorine, chlorine dioxide and ozone, were tested. The results showed that all biocides were effective in keeping the biological growth to the minimum regardless of algal addition. Amongst the biocides, ozone could reduce 99% of total live cells of bacteria and algae, followed by chlorine dioxide at 97%, while the conventional chlorine showed only 89% reduction in the bioactivities.Keywords: algae, biocide, biofouling, seawater cooling tower
Procedia PDF Downloads 2381007 Nano-emulsion/Nano-suspension as Precursors for Oral Dissolvable Film to Enhance Bioavalabilty for Poor-water Solubility Drugs
Authors: Yuan Yang, Mickey Lam
Abstract:
Oral dissolvable films have been considered as a unique alternative approach to conventional oral dosage forms. The films could be administrated via the gastrointestinal tract as conventional dosages or through sublingual/buccal mucosa membranes, which could enhance drug bioavailability by avoiding the first-pass effect and improving permeability due to high blood flow and lymphatic circulation. This work has described a state-of-art technic using nano-emulsion/nano-suspension as a precursor for the film to enhance the bioavailability of BCS class II drugs. The drug molecules are consequentially processed through the emulsification, gelation, and film-casting processes. The gelation process is critical to stabilizing the nano-emulsion for the film-casting as well as controlling the drug release process. Furthermore, the size of the nanoparticle on the film has a strong correlation with the size of the micelles in the precursor and the condition of the gelation process. It has been discovered that nanoparticle from 200 nm to 300 nm has shown the highest permeability for sublingual administration. In one example shown in work, the bioavailability of a low solubilize drug has been increased from 10% to 24% via sublingual administration of the film. The increasing of the bioavailability was thought to be associated with the enhancement of the diffusion process of the drug in the saliva layer above the mucosa membrane and the fact that the presents of the emulsifier help lose the rigid junction of the mucosa cells.Keywords: oral dissolvable film, nano-suspension, nano-emulsion, bioavailability
Procedia PDF Downloads 1811006 Designing Modified Nanocarriers Containing Selenium Nanoparticles Extracted from the Lactobacillus acidophilus and Their Anticancer Properties
Authors: Mahnoosh Aliahmadi, Akbar Esmaeili
Abstract:
This study synthesized new modified imaging nanocapsules (NCs) of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA) containing Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Se nanoparticles were then deposited on (Ga@DFA/FA/CS/PANI/PVA) using the impregnation method. The modified contrast agents were mixed with M. nigra extract, and their antibacterial activities were investigated by applying them to L929 cell lines. The influence of variable factors including surfactant, solvent, aqueous phase, pH, buffer, minimum Inhibitory concentration (MIC), minimum bactericidal concentration (MBC), cytotoxicity on cancer cells, antibiotic, antibiogram, release and loading, stirring effect, the concentration of nanoparticle, olive oil, and thermotical methods was investigated. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), and energy-dispersive X-ray (EDX), ultraviolet-visible (UV-Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM) and MTT conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful, and the MIC=2 factor was obtained with a less harmful effect.Keywords: imaging contrast agent, nanoparticles, response surface method, Lactobacillus acidophilus, selenium
Procedia PDF Downloads 781005 Effect of Falcaria vulgaris in Wound Healing and Immune Response of Common Carp (Cyprinus carpio)
Authors: N. Choobkar, M. Rezaeimanesh, A. M. Emami Rad, M. Ghaeni, H. Norouzi, S. Pahlavani, M. S. Tamasoki, E. Nezafatian
Abstract:
Antibiotics are used to increase the immune and wound healing in many animals . But due to the residual effects of a drug , researchers sought to replace them with natural materials such as Plant extracts. Falcaria vulgaris is the most attractive sources of the new drugs. Falcaria vulgaris (locally named Ghazzyaghi/Poghazeh) is a member of Umbelliferae family which grows near farmlands and is consumed as a vegetable in some regions of Iran. In the West of the country, in the wound healing and irregularities in the digestive system is also used. There were no scientific reports available in literature in support of the traditional claims of F. vulgaris in fish. The present study is therefore an attempt to assess the efficacy of this indigenous herb for its healing effect in common carp (Cyprinus carpio). Falcaria vulgaris at concentrations of 0, 2 and 10 % with Lophag foods used on wound healing of common carp and immune response, and weight grow and survival during periods of 21 days with feeding 2 times per day on the basis of body weight. The results showed that, compared with the control group, using of concentration 10 % F. vulgaris have significant effect on wound healing and stimulates the immune system by increasing white blood cells (WBC) and weight grow and survival of carp. The herb can used in wound healing, increased resistance to disease and weight grow in fish and the beneficial effects of this combination goes back to man.Keywords: common carp, falcaria vulgaris, immune response, wound healing
Procedia PDF Downloads 5881004 Exploring Marine Bacteria in the Arabian Gulf Region for Antimicrobial Metabolites
Authors: Julie Connelly, Tanvi Toprani, Xin Xie, Dhinoth Kumar Bangarusamy, Kris C. Gunsalus
Abstract:
The overuse of antibiotics worldwide has contributed to the development of multi-drug resistant (MDR) pathogenic bacterial strains. There is an increasing urgency to discover antibiotics to combat MDR pathogens. The microbiome of the Arabian Gulf is a largely unexplored and potentially rich source of novel bioactive compounds. Microbes that inhabit the Abu Dhabi coastal regions adapt to extreme environments with high salinity, hot temperatures, large temperature fluctuations, and acute exposure to solar energy. The microbes native to this region may produce unique metabolites with therapeutic potential as antibiotics and antifungals. We have isolated 200 pure bacterial strains from mangrove sediments, cyanobacterial mats, and coral reefs of the Abu Dhabi region. In this project, we aim to screen the marine bacterial strains to identify antibiotics, in particular undocumented compounds that show activity against existing antibiotic-resistant strains. We have acquired the ESKAPE pathogen panel, which consists of six antibiotic-resistant gram-positive and gram-negative bacterial pathogens that collectively cause most clinical infections. Our initial efforts of the primary screen using colony-picking co-culture assay have identified several candidate marine strains producing potential antibiotic compounds. We will next apply different assays, including disk-diffusion and broth turbidity growth assay, to confirm the results. This will be followed by bioactivity-guided purification and characterization of target compounds from the scaled-up volume of candidate strains, including SPE fraction, HPLC fraction, LC-MS, and NMR. For antimicrobial compounds with unknown structures, our final goal is to investigate their mode of action by identifying the molecular target.Keywords: marine bacteria, natural products, drug discovery, ESKAPE panel
Procedia PDF Downloads 741003 Finite Volume Method for Flow Prediction Using Unstructured Meshes
Authors: Juhee Lee, Yongjun Lee
Abstract:
In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.Keywords: finite volume method, fluid flow, laminar flow, unstructured grid
Procedia PDF Downloads 2851002 Bifidobacterium lactis Fermented Milk Was Not Effective to Eradication of Helicobacter Pylori Infection: A Prospective, Randomized, Double-Blind, Controlled Study
Authors: R. C. Barbuti, M. N. Oliveira, N. P. Perina, C. Haro, P. Bosch, C. S. Bogsan, J. N. Eisig, T. Navarro-Rodriguez
Abstract:
Background: The management of Helicobacter pylori (H. pylori) eradication is still a matter of discussion, full effectiveness is rarely achieved and it has many adverse effects. Probiotics are believed to have a role in eradicating and possibly preventing H. pylori infection as an adjunctive treatment. The present clinical study was undertaken to see the efficacy of a specially designed fermented milk product containing Bifidobacterium lactis B420 on the eradication of H. pylori infection in a prospective, randomized, double-blind, controlled study in humans. Method: Four test products were specially designed fermented milks, counts of viable cells in all products were 1010 Log CFU. 100 mL-1 for Bifidobacterium lactis-Bifidobacterium species 420, and 1011 Log CFU. 100 mL-1 for Streptococcus thermophiles were administered to subjects infected with H. pylori with a previous diagnosis of functional dyspepsia according to the Rome III criteria in a prospective, randomized, double-blind, placebo-controlled study in humans. Results: After FM supplementation, not all subjects showed a reduction in H. pylori colonization. Conclusion: Bifidobacterium lactis B420, administered twice a day for 90 days did not show an increase in H. pylori eradication effectiveness in Brazilian patients with functional dyspepsia.Keywords: antibacterial therapy, Bifidobacteria fermented milk, Helicobacter pylori, probiotics
Procedia PDF Downloads 2831001 Bacillus cereus Bacteremia and Multi-Organ Failure With Diffuse Brain Hypoxia During Acute Lymphoblastic Leukemia Induction Therapy. A Case Report
Authors: Roni Rachel Mendelson, Caileigh Pudela
Abstract:
Bacillus cereus is a toxin-producing, facultatively anaerobic gram-positive bacterium that is widely distributed environmentally. It can quickly multiply at room temperature with an abundantly present preformed toxin. When ingested, this toxin can cause gastrointestinal illness, which is the commonly known manifestation of the disease. Bacillus cereus sepsis is a disease that is mostly concerning in the population of the immunocompromised patients. One of them is acute lymphoblastic leukemia’s patients during induction. Pediatric acute lymphoblastic leukemia is a common pediatric hematologic malignancy. It is characterized by the rapid proliferation of poorly differentiated lymphoid progenitor cells inside the bone marrow. We present here a 21-month-old boy undergoing induction chemotherapy for acute lymphoblastic leukemia who developed bacillus sepsis bacteremia and, as a result, multi organ failure leading to seizures and multiple strokes. Our case report highlights the extensive overall and neurological damage that can be caused because of bacillus cereus bacteremia, which can lead to higher mortality rate and decreased in survivorship in a highly curable disease. It is very subtle and difficult to recognize and appears to be deteriorating extremely fast. There should be a low threshold for work up and empiric coverage for neutropenic patients during acute lymphoblastic leukemia induction therapy.Keywords: acute lymphoblastic leukemia, bacillus cereus, immunocompromised, sepsis
Procedia PDF Downloads 791000 Effect of Different SE Diets on Blood SE, TAC Levels in Dairy Cattle and Their Newborn Calves
Authors: Moshfeghi Sogand
Abstract:
Free radicals can be produced during the respiratory oxidation of different cells. These free radicals can damage to various macromolecules as protein ,fat, nucleic acids and … are harmful for body. The natural defence system that can prevent the damage of free radicals and nuteralized them , have tittled under the name total antioxidant capacity (TAC ). Se is one main antioxidant part in TAC , because it is one main part in structure of some body antioxidant enzymes such as GPX(glutathione peroxidase). Blood SE ,GPX and TAC probably can change by feeding of different selenium supplement diet in late pregnancy and also may transport from maternal blood to its fetus or by clostrum after calving. In this respect we have determined 100 pregnant dairy cattle (in the same condition of age , race and number of parturient) then devided them to 4 groups feed them in 3 last pregnancy months by different selenium diets. Group1:controle no se supplementation , group2: recived 0/3 ppm of the daily diet Saccharomyces Cervisiae . group3 :recived selenium _ rich yeast(containing200ppm selenium)was mixed with total daily ration fed. Group4: recived se _rich yeast(containing300 ppm selenium)was mixed with total daily ration fed. Then measured blood SE,GPX and TAC levels in them and in 3 days newborn calves after calving. The results were analysed by Tukey Anova test and the highest level of blood SE ,GPX and TAC was shown in cattle that feed fermented SE_yeast diet and in their 3 days newborn calves.Keywords: SE, TAC, SE DIETS, FRAP
Procedia PDF Downloads 43999 Crops Cold Stress Alleviation by Silicon: Application on Turfgrass
Authors: Taoufik Bettaieb, Sihem Soufi
Abstract:
As a bioactive metalloid, silicon (Si) is an essential element for plant growth and development. It also plays a crucial role in enhancing plants’ resilience to different abiotic and biotic stresses. The morpho-physiological, biochemical, and molecular background of Si-mediated stress tolerance in plants were unraveled. Cold stress is a severe abiotic stress response to the decrease of plant growth and yield by affecting various physiological activities in plants. Several approaches have been used to alleviate the adverse effects generated from cold stress exposure, but the cost-effective, environmentally friendly, and defensible approach is the supply of silicon. Silicon has the ability to neutralize the harmful impacts of cold stress. Therefore, based on these hypotheses, this study was designed in order to investigate the morphological and physiological background of silicon effects applied at different concentrations on cold stress mitigation during early growth of a turfgrass, namely Paspalum vaginatum Sw. Results show that silicon applied at different concentrations improved the morphological development of Paspalum subjected to cold stress. It is also effective on the photosynthetic apparatus by maintaining stability the photochemical efficiency. As the primary component of cellular membranes, lipids play a critical function in maintaining the structural integrity of plant cells. Silicon application decreased membrane lipid peroxidation and kept on membrane frontline barrier relatively stable under cold stress.Keywords: crops, cold stress, silicon, abiotic stress
Procedia PDF Downloads 121998 Gradient Index Metalens for WLAN Applications
Authors: Akram Boubakri, Fethi Choubeni, Tan Hoa Vuong, Jacques David
Abstract:
The control of electromagnetic waves is a key aim of several researches over the past decade. In this regard, Metamaterials have shown a strong ability to manipulate the electromagnetic waves on a subwavelength scales thanks to its unconventional properties that are not available in natural materials such as negative refraction index, super imaging and invisibility cloaking. Metalenses were used to avoid some drawbacks presented by conventional lenses since focusing with conventional lenses suffered from the limited resolution because they were only able to focus the propagating wave component. Nevertheless, Metalenses were able to go beyond the diffraction limit and enhance the resolution not only by collecting the propagating waves but also by restoring the amplitude of evanescent waves that decay rapidly when going far from the source and that contains the finest details of the image. Metasurfaces have many mechanical advantages over three-dimensional metamaterial structures especially the ease of fabrication and a smaller required volume. Those structures have been widely used for antenna performance improvement and to build flat metalenses. In this work, we showed that a well-designed metasurface lens operating at the frequency of 5.9GHz, has efficiently enhanced the radiation characteristics of a patch antenna and can be used for WLAN applications (IEEE 802.11 a). The proposed metasurface lens is built with a geometrically modified unit cells which lead to a change in the response of the lens at different position and allow the control of the wavefront beam of the incident wave thanks to the gradient refractive index.Keywords: focusing, gradient index, metasurface, metalens, WLAN Applications
Procedia PDF Downloads 253997 Simulation Study of Enhanced Terahertz Radiation Generation by Two-Color Laser Plasma Interaction
Authors: Nirmal Kumar Verma, Pallavi Jha
Abstract:
Terahertz (THz) radiation generation by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization and spectroscopic techniques. Due to non ionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser - plasma based THz radiation sources. The present paper is devoted to the simulation study of the enhanced THz radiation generation by propagation of two-color, linearly polarized laser pulses through magnetized plasma. The two laser pulses orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.Keywords: two-color laser pulses, terahertz radiation, magnetized plasma, ordinary and extraordinary mode
Procedia PDF Downloads 300996 Impregnation Reduction Method for the Preparation of Platinum-Nickel/Carbon Black Alloy Nanoparticles as Faor Electrocatalyst
Authors: Maryam Kiani
Abstract:
In order to enhance the efficiency and stability of an electrocatalyst for formic acid electro-oxidation reaction (FAOR), we developed a method to create Pt/Ni nanoparticles with carbon black. These nanoparticles were prepared using a simple impregnation reduction technique. During the observation, it was found that the nanoparticles had a spherical shape. Additionally, the average particle size remained consistent, falling within the range of about 4 nm. This approach aimed to obtain a loaded Pt-based electrocatalyst that would exhibit improved performance and stability when used in FAOR applications. By utilizing the impregnation reduction method and incorporating Ni nanoparticles along with Pt, we sought to enhance the catalytic properties of the material. By incorporating Ni atoms into the Pt structure, the electronic properties of Pt are modified, resulting in a delay in the chemisorption of harmful CO intermediate species. This modification also promotes the dehydrogenation pathway of the formic acid oxidation reaction (FAOR). Through electrochemical analysis, it has been observed that the Pt3Ni-C catalyst exhibits enhanced performance in FAOR compared to traditional Pt catalysts. This means that the addition of Ni atoms improves the efficiency and effectiveness of the Pt3Ni-C catalyst in facilitating the FAOR process. Overall, the utilization of these alloy nanoparticles as electrocatalysts represents a significant advancement in fuel cell technology.Keywords: electrocatalyst, impregnation reduction method, formic acid electro-oxidation reaction, fuel cells
Procedia PDF Downloads 125995 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data
Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali
Abstract:
The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors
Procedia PDF Downloads 68994 Molecular Characterization of Functional Domain (LRR) of TLR9 Genes in Malnad Gidda Cattle and Their Comparison to Cross Breed Cattle
Authors: Ananthakrishna L. R., Ramesh D., Kumar Wodeyar, Kotresh A. M., Gururaj P. M.
Abstract:
Malnad Gidda is the indigenous recognized cattle breed of Shivamogga District of Karnataka state, India is known for its disease resistance to many of the infectious diseases. There are 25 LRR (Leucine Rich Repeats) identified in bovine (Bos indicus) TLR9. The amino acid sequence of LRR is deduced to nucleotide sequence in BLASTx bioinformatic online tools. LRR2 to LRR10 are involved in pathogen recognition and binding in human TLR9 which showed a higher degree of nucleotide variations with respect to disease resistance to various pathogens. Hence, primers were designed to amplify the flanking sequences of LRR2 to LRR10, to discover the nucleotide variations if any, in Malnad Gidda breed of Cattle which is associated with disease resistance. The DNA isolated from peripheral blood mononuclear cells of ten Malnad Gidda cattle. A desired and specific amplification product of 0.8 kb was obtained at an annealing temperature of 56.6ᵒC. All the PCR products were sequenced on both sides by gene-specific primers. The sequences were compared with TLR9 sequence of cross breed cattle obtained from NCBI data bank. The sequence analysis between Malnad Gidda and crossbreed cattle revealed no nucleotide variations in the region LRR2 to LRR9 which shows the conserved in pathogen binding domain (LRR) of TLR9.Keywords: leucine rich repeats, Malnad Gidda, cross breed, TLR9
Procedia PDF Downloads 221993 An Overview of Food Waste Management Technologies; The Advantages of Using New Management Methods over the Older Methods to Reduce the Environmental Impacts of Food Waste, Conserve Resources, and Energy Recovery
Authors: Bahareh Asefi, Fereidoun Farzaneh, Ghazaleh Asefi
Abstract:
Continuous increasing food waste produced on a global as well as national scale may lead to burgeoning environmental and economic problems. Simultaneously, decreasing the use efficiencies of natural resources such as land, water, and energy is occurring. On the other hand, food waste has a high-energy content, which seems ideal to achieve dual benefits in terms of energy recovery and the improvement of resource use efficiencies. Therefore, to decrease the environmental impacts of food waste and resource conservation, the researcher has focused on traditional methods of using food waste as a resource through different approaches such as anaerobic digestion, composting, incineration, and landfill. The adverse environmental effects of growing food waste make it difficult for traditional food waste treatment and management methods to balance social, economic, and environmental benefits. The old technology does not need to develop, but several new technologies such as microbial fuel cells, food waste disposal, and bio-converting food waste technology still need to establish or appropriately considered. It is pointed out that some new technologies can take into account various benefits. Since the information about food waste and its management method is critical for executable policy, a review of the latest information regarding the source of food waste and its management technology in some counties is provided in this study.Keywords: food waste, management technology, innovative method, bio converting food waste, microbial fuel cell
Procedia PDF Downloads 113