Search results for: Evaluation factors
13019 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 5313018 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.Keywords: apartment complex, big data, life-cycle building value analysis, machine learning
Procedia PDF Downloads 37513017 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 13713016 Economic Evaluation of Varying Scenarios to Fulfill the Regional Electricity Demand in Pakistan
Authors: Muhammad Shahid, Kafait Ullah, Kashif Imran, Arshad Mahmood, Maarten Arentsen
Abstract:
Poor planning and governance in the power sector of Pakistan have generated several issues ranging from gradual reliance on thermal-based expensive energy mix, supply shortages, unrestricted demand, subsidization, inefficiencies at different levels of the value chain and resultantly, the circular debt. This situation in the power sector has also hampered the growth of allied economic sectors. This study uses the Long-range Energy Alternative Planning (LEAP) system for electricity modelling of Pakistan from the period of 2016 to 2040. The study has first time in Pakistan forecasted the electricity demand at the provincial level. At the supply side, five scenarios Business as Usual Scenario (BAUS), Coal Scenario (CS), Gas Scenario (GS), Nuclear Scenario (NS) and Renewable Scenario (RS) have been analyzed based on the techno-economic and environmental parameters. The study has also included environmental externality costs for evaluating the actual costs and benefits of different scenarios. Contrary to the expectations, RS has a lower output than even BAUS. The study has concluded that the generation from RS has five times lesser costs than BAUS, CS, and GS. NS can also be an alternative for the sustainable future of Pakistan. Generation from imported coal is not a good option, however, indigenous coal with clean coal technologies should be promoted. This paper proposes energy planners of the country to devise incentives for the utilization of indigenous energy resources including renewables on priority and then clean coal to reduce the energy crises of Pakistan.Keywords: economic evaluation, externality cost, penetration of renewable energy, regional electricity supply-demand planning
Procedia PDF Downloads 11913015 Effects, Causes, and Prevention of Teen Dating Violence
Authors: Isabel Jones
Abstract:
As adolescence is a formative time, experiences during adolescence often affect the rest of one’s life. Therefore, dating, specifically violence in dating, can have lasting effects on the rest of one’s life. In order to find sources, searches were conducted on PsycINFO, specifically EBSCO, and narrowed down under the criteria that the source contained information about adolescent dating violence rather than adult, and focused on causes, effects, or prevention methods. This literature review examines research regarding the effects and causes of TDV, and then what methods are effective in the prevention of TDV development. This will allow for a clear image of how these prevention methods are effective and why they are important. Effects of TDV extend beyond the physical, including psychological and sexual long-lasting effects. These are caused by a number of concepts, including learned behavior, inhibitory issues/substance abuse, and cultural factors. When both of these are taken into account, preventative measures such as school-based interventions, parental/adult monitoring, and the presence of positive family examples are more clear as to their effectiveness. This literature review may provide further awareness to this public health crisis and give the public a view of how adolescents are affected by TDV on their path from child to adult.Keywords: adolescence, dating violence, risk factors, predictors, relationship
Procedia PDF Downloads 7213014 Factor Associated with Uncertainty Undergoing Hematopoietic Stem Cell Transplantation
Authors: Sandra Adarve, Jhon Osorio
Abstract:
Uncertainty has been studied in patients with different types of cancer, except in patients with hematologic cancer and undergoing transplantation. The purpose of this study was to identify factors associated with uncertainty in adults patients with malignant hemato-oncology diseases who are scheduled to undergo hematopoietic stem cell transplantation based on Merle Mishel´s Uncertainty theory. This was a cross-sectional study with an analytical purpose. The study sample included 50 patients with leukemia, myeloma, and lymphoma selected by non-probability sampling by convenience and intention. Sociodemographic and clinical variables were measured. Mishel´s Scale of Uncertainty in Illness was used for the measurement of uncertainty. A bivariate and multivariate analyses were performed to explore the relationships and associations between the different variables and uncertainty level. For this analysis, the distribution of the uncertainty scale values was evaluated through the Shapiro-Wilk normality test to identify statistical tests to be used. A multivariate analysis was conducted through a logistic regression using step-by-step technique. Patients were 18-74 years old, with a mean age of 44.8. Over time, the disease course had a median of 9.5 months, an opportunity was found in the performance of the transplantation of < 20 days for 50% of the patients. Regarding the uncertainty scale, a mean score of 95.46 was identified. When the dimensions of the scale were analyzed, the mean score of the framework of stimuli was 25.6, of cognitive ability was 47.4 and structure providers was 22.8. Age was identified to correlate with the total uncertainty score (p=0.012). Additionally, a statistically significant difference was evidenced between different religious creeds and uncertainty score (p=0.023), education level (p=0.012), family history of cancer (p=0.001), the presence of comorbidities (p=0.023) and previous radiotherapy treatment (p=0.022). After performing logistic regression, previous radiotherapy treatment (OR=0.04 IC95% (0.004-0.48)) and family history of cancer (OR=30.7 IC95% (2.7-349)) were found to be factors associated with the high level of uncertainty. Uncertainty is present in high levels in patients who are going to be subjected to bone marrow transplantation, and it is the responsibility of the nurse to assess the levels of uncertainty and the presence of factors that may contribute to their presence. Once it has been valued, the uncertainty must be intervened from the identified associated factors, especially all those that have to do with the cognitive capacity. This implies the implementation and design of intervention strategies to improve the knowledge related to the disease and the therapeutic procedures to which the patients will be subjected. All interventions should favor the adaptation of these patients to their current experience and contribute to seeing uncertainty as an opportunity for growth and transcendence.Keywords: hematopoietic stem cell transplantation, hematologic diseases, nursing, uncertainty
Procedia PDF Downloads 17313013 Seroprevalence and Potential Risk Factors of Bovine Brucellosis under Diverse Production Systems in Central Punjab, Paksitan
Authors: A. Khan, I. Khan, M. Younus, S. E. Haque, U. Waheed, H. Neubauer, A. A. Anjum, S. A. Muhammad, A. Idrees T. Abbas, S. Raza, M. A. Ali, M. Farooq, M. Mahmood, A. Hussain, H. Danish, U. Tayyab, M. Zafar, M. Aslam.
Abstract:
Brucellosis is one of the major problems of milk producing animals in our country which deteriorate the health of livestock. It is a disease of zoonotic significance which is capable of producing disease in humans leading to infertility, orchitis, abortions, and synovitis. In this particular study, milk and serum samples of cattle and buffalo (n=402) were collected from different districts of Punjab including Narowal, Gujranwala and Gujrat. Milk samples were analyzed by Milk Ring Test (MRT), while serum samples were tested through Rose Bengal Plate agglutination Test (RBPT) and Indirect Enzyme Linked Immunosorbant Assay (i-ELISA). The sample tested with MRT were 9.5% positive, including cattle 9.6% and buffalo 9.3%. While using the RBPT test for the detection of serum samples and for screening purpose it was observed that 16.4% animals were seropositive, cattle were 18.8% and buffalo were 13.9% seropositive. The higher prevalence of brucellosis indicates the danger of the disease to human population. The serum samples positive by RBPT were further confirmed by the use of most specific and sensitive serological test known as i-ELISA. 11.4% animals were confirmed as seropositive by i-ELISA including cattle 13.5% seropositive and buffalo 9.3%. The results indicated high seroprevalence of brucellosis in cattle as compared to buffalos. Different risk factors were also studied to know the association between disease and their spread. Advanced age, larger herds, history of abortion and pregnancy of the animals is considered to be the important factors for the prevalence and spread of the hazardous zoonotic disease. It is a core issue of developing countries like Pakistan and has major public health impact.Keywords: humans, bovines, infertility, orchitis, abortions, seroprevalence, brucellosis
Procedia PDF Downloads 49013012 A Handheld Light Meter Device for Methamphetamine Detection in Oral Fluid
Authors: Anindita Sen
Abstract:
Oral fluid is a promising diagnostic matrix for drugs of abuse compared to urine and serum. Detection of methamphetamine in oral fluid would pave way for the easy evaluation of impairment in drivers during roadside drug testing as well as ensure safe working environments by facilitating evaluation of impairment in employees at workplaces. A membrane-based point-of-care (POC) friendly pre-treatment technique has been developed which aided elimination of interferences caused by salivary proteins and facilitated the demonstration of methamphetamine detection in saliva using a gold nanoparticle based colorimetric aptasensor platform. It was found that the colorimetric response in saliva was always suppressed owing to the matrix effects. By navigating the challenging interfering issues in saliva, we were successfully able to detect methamphetamine at nanomolar levels in saliva offering immense promise for the translation of these platforms for on-site diagnostic systems. This subsequently motivated the development of a handheld portable light meter device that can reliably transduce the aptasensors colorimetric response into absorbance, facilitating quantitative detection of analyte concentrations on-site. This is crucial due to the prevalent unreliability and sensitivity problems of the conventional drug testing kits. The fabricated light meter device response was validated against a standard UV-Vis spectrometer to confirm reliability. The portable and cost-effective handheld detector device features sensitivity comparable to the well-established UV-Vis benchtop instrument and the easy-to-use device could potentially serve as a prototype for a commercial device in the future.Keywords: aptasensors, colorimetric gold nanoparticle assay, point-of-care, oral fluid
Procedia PDF Downloads 6713011 Investigating Chinese Students' Perceptions of and Responses to Teacher Feedback: Multiple Case Studies in a UK University
Authors: Fangfei Li
Abstract:
Studies on teacher feedback have produced a wide range of findings in aspects of characteristics of good feedback, factors influencing the quality of feedback and teachers’ perspectives on teacher feedback. However, perspectives from students on how they perceive and respond to teacher feedback are still under scrutiny. Especially for Chinese overseas students who come from a feedback-sparse educational context in China, they might have different experiences when engaging with teacher feedback in the UK Higher Education. Therefore, the research aims to investigate and shed some new light on how Chinese students engage with teacher feedback in the UK higher education and how teacher feedback could enhance their learning. Research questions of this study are 1) What are Chinese overseas students’ perceptions of teacher feedback in courses of the UK higher education? 2) How do they respond to the teacher feedback they obtained? 3) What factors might influence their’ engagement with teacher feedback? Qualitative case studies of five Chinese postgraduate students in a UK university have been conducted by employing various types of interviews, such as background interviews, scenario-based interviews, stimulated recall interviews and retrospective interviews to address the research inquiries. Data collection lasted seven months, covering two phases – the pre-sessional language programme and the first semester of the Master’s degree programme. Research findings until now indicate that some factors, such as tutors’ handwriting, implicit instruction and value comments, influence students understanding and internalizing tutor feedback. Except for difficulties in understanding tutor feedback, students’ responses to tutor feedback are also influenced by quantity and quality of tutor-student communication, time constraints and trust to tutor feedback, etc. Findings also reveal that tutor feedback is able to improve students’ learning in aspects of promoting reflection on professional knowledge, promoting students’ communication with peers and tutors, increasing problem awareness and writing with the reader in mind. This paper will mainly introduce the research topic, the methodological procedure and research findings gained until now.Keywords: Chinese students, students’ perceptions, teacher feedback, the UK higher education
Procedia PDF Downloads 27213010 Simulation-Based Evaluation of Indoor Air Quality and Comfort Control in Non-Residential Buildings
Authors: Torsten Schwan, Rene Unger
Abstract:
Simulation of thermal and electrical building performance more and more becomes part of an integrative planning process. Increasing requirements on energy efficiency, the integration of volatile renewable energy, smart control and storage management often cause tremendous challenges for building engineers and architects. This mainly affects commercial or non-residential buildings. Their energy consumption characteristics significantly distinguish from residential ones. This work focuses on the many-objective optimization problem indoor air quality and comfort, especially in non-residential buildings. Based on a brief description of intermediate dependencies between different requirements on indoor air treatment it extends existing Modelica-based building physics models with additional system states to adequately represent indoor air conditions. Interfaces to corresponding HVAC (heating, ventilation, and air conditioning) system and control models enable closed-loop analyzes of occupants' requirements and energy efficiency as well as profitableness aspects. A complex application scenario of a nearly-zero-energy school building shows advantages of presented evaluation process for engineers and architects. This way, clear identification of air quality requirements in individual rooms together with realistic model-based description of occupants' behavior helps to optimize HVAC system already in early design stages. Building planning processes can be highly improved and accelerated by increasing integration of advanced simulation methods. Those methods mainly provide suitable answers on engineers' and architects' questions regarding more exuberant and complex variety of suitable energy supply solutions.Keywords: indoor air quality, dynamic simulation, energy efficient control, non-residential buildings
Procedia PDF Downloads 23513009 Factors Affecting Students' Performance in the Examination
Authors: Amylyn F. Labasano
Abstract:
A significant number of empirical studies are carried out to investigate factors affecting college students’ performance in the academic examination. With a wide-array of literature-and studies-supported findings, this study is limited only on the students’ probability of passing periodical exams which is associated with students’ gender, absences in the class, use of reference book, and hours of study. Binary logistic regression was the technique used in the analysis. The research is based on the students’ record and data collected through survey. The result reveals that gender, use of reference book and hours of study are significant predictors of passing an examination while students’ absenteeism is an insignificant predictor. Females have 45% likelihood of passing the exam than their male classmates. Students who use and read their reference book are 38 times more likely pass the exam than those who do not use and read their reference book. Those who spent more than 3 hours in studying are four (4) times more likely pass the exam than those who spent only 3 hours or less in studying.Keywords: absences, binary logistic regression, gender, hours of study prediction-causation method, periodical exams, random sampling, reference book
Procedia PDF Downloads 31713008 Longitudinal Profile of Antibody Response to SARS-CoV-2 in Patients with Covid-19 in a Setting from Sub–Saharan Africa: A Prospective Longitudinal Study
Authors: Teklay Gebrecherkos
Abstract:
Background: Serological testing for SARS-CoV-2 plays an important role in epidemiological studies, in aiding the diagnosis of COVID-19 and assess vaccine responses. Little is known about the dynamics of SARS-CoV-2 serology in African settings. Here, we aimed to characterize the longitudinal antibody response profile to SARS-CoV-2 in Ethiopia. Methods: In this prospective study, a total of 102 PCR-confirmed COVID-19 patients were enrolled. We obtained 802 plasma samples collected serially. SARS-CoV-2 antibodies were determined using four lateral flow immune assays (LFIAs) and an electrochemiluminescent immunoassay. We determined longitudinal antibody response to SARS-CoV-2 as well as seroconversion dynamics. Results: Serological positivity rate ranged between 12%-91%, depending on timing after symptom onset. There was no difference in the positivity rate between severe and non-severe COVID-19 cases. The specificity ranged between 90%-97%. Agreement between different assays ranged between 84%-92%. The estimated positive predictive value (PPV) for IgM or IgG in a scenario with seroprevalence at 5% varies from 33% to 58%. Nonetheless, when the population seroprevalence increases to 25% and 50%, there is a corresponding increase in the estimated PPVs. The estimated negative-predictive value (NPV) in a low seroprevalence scenario (5%) is high (>99%). However, the estimated NPV in a high seroprevalence scenario (50%) for IgM or IgG is reduced significantly from 80% to 85%. Overall, 28/102 (27.5%) seroconverted by one or more assays tested within a median time of 11 (IQR: 9–15) days post symptom onset. The median seroconversion time among symptomatic cases tended to be shorter when compared to asymptomatic patients [9 (IQR: 6–11) vs. 15 (IQR: 13–21) days; p = 0.002]. Overall, seroconversion reached 100% 5.5 weeks after the onset of symptoms. Notably, of the remaining 74 COVID-19 patients included in the cohort, 64 (62.8%) were positive for antibodies at the time of enrollment, and 10 (9.8%) patients failed to mount a detectable antibody response by any of the assays tested during follow-up. Conclusions: Longitudinal assessment of antibody response in African COVID-19 patients revealed heterogeneous responses. This underscores the need for a comprehensive evaluation of serum assays before implementation. Factors associated with failure to seroconvert need further research.Keywords: COVID-19, antibody, rapid diagnostic tests, ethiopia
Procedia PDF Downloads 8713007 The Potential in the Use of Building Information Modelling and Life-Cycle Assessment for Retrofitting Buildings: A Study Based on Interviews with Experts in Both Fields
Authors: Alex Gonzalez Caceres, Jan Karlshøj, Tor Arvid Vik
Abstract:
Life cycle of residential buildings are expected to be several decades, 40% of European residential buildings have inefficient energy conservation measure. The existing building represents 20-40% of the energy use and the CO₂ emission. Since net zero energy buildings are a short-term goal, (should be achieved by EU countries after 2020), is necessary to plan the next logical step, which is to prepare the existing outdated stack of building to retrofit them into an energy efficiency buildings. In order to accomplish this, two specialize and widespread tool can be used Building Information Modelling (BIM) and life-cycle assessment (LCA). BIM and LCA are tools used by a variety of disciplines; both are able to represent and analyze the constructions in different stages. The combination of these technologies could improve greatly the retrofitting techniques. The incorporation of the carbon footprint, introducing a single database source for different material analysis. To this is added the possibility of considering different analysis approaches such as costs and energy saving. Is expected with these measures, enrich the decision-making. The methodology is based on two main activities; the first task involved the collection of data this is accomplished by literature review and interview with experts in the retrofitting field and BIM technologies. The results of this task are presented as an evaluation checklist of BIM ability to manage data and improve decision-making in retrofitting projects. The last activity involves an evaluation using the results of the previous tasks, to check how far the IFC format can support the requirements by each specialist, and its uses by third party software. The result indicates that BIM/LCA have a great potential to improve the retrofitting process in existing buildings, but some modification must be done in order to meet the requirements of the specialists for both, retrofitting and LCA evaluators.Keywords: retrofitting, BIM, LCA, energy efficiency
Procedia PDF Downloads 22513006 Investigating the Behaviour of Composite Floors (Steel Beams and Concrete Slabs) under Mans Rhythmical Movement
Authors: M. Ali Lotfollahi Yaghin, M. Reza Bagerzadeh Karimi, Ali Rahmani, V. Sadeghi Balkanlou
Abstract:
Structural engineers have long been trying to develop solutions using the full potential of its composing materials. Therefore, there is no doubt that the structural solution progress is directly related to an increase in materials science knowledge. These efforts in conjunction with up-to-date modern construction techniques have led to an extensive use of composite floors in large span structures. On the other hand, the competitive trends of the world market have long been forcing structural engineers to develop minimum weight and labour cost solutions. A direct consequence of this new design trend is a considerable increase in problems related to unwanted floor vibrations. For this reason, the structural floors systems become vulnerable to excessive vibrations produced by impacts such as human rhythmic activities. The main objective of this paper is to present an analysis methodology for the evaluation of the composite floors human comfort. This procedure takes into account a more realistic loading model developed to incorporate the dynamic effects induced by human walking. The investigated structural models were based on various composite floors, with main spans varying from 5 to 10 m. based on an extensive parametric study the composite floors dynamic response, in terms of peak accelerations, was obtained and compared to the limiting values proposed by several authors and design standards. This strategy was adopted to provide a more realistic evaluation for this type of structure when subjected to vibration due to human walking.Keywords: vibration, resonance, composite floors, people’s rhythmic movement, dynamic analysis, Abaqus software
Procedia PDF Downloads 30813005 Modeling the Intricate Relationship between miRNA Dysregulation and Breast Cancer Development
Authors: Sajed Sarabandi, Mostafa Rostampour Vajari
Abstract:
Breast cancer is the most frequent form of cancer among women and the fifth-leading cause of cancer-related deaths. A common feature of cancer cells is their ability to survive and evade apoptosis. Understanding the mechanisms of these pathways and their regulatory factors can lead to the development of effective treatment strategies. In this study, we aim to model the effect of key miRNAs, which are significant regulatory factors in breast cancer. We designed a Petri net focusing on two crucial pathways, proliferation, and apoptosis, and identified the role of miRNAs in these pathways. Our analysis indicates that the upregulation of miRNAs 99a and 372 can effectively increase apoptosis and decrease proliferation. Moreover, we demonstrate that miRNA-600, previously reported as a potential candidate for treatment, may not be a suitable target due to its dual activity in proliferation. Therefore, further research is required to investigate the potential of this miRNA in cancer treatment. Our model shows that a combination of miRNA upregulation and knockdown can efficiently influence key genes such as MDM2 and PTEN, leading to the activation of apoptosis in cancer cells. Ultimately, our model successfully simulates the connection between regulatory miRNAs and key genes in breast cancer.Keywords: breast cancer, microRNAs, bio-modeling, Petri net
Procedia PDF Downloads 4213004 The Reflections of the K-12 English Language Teachers on the Implementation of the K-12 Basic Education Program in the Philippines
Authors: Dennis Infante
Abstract:
This paper examined the reflections of teachers on curriculum reforms, the implementation of the K-12 Basic Education Program in the Philippines. The results revealed that problems and concerns raised by teachers could be classified into curriculum materials and design; competence, readiness and motivation of the teachers; the learning environment, and support systems; readiness, competence and motivation of students; and other relevant factors. The best features of the K-12 curriculum reforms included (1) the components, curriculum materials; (2) the design, structure and delivery of the lessons; (3) the framework and theoretical approach; (3) the qualities of the teaching-learning activities; (4) and other relevant features. With the demanding task of implementing the new curriculum, the teachers expressed their needs which included (1) making the curriculum materials available to achieve the goals of the curriculum reforms; (2) enrichment of the learning environments; (3) motivating and encouraging the teachers to embrace change; (4) providing appropriate support systems; (5) re-tooling, and empowering teachers to implement the curriculum reforms; and (6) other relevant factors. The research concluded with a synthesis that provided a paradigm for implementing curriculum reforms which recognizes the needs of the teachers and the features of the new curriculum.Keywords: curriculum reforms, K-12, teachers' reflections, implementing curriculum change
Procedia PDF Downloads 28313003 A Next Generation Multi-Scale Modeling Theatre for in silico Oncology
Authors: Safee Chaudhary, Mahnoor Naseer Gondal, Hira Anees Awan, Abdul Rehman, Ammar Arif, Risham Hussain, Huma Khawar, Zainab Arshad, Muhammad Faizyab Ali Chaudhary, Waleed Ahmed, Muhammad Umer Sultan, Bibi Amina, Salaar Khan, Muhammad Moaz Ahmad, Osama Shiraz Shah, Hadia Hameed, Muhammad Farooq Ahmad Butt, Muhammad Ahmad, Sameer Ahmed, Fayyaz Ahmed, Omer Ishaq, Waqar Nabi, Wim Vanderbauwhede, Bilal Wajid, Huma Shehwana, Muhammad Tariq, Amir Faisal
Abstract:
Cancer is a manifestation of multifactorial deregulations in biomolecular pathways. These deregulations arise from the complex multi-scale interplay between cellular and extracellular factors. Such multifactorial aberrations at gene, protein, and extracellular scales need to be investigated systematically towards decoding the underlying mechanisms and orchestrating therapeutic interventions for patient treatment. In this work, we propose ‘TISON’, a next-generation web-based multiscale modeling platform for clinical systems oncology. TISON’s unique modeling abstraction allows a seamless coupling of information from biomolecular networks, cell decision circuits, extra-cellular environments, and tissue geometries. The platform can undertake multiscale sensitivity analysis towards in silico biomarker identification and drug evaluation on cellular phenotypes in user-defined tissue geometries. Furthermore, integration of cancer expression databases such as The Cancer Genome Atlas (TCGA) and Human Proteome Atlas (HPA) facilitates in the development of personalized therapeutics. TISON is the next-evolution of multiscale cancer modeling and simulation platforms and provides a ‘zero-code’ model development, simulation, and analysis environment for application in clinical settings.Keywords: systems oncology, cancer systems biology, cancer therapeutics, personalized therapeutics, cancer modelling
Procedia PDF Downloads 22713002 Deep Learning Prediction of Residential Radon Health Risk in Canada and Sweden to Prevent Lung Cancer Among Non-Smokers
Authors: Selim M. Khan, Aaron A. Goodarzi, Joshua M. Taron, Tryggve Rönnqvist
Abstract:
Indoor air quality, a prime determinant of health, is strongly influenced by the presence of hazardous radon gas within the built environment. As a health issue, dangerously high indoor radon arose within the 20th century to become the 2nd leading cause of lung cancer. While the 21st century building metrics and human behaviors have captured, contained, and concentrated radon to yet higher and more hazardous levels, the issue is rapidly worsening in Canada. It is established that Canadians in the Prairies are the 2nd highest radon-exposed population in the world, with 1 in 6 residences experiencing 0.2-6.5 millisieverts (mSv) radiation per week, whereas the Canadian Nuclear Safety Commission sets maximum 5-year occupational limits for atomic workplace exposure at only 20 mSv. This situation is also deteriorating over time within newer housing stocks containing higher levels of radon. Deep machine learning (LSTM) algorithms were applied to analyze multiple quantitative and qualitative features, determine the most important contributory factors, and predicted radon levels in the known past (1990-2020) and projected future (2021-2050). The findings showed gradual downwards patterns in Sweden, whereas it would continue to go from high to higher levels in Canada over time. The contributory factors found to be the basement porosity, roof insulation depthness, R-factor, and air dynamics of the indoor environment related to human window opening behaviour. Building codes must consider including these factors to ensure adequate indoor ventilation and healthy living that can prevent lung cancer in non-smokers.Keywords: radon, building metrics, deep learning, LSTM prediction model, lung cancer, canada, sweden
Procedia PDF Downloads 11713001 Using Hierarchical Modelling to Understand the Role of Plantations in the Abundance of Koalas, Phascolarctos cinereus
Authors: Kita R. Ashman, Anthony R. Rendall, Matthew R. E. Symonds, Desley A. Whisson
Abstract:
Forest cover is decreasing globally, chiefly due to the conversion of forest to agricultural landscapes. In contrast, the area under plantation forestry is increasing significantly. For wildlife occupying landscapes where native forest is the dominant land cover, plantations generally represent a lower value habitat; however, plantations established on land formerly used for pasture may benefit wildlife by providing temporary forest habitat and increasing connectivity. This study investigates the influence of landscape, site, and climatic factors on koala population density in far south-west Victoria where there has been extensive plantation establishment. We conducted koala surveys and habitat characteristic assessments at 72 sites across three habitat types: plantation, native vegetation blocks, and native vegetation strips. We employed a hierarchical modeling framework for estimating abundance and constructed candidate multinomial N-mixture models to identify factors influencing the abundance of koalas. We detected higher mean koala density in plantation sites (0.85 per ha) than in either native block (0.68 per ha) or native strip sites (0.66 per ha). We found five covariates of koala density and using these variables, we spatially modeled koala abundance and discuss factors that are key in determining large-scale distribution and density of koala populations. We provide a distribution map that can be used to identify high priority areas for population management as well as the habitat of high conservation significance for koalas. This information facilitates the linkage of ecological theory with the on-ground implementation of management actions and may guide conservation planning and resource management actions to consider overall landscape configuration as well as the spatial arrangement of plantations adjacent to the remnant forest.Keywords: abundance modelling, arboreal mammals plantations, wildlife conservation
Procedia PDF Downloads 11913000 Northern Ghana’s Sustainable Food Systems: Evaluating the Impact of International Development
Authors: Maxwell Ladogo Abilla
Abstract:
As evidence from the 2007–2008 and 2010 global food and financial crises revealed that food systems were under stress, the idea of sustainable food systems rose to prominence in the discussion of food security. The idea suggests moving away from a conception of food security that emphasizes production in favor of one that is more socially and environmentally conscious and interested in tackling a wide range of issues that have rendered the food system dysfunctional. This study evaluates the efforts made by international development organizations to increase food security in the area, taking into account the persistence of poverty and food insecurity in northern Ghana, utilizing the idea of sustainable food systems as the evaluation criterion. The study used triangulation to address the research questions by combining qualitative interview data with documentary analysis. To better comprehend the concept of sustainability, a variety of discourses and concepts are used, which results in the development of eight doable objectives for attaining sustainable food systems. The study finds that the food system in northern Ghana is unsustainable because of three kinds of barriers, with the practical objectives of developing sustainable food systems serving as the assessment criteria (natural, cultural and economic, and institutional). According to an evaluation of the World Food Programme's development support in northern Ghana, regional challenges to attaining sustainable food systems continue to be unaddressed by global development initiatives. Due to institutional constraints, WFP's interventions fell short of their promise. By demonstrating the need for development partners to enhance institutional efficiency and coordination, enable marginalized communities to access their rights, and prioritize agricultural irrigation in the area, the study makes a contribution to development policy and practice in northern Ghana.Keywords: sustainable, food security, development, institutional
Procedia PDF Downloads 9512999 The Potential Use of Flavin Mononucleotide for Photoluminescent and Bioluminescent Textile
Authors: Sweta Iyer, Nemeshwaree Behary, Jinping Guan, Guoqiang Chen, Vincent Nierstrasz
Abstract:
Flavin mononucleotide widely known as 'FMN' is a biobased resource derived from riboflavin. The isoalloxazine ring present in the FMN molecule attributes the photoluminescence phenomenon, whereas FMN molecule in the presence of bacterial luciferase enzyme and co-factors such as NADH, long chain aldehyde leads to bioluminescence reaction. In this study, the FMN molecule was treated on cellulosic textile using chromojet technique and the photoluminescence property was characterized using spectroscopy technique. Further, the FMN was used as a substrate along with enzymes and co-factors to treat the non-woven textile, and the bioluminescence property was explored using luminometer equipment. The investigation revealed photoluminescence property on cellulosic textile, and the emission peak was observed at a wavelength around 530 nm with an average corrected spectral intensity of 10×106 CPS/Microamps. In addition, the measurement of nonwoven textile using bioluminescence reaction system exhibited light intensity measured in the form of relative light units (RLU). The study enabled to explore the use of FMN as both photoluminescent and bioluminescent textile. Further investigation would require for stability study of the same to provide an eco-efficient approach to obtain luminescent textile.Keywords: flavin mononucleotide, photoluminescence, bioluminescence, luminescent textile
Procedia PDF Downloads 29712998 Food Insecurity and Other Correlates of Individual Components of Metabolic Syndrome in Women Living with HIV (WLWH) in the United States
Authors: E. Wairimu Mwangi, Daniel Sarpong
Abstract:
Background: Access to effective antiretroviral therapy in the United States has resulted in the rise in longevity in people living with HIV (PLHIV). Despite the progress, women living with HIV (WLWH) experience increasing rates of cardiometabolic disorders compared with their HIV-negative counterparts. Studies focusing on the predictors of metabolic disorders in this population have largely focused on the composite measure of metabolic syndrome (METs). This study seeks to identify the predictors of composite and individual METs factors in a nationally representative sample of WLWH. In particular, the study also examines the role of food security in predicting METs. Methods: The study comprised 1800 women, a subset of participants from the Women’s Interagency HIV Study (WIHS). The primary exposure variable, food security, was measured using the U.S. 10-item Household Food Security Survey Module. The outcome measures are the five metabolic syndrome indicators (elevated blood pressure [systolic BP > 130 mmHg and diastolic BP ≥ 85 mmHg], elevated fasting glucose [≥ 110 mg/dL], elevated fasting triglyceride [≥ 150 mg/dL], reduced HDL cholesterol [< 50 mg/dL], and waist circumference > 88 cm) and the composite measure - Metabolic Syndrome (METs) Status. Each metabolic syndrome indicator was coded one if yes and 0 otherwise. The values of the five indicators were summed, and participants with a total score of 3 or greater were classified as having metabolic syndrome. Participants classified as having metabolic syndrome were assigned a code of 1 and 0 otherwise for analysis. The covariates accounted for in this study fell into sociodemographic factors and behavioral and health characteristics. Results: The participants' mean (SD) age was 47.1 (9.1) years, with 71.4% Blacks and 10.9% Whites. About a third (33.1%) had less than a high school (HS) diploma, 60.4% were married, 32.8% were employed, and 53.7% were low-income. The prevalence of worst dietary diversity, low, moderate, and high food security were 24.1%, 26.6%, 17.0%, and 56.4%, respectively. The correlate profile of the five individual METs factors plus the composite measure of METs differ significantly, with METs based on HDL having the most correlates (Age, Education, Drinking Status, Low Income, Body Mass Index, and Health Perception). Additionally, metabolic syndrome based on waist circumference was the only metabolic factor where food security was significantly correlated (Food Security, Age, and Body Mass Index). Age was a significant predictor of all five individual METs factors plus the composite METs measure. Except for METs based on Fasting Triglycerides, body mass index (BMI) was a significant correlate of the various measures of metabolic syndrome. Conclusion: High-density Lipoprotein (HDL) cholesterol significantly correlated with most predictors. BMI was a significant predictor of all METs factors except Fasting Triglycerides. Food insecurity, the primary predictor, was only significantly associated with waist circumference.Keywords: blood pressure, food insecurity, fasting glucose, fasting triglyceride, high-density lipoprotein, metabolic syndrome, waist circumference, women living with HIV
Procedia PDF Downloads 6212997 Attitude Towards E-Learning: A Case of University Teachers and Students
Authors: Muhamamd Shahid Farooq, Maazan Zafar, Rizawana Akhtar
Abstract:
E-learning technologies are the blessings of advancements in science and technology. These facilitate the learners to get information at any place and any time by improving their self-confidence, self-efficacy and effectiveness in teaching learning process. E-learning provides an individualized learning experience for learners and remove barriers faced by students during new and creative ways of gaining information. It provides a wide range of facilities to enable the teachers and students for effective and purposeful learning. This study was conducted to explore the attitudes of university students and teachers towards e-learning working in a metropolitan university of Pakistan. The personal, institutional and technological characteristics of the teachers and students of higher education institution effect the adoption of e-learning. For this descriptive study 449 students and 35 university teachers were surveyed by using a Likert scale type questionnaire consisting of 52 statements relating to six factors "perceived usefulness, intention to adopt e-learning, ease of e-learning use, availability resources, e-learning stressors, and pressure to use e-learning". Data were analyzed by making comparisons on the basis of different demographic factors. The findings of the study show that both type of respondents have positive attitude towards e-learning. However, the male and female respondents differ in their opinion for e-learning implementation.Keywords: e-learning, ICT, e-sources of learning, questionnaire
Procedia PDF Downloads 53012996 Multilevel Regression Model - Evaluate Relationship Between Early Years’ Activities of Daily Living and Alzheimer’s Disease Onset Accounting for Influence of Key Sociodemographic Factors Using a Longitudinal Household Survey Data
Authors: Linyi Fan, C.J. Schumaker
Abstract:
Background: Biomedical efforts to treat Alzheimer’s disease (AD) have typically produced mixed to poor results, while more lifestyle-focused treatments such as exercise may fare better than existing biomedical treatments. A few promising studies have indicated that activities of daily life (ADL) may be a useful way of predicting AD. However, the existing cross-sectional studies fail to show how functional-related issues such as ADL in early years predict AD and how social factors influence health either in addition to or in interaction with individual risk factors. This study would helpbetterscreening and early treatments for the elderly population and healthcare practice. The findings have significance academically and practically in terms of creating positive social change. Methodology: The purpose of this quantitative historical, correlational study was to examine the relationship between early years’ ADL and the development of AD in later years. The studyincluded 4,526participantsderived fromRAND HRS dataset. The Health and Retirement Study (HRS) is a longitudinal household survey data set that is available forresearchof retirement and health among the elderly in the United States. The sample was selected by the completion of survey questionnaire about AD and dementia. The variablethat indicates whether the participant has been diagnosed with AD was the dependent variable. The ADL indices and changes in ADL were the independent variables. A four-step multilevel regression model approach was utilized to address the research questions. Results: Amongst 4,526 patients who completed the AD and dementia questionnaire, 144 (3.1%) were diagnosed with AD. Of the 4,526 participants, 3,465 (76.6%) have high school and upper education degrees,4,074 (90.0%) were above poverty threshold. The model evaluatedthe effect of ADL and change in ADL on onset of AD in late years while allowing the intercept of the model to vary by level of education. The results suggested that the only significant predictor of the onset of AD was changes in early years’ ADL (b = 20.253, z = 2.761, p < .05). However, the result of the sensitivity analysis (b = 7.562, z = 1.900, p =.058), which included more control variables and increased the observation period of ADL, are not supported this finding. The model also estimated whether the variances of random effect vary by Level-2 variables. The results suggested that the variances associated with random slopes were approximately zero, suggesting that the relationship between early years’ ADL were not influenced bysociodemographic factors. Conclusion: The finding indicated that an increase in changes in ADL leads to an increase in the probability of onset AD in the future. However, this finding is not support in a broad observation period model. The study also failed to reject the hypothesis that the sociodemographic factors explained significant amounts of variance in random effect. Recommendations were then made for future research and practice based on these limitations and the significance of the findings.Keywords: alzheimer’s disease, epidemiology, moderation, multilevel modeling
Procedia PDF Downloads 13712995 Heavy Vehicles Crash Injury Severity at T-Intersections
Authors: Sivanandan Balakrishnan, Sara Moridpour, Richard Tay
Abstract:
Heavy vehicles make a significant contribution to many developed economies, including Australia, because they are a major means of transporting goods within these countries. With the increase in road freight, there will be an increase in the heavy vehicle traffic proportion, and consequently, an increase in the possibility of collisions involving heavy vehicles. Crashes involving heavy vehicles are a major road safety concern because of the higher likelihood of fatal and serious injury, especially to any small vehicle occupant involved. The primary objective of this research is to identify the factors influencing injury severity to occupants in vehicle collisions involving heavy vehicle at T- intersection using a binary logit model in Victoria, Australia. Our results show that the factors influencing injury severity include occupants' gender, age and restraint use. Also, vehicles' type, movement, point-of-impact and damage, time-of-day, day-of-week and season, higher percentage of trucks in traffic volume, hit pedestrians, number of occupants involved and type of collisions are associated with severe injury.Keywords: binary logit model, heavy vehicle, injury severity, T-intersections
Procedia PDF Downloads 40012994 Smart Beta Portfolio Optimization
Authors: Saud Al Mahdi
Abstract:
Traditionally,portfolio managers have been discouraged from timing the market. This means, for example, that equity managers have been forced to adhere strictly to a benchmark with static or relatively stable components, such as the SP 500 or the Russell 3000. This means that the portfolio’s exposures to all risk factors should mimic as closely as possible the corresponding exposures of the benchmark. The main risk factor, of course, is the market itself. Effectively, a long-only portfolio would be constrained to have a beta 1. More recently, however, managers have been given greater discretion to adjust their portfolio’s risk exposures (in particular, the beta of their portfolio) dynamically to match the manager’s beliefs about future performance of the risk factors themselves. This freedom translates into the manager’s ability to adjust the portfolio’s beta dynamically. These strategies have come to be known as smart beta strategies. Adjusting beta dynamically amounts to attempting to "time" the market; that is, to increase exposure when one anticipates that the market will rise, and to decrease it when one anticipates that the market will fall. Traditionally, market timing has been believed to be impossible to perform effectively and consistently. Moreover, if a majority of market participants do it, their combined actions could destabilize the market. The aim of this project is to investigate so-called smart beta strategies to determine if they really can add value, or if they are merely marketing gimmicks used to sell dubious investment strategies.Keywords: beta, alpha, active portfolio management, trading strategies
Procedia PDF Downloads 36112993 Family History of Obesity and Risk of Childhood Overweight and Obesity: A Meta-Analysis
Authors: Martina Kanciruk, Jac J. W. Andrews, Tyrone Donnon
Abstract:
The purpose of this study was to determine the significance of history of obesity for the development of childhood overweight and/or obesity. Accordingly, a systematic literature review of English-language studies published from 1980 to 2012 using the following data bases: MEDLINE, PsychINFO, Cochrane Database of Systematic Reviews, and Dissertation Abstracts International was conducted. The following terms were used in the search: pregnancy, overweight, obesity, family history, parents, childhood, risk factors. Eleven studies of family history and obesity conducted in Europe, Asia, North America, and South America met the inclusion criteria. A meta-analysis of these studies indicated that family history of obesity is a significant risk factor of overweight and /or obesity in offspring; risk for offspring overweight and/or obesity associated with family history varies depending of the family members included in the analysis; and when family history of obesity is present, the offspring are at greater risk for developing obesity or overweight. In addition, the results from moderator analyses suggest that part of the heterogeneity discovered between the studies can be explained by the region of world that the study occurred in and the age of the child at the time of weight assessment.Keywords: childhood obesity, overweight, family history, risk factors, meta-analysis
Procedia PDF Downloads 52412992 Morphometric Parameters and Evaluation of Persian Fallow Deer Semen in Dashenaz Refuge in Iran
Authors: Behrang Ekrami, Amin Tamadon
Abstract:
Persian fallow deer (Dama dama mesopotamica) is belonging to the family Cervidae and is only found in a few protected areas in the northwest, north, and southwest of Iran. The aims of this study were analysis of inbreeding and morphometric parameters of semen in male Persian fallow deer to investigate the cause of reduced fertility of this endangered species in Dasht-e-Naz National Refuge, Sari, Iran. The Persian fallow deer semen was collected from four adult bucks randomly during the breeding and non-breeding season from five dehorned and horned deer's BY an artificial vagina. Twelve blood samples was taken from Persian fallow deer and mitochondrial DNA was extracted, amplified, extracted, sequenced, and then were considered for genetic analysis. The Persian fallow deer semen, both with normal and abnormal spermatozoa, is similar to that of domestic ruminants but very smaller and difficult to observe at the primary observation. The post-mating season collected ejaculates contained abnormal spermatozoa, debris and secretion of accessory glands in horned bucks and accessory glands secretion free of any spermatozoa in dehorned or early velvet budding bucks. Microscopic evaluation in all four bucks during the mating season showed the mean concentration of 9×106 spermatozoa/ml. The mean ±SD of age, testes length and testes width was 4.60±1.52 years, 3.58±0.32 and 1.86±0.09 cm, respectively. The results identified 1120 loci (assuming each nucleotide as locus) in which 377 were polymorphic. In conclusion, reduced fertility of male Persian fallow deer may be caused by inbreeding of the protected herd in a limited area of Dasht-e-Naz National Refuge.Keywords: Persian fallow deer, spermatozoa, reproductive characteristics, morphometric parameters
Procedia PDF Downloads 58112991 Model Development of Health Tourism at Ban Nam Chieo Community, Laem Ngop, Trat Province
Authors: Pradapet Krutchangthong, Jirawat Sudsawart
Abstract:
This research aims to study the health tourism administration and factors related to health tourism promotion at Ban Nam Chieo Community, Laem Ngop, Trat Province. The sample in this research is 361 tourists who use the service and Ban Nam Chieo Community residents who provide the service. Sampling was done from a population size of 3,780 using Taro Yamane’s formula. The tools used in the study were questionnaires and interviews. The statistics used in this research are percentage, mean and standard deviation. The result of Model Development of Health Tourism at Ban Nam Chieo Community, Laem Ngop , Trat Province shows that most of them are female with bachelor degree. They are government officers with an average income between 16,001-20,000 Baht. Suggested health system activities for health tourism development are: 1) health massage, 2) herbal compress, 3) exercise in the water by walking on shell. Meanwhile, factors related to health tourism promotion at Ban Nam Chieo Community, Laem Ngop, Trat Province are: 1) understanding the context of the community and service providers, 2) cooperation from related government and private sectors.Keywords: health tourism, health system activities, promotion, administration
Procedia PDF Downloads 39212990 The Impact of Organizational Justice on Organizational Loyalty Considering the Role of Spirituality and Organizational Trust Variable: Case Study of South Pars Gas Complex
Authors: Sima Radmanesh, Nahid Radmanesh, Mohsen Yaghmoor
Abstract:
The presence of large number of active rival gas companies on Persian Gulf border necessitates the adaptation and implementation of effective employee retention strategies as well as implementation of promoting loyalty and belonging strategies of specialized staffs in the South Pars gas company. Hence, this study aims at assessing the amount of organizational loyalty and explaining the effect of institutional justice on organizational justice with regard to the role of mediator variables of spirituality in the work place and organizational trust. Therefore, through reviewing the related literature, the researchers achieve a conceptual model for the effect of these factors on organizational loyalty. To this end, this model was assessed and tested through questionnaires in South Pars gas company. The research method was descriptive and correlation-structural equation modeling. The findings of the study indicated a significant relationship between the concepts addressed in the research and conceptual models were confirmed. Finally, according to the results to improve effectiveness factors affecting organizational loyalty, recommendations are provided.Keywords: organizational loyalty, organizational trust, organizational justice, organizational spirit, oil and gas company
Procedia PDF Downloads 475