Search results for: neural progentor cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4929

Search results for: neural progentor cells

1629 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma

Procedia PDF Downloads 155
1628 A Novel Upregulated circ_0032746 on Sponging with MIR4270 Promotes the Proliferation and Migration of Esophageal Squamous Cell Carcinoma

Authors: Sachin Mulmi Shrestha, Xin Fang, Hui Ye, Lihua Ren, Qinghua Ji, Ruihua Shi

Abstract:

Background: Esophageal squamous cell carcinoma (ESCC) is a tumor arising from esophageal epithelial cells and is one of the major disease subtype in Asian countries, including China. Esophageal cancer is the 7th highest incidence based on the 2020 data of GLOBOCAN. The pathogenesis of cancer is still not well understood as many molecular and genetic basis of esophageal carcinogenesis has yet to be clearly elucidated. Circular RNAs are RNA molecules that are formed by back-splicing covalently joined 3′- and 5′-endsrather than canonical splicing, and recent data suggest circular RNAs could sponge miRNAs and are enriched with functional miRNA binding sites. Hence, we studied the mechanism of circular RNA, its biological function, and the relationship between microRNA in the carcinogenesis of ESCC. Methods: 4 pairs of normal and esophageal cancer tissues were collected in Zhongda hospital, affiliated to Southeast University, and high-throughput RNA sequencing was done. The result revealed that circ_0032746 was upregulated, and thus we selected circ_0032746 for further study. The backsplice junction of circRNA was validated by sanger sequence, and stability was determined by RNASE R assay. The binding site of circRNA and microRNA was predicted by circinteractome,mirandaand RNAhybrid database. Furthermore, circRNA was silenced by siRNA and then by lentivirus. The regulatory axis of circ0032746/miR4270 was validated by shRNA, mimic, and inhibitor transfection. Then, in vitro experiments were performed to assess the role of circ0032746 on proliferation (CCK-8 assay and colon formation assay), migration and invasion (Transewell assay), and apoptosis of ESCC. Results: The upregulated circ0032746 was validated in 9 pairs of tissues and 5 types of cell lines by qPCR, which showed high expression and was statistically significant (P<0.005) ). Upregulated circ0032746 was silenced by shRNA, which showed significant knockdown in KYSE 30 and TE-1 cell lines expression compared to control. Nuclear and cytoplasmic mRNA fraction experiment displayed the cytoplasmic location of circ0032746. The sponging of miR4270 was validated by co-transfection of sh-circ0032746 and mimic or inhibitor. Transfection with mimic showed the decreased expression of circ_0032746, whereas inhibitor inhibited the result. In vitro experiments showed that silencing of circ_0032746 inhibited the proliferation, migration, and invasion compared to the negative control group. The apoptosis was seen higher in a knockdown group than in the control group. Furthermore, 11 common mircoRNA target mRNAs were predicted by Targetscan, MirTarbase, and miRanda database, which may further play role in the pathogenesis. Conclusion: Our results showed that novel circ_0032746 is upregulated in ESCC and plays role in itsoncogenicity. Silencing of circ_0032746 inhibits the proliferation and migration of ESCC whereas increases the apoptosis of cancer cells. Hence, circ0032746 acts as an oncogene in ESCC by sponging with miR4270 and could be a potential biomarker in the diagnosis of ESCC in the future.

Keywords: circRNA, esophageal squamous cell carcinoma, microRNA, upregulated

Procedia PDF Downloads 113
1627 Indigenous Patch Clamp Technique: Design of Highly Sensitive Amplifier Circuit for Measuring and Monitoring of Real Time Ultra Low Ionic Current through Cellular Gates

Authors: Moez ul Hassan, Bushra Noman, Sarmad Hameed, Shahab Mehmood, Asma Bashir

Abstract:

The importance of Noble prize winning “Patch Clamp Technique” is well documented. However, Patch Clamp Technique is very expensive and hence hinders research in developing countries. In this paper, detection, processing and recording of ultra low current from induced cells by using transimpedence amplifier is described. The sensitivity of the proposed amplifier is in the range of femto amperes (fA). Capacitive-feedback is used with active load to obtain a 20MΩ transimpedance gain. The challenging task in designing includes achieving adequate performance in gain, noise immunity and stability. The circuit designed by the authors was able to measure current in the rangeof 300fA to 100pA. Adequate performance shown by the amplifier with different input current and outcome result was found to be within the acceptable error range. Results were recorded using LabVIEW 8.5®for further research.

Keywords: drug discovery, ionic current, operational amplifier, patch clamp

Procedia PDF Downloads 519
1626 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
1625 Influence of Preheating Self-Adhesive Cements on the Degree of Conversion, Cell Migration and Cell Viability in NIH/3T3

Authors: Celso Afonso Klein Jr., Henrique Cantarelli, Fernando Portella, Keiichi Hosaka, Eduardo Reston, Fabricio Collares, Roberto Zimmer

Abstract:

TTo evaluate the influence of preheating self-adhesive cement at 39ºC on cell migration, cytotoxicity and degree of conversion. RelyX U200, Set PP and MaxCem Elite were subjected to a degree of conversion analysis (FTIR-ATR). For the cytotoxicity analysis, extracts (24 h and 7 days) were placed in contact with NIH/3T3 cells. For cell migration, images were captured of each sample until the possible closure of the cleft occurred. In the results of the degree of conversion, preheating did not improve the conversion of cement. For the MTT, preheating did not improve the results within 24 hours. However, it generated positive results within 7 days for the Set PP resin cement. For cell migration, high rates of cell death were found in all groups. It is concluded that preheating at 39ºC caused a positive effect only in increasing the cell viability of the Set PP resin cement and that both materials analyzed are highly cytotoxic.

Keywords: dental cements, resin cements, degree of conversion, cytotoxicity, cell migration assays

Procedia PDF Downloads 73
1624 Synthesis and Characterization of Biodegradable Elastomeric Polyester Amide for Tissue Engineering Applications

Authors: Abdulrahman T. Essa, Ahmed Aied, Omar Hamid, Felicity R. A. J. Rose, Kevin M. Shakesheff

Abstract:

Biodegradable poly(ester amide)s are promising polymers for biomedical applications such as drug delivery and tissue engineering because of their optimized chemical and physical properties. In this study, we developed a biodegradable polyester amide elastomer poly(serinol sebacate) (PSS) composed of crosslinked networks based on serinol and sebacic acid. The synthesized polymers were characterized to evaluate their chemical structures, mechanical properties, degradation behaviors and in vitro cytocompatibility. Analysis of proton nuclear magnetic resonance and Fourier transform infrared spectroscopy revealed the structure of the polymer. The PSS exhibit excellent solubility in a variety of solvents such as methanol, dimethyl sulfoxide and dimethylformamide. More importantly, the mechanical properties of PSS could be tuned by changing the curing conditions. In addition, the 3T3 fibroblast cells cultured on the PSS demonstrated good cell attachment and high viability.

Keywords: biodegradable, biomaterial, elastomer, mechanical properties, poly(serinol sebacate)

Procedia PDF Downloads 354
1623 Data Collection Techniques for Robotics to Identify the Facial Expressions of Traumatic Brain Injured Patients

Authors: Chaudhary Muhammad Aqdus Ilyas, Matthias Rehm, Kamal Nasrollahi, Thomas B. Moeslund

Abstract:

This paper presents the investigation of data collection procedures, associated with robots when placed with traumatic brain injured (TBI) patients for rehabilitation purposes through facial expression and mood analysis. Rehabilitation after TBI is very crucial due to nature of injury and variation in recovery time. It is advantageous to analyze these emotional signals in a contactless manner, due to the non-supportive behavior of patients, limited muscle movements and increase in negative emotional expressions. This work aims at the development of framework where robots can recognize TBI emotions through facial expressions to perform rehabilitation tasks by physical, cognitive or interactive activities. The result of these studies shows that with customized data collection strategies, proposed framework identify facial and emotional expressions more accurately that can be utilized in enhancing recovery treatment and social interaction in robotic context.

Keywords: computer vision, convolution neural network- long short term memory network (CNN-LSTM), facial expression and mood recognition, multimodal (RGB-thermal) analysis, rehabilitation, robots, traumatic brain injured patients

Procedia PDF Downloads 155
1622 Using Deep Learning in Lyme Disease Diagnosis

Authors: Teja Koduru

Abstract:

Untreated Lyme disease can lead to neurological, cardiac, and dermatological complications. Rapid diagnosis of the erythema migrans (EM) rash, a characteristic symptom of Lyme disease is therefore crucial to early diagnosis and treatment. In this study, we aim to utilize deep learning frameworks including Tensorflow and Keras to create deep convolutional neural networks (DCNN) to detect images of acute Lyme Disease from images of erythema migrans. This study uses a custom database of erythema migrans images of varying quality to train a DCNN capable of classifying images of EM rashes vs. non-EM rashes. Images from publicly available sources were mined to create an initial database. Machine-based removal of duplicate images was then performed, followed by a thorough examination of all images by a clinician. The resulting database was combined with images of confounding rashes and regular skin, resulting in a total of 683 images. This database was then used to create a DCNN with an accuracy of 93% when classifying images of rashes as EM vs. non EM. Finally, this model was converted into a web and mobile application to allow for rapid diagnosis of EM rashes by both patients and clinicians. This tool could be used for patient prescreening prior to treatment and lead to a lower mortality rate from Lyme disease.

Keywords: Lyme, untreated Lyme, erythema migrans rash, EM rash

Procedia PDF Downloads 241
1621 Flocking Swarm of Robots Using Artificial Innate Immune System

Authors: Muneeb Ahmad, Ali Raza

Abstract:

A computational method inspired by the immune system (IS) is presented, leveraging its shared characteristics of robustness, fault tolerance, scalability, and adaptability with swarm intelligence. This method aims to showcase flocking behaviors in a swarm of robots (SR). The innate part of the IS offers a variety of reactive and probabilistic cell functions alongside its self-regulation mechanism which have been translated to enable swarming behaviors. Although, the research is specially focused on flocking behaviors in a variety of simulated environments using e-puck robots in a physics-based simulator (CoppeliaSim); the artificial innate immune system (AIIS) can exhibit other swarm behaviors as well. The effectiveness of the immuno-inspired approach has been established with extensive experimentations, for scalability and adaptability, using standard swarm benchmarks as well as the immunological regulatory functions (i.e., Dendritic Cells’ Maturity and Inflammation). The AIIS-based approach has proved to be a scalable and adaptive solution for emulating the flocking behavior of SR.

Keywords: artificial innate immune system, flocking swarm, immune system, swarm intelligence

Procedia PDF Downloads 104
1620 Acute Toxicity Studies of Total Alkaloids of Seeds of Datura stramonium in Female Rats: Effect on Liver and Kidney

Authors: Bouzidi Abdelouahab, Ghadjati Nadhra, Bettihi Sara, Mahdeb Nadia, Daamouche Z. El Youm

Abstract:

The effects of acute administration of TOTAL alkaloids, the main active principle of Datura stramonium, with toxic properties, were studied in female Albino-Wistar rats. After acute intraperitoneal administration of dose 120 mg kg-1 (≈1/3 DL50) of total alkaloids to the seeds of D. stramonium, there were no remarkable changes in general appearance and no deaths occurred in any experimental group. After 5 days a significant reduction was observed in total alkaloids of seeds. The Red Blood Cells (RBC), Hematocrit (HCT) and Hemoglobin (HGB) show significant changes in the treated groups. There were no statistical differences in Glutamic-pyruvic Transaminase (GPT), Alkaline Phosphatase (ALP), urea, glucose and total protein observed between groups. After 24 h Glutamic-Oxaloacetic Transaminase (GOT) and creatinine were significantly higher in the treated male rats than the control group histological examination of liver showed no histopathological changes.

Keywords: datura stramonium, rat, liver, kidney, alkaloids, toxicity

Procedia PDF Downloads 482
1619 Selenium Content in Agricultural Soils and Wheat from the Balkan Peninsula

Authors: S. Krustev, V. Angelova, P. Zaprjanova

Abstract:

Selenium (Se) is an essential micro-nutrient for human and animals but it is highly toxic. Its organic compounds play an important role in biochemistry and nutrition of the cells. Concentration levels of this element in the different regions of the world vary considerably. This study aimed to compare the availability and levels of the Se in some rural areas of the Balkan Peninsula and relationship with the concentrations of other trace elements. For this purpose soil samples and wheat grains from different regions of Bulgaria, Serbia, Nord Macedonia, Romania, and Greece situated far from large industrial centers have been analyzed. The main methods for their determination were the atomic spectral techniques – atomic absorption and plasma atomic emission. As a result of this study, data on microelements levels from the main grain-producing regions of the Balkan Peninsula were determined and systematized. The presented results confirm the low levels of Se in this region: 0.222– 0.962 mg.kg-1 in soils and 0.001 - 0.005 mg.kg-1 in wheat grains and require measures to offset the effect of this deficiency.

Keywords: agricultural soils, balkan peninsula, rural areas, selenium

Procedia PDF Downloads 132
1618 Comprehensive Analysis of RNA m5C Regulator ALYREF as a Suppressive Factor of Anti-tumor Immune and a Potential Tumor Prognostic Marker in Pan-Cancer

Authors: Yujie Yuan, Yiyang Fan, Hong Fan

Abstract:

Objective: The RNA methylation recognition protein Aly/REF export factor (ALYREF) is considered one type of “reader” protein acting as a recognition protein of m5C, has been reported involved in several biological progresses including cancer initiation and progression. 5-methylcytosine (m5C) is a conserved and prevalent RNA modification in all species, as accumulating evidence suggests its role in the promotion of tumorigenesis. It has been claimed that ALYREF mediates nuclear export of mRNA with m5C modification and regulates biological effects of cancer cells. However, the systematical regulatory pathways of ALYREF in cancer tissues have not been clarified, yet. Methods: The expression level of ALYREF in pan-cancer and their normal tissues was compared through the data acquired from The Cancer Genome Atlas (TCGA). The University of Alabama at Birmingham Cancer data analysis Portal UALCAN was used to analyze the relationship between ALYREF and clinical pathological features. The relationship between the expression level of ALYREF and prognosis of pan-cancer, and the correlation genes of ALYREF were figured out by using Gene Expression Correlation Analysis database GEPIA. Immune related genes were obtained from TISIDB (an integrated repository portal for tumor-immune system interactions). Immune-related research was conducted by using Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) and TIMER. Results: Based on the data acquired from TCGA, ALYREF has an obviously higher-level expression in various types of cancers compared with relevant normal tissues excluding thyroid carcinoma and kidney chromophobe. The immunohistochemical images on The Human Protein Atlas showed that ALYREF can be detected in cytoplasm, membrane, but mainly located in nuclear. In addition, a higher expression level of ALYREF in tumor tissue generates a poor prognosis in majority of cancers. According to the above results, cancers with a higher expression level of ALYREF compared with normal tissues and a significant correlation between ALYREF and prognosis were selected for further analysis. By using TISIDB, we found that portion of ALYREF co-expression genes (such as BIRC5, H2AFZ, CCDC137, TK1, and PPM1G) with high Pearson correlation coefficient (PCC) were involved in anti-tumor immunity or affect resistance or sensitivity to T cell-mediated killing. Furthermore, based on the results acquired from GEPIA, there was significant correlation between ALYREF and PD-L1. It was exposed that there is a negative correlation between the expression level of ALYREF and ESTIMATE score. Conclusion: The present study indicated that ALYREF plays a vital and universal role in cancer initiation and progression of pan-cancer through regulating mitotic progression, DNA synthesis and metabolic process, and RNA processing. The correlation between ALYREF and PD-L1 implied ALYREF may affect the therapeutic effect of immunotherapy of tumor. More evidence revealed that ALYREF may play an important role in tumor immunomodulation. The correlation between ALYREF and immune cell infiltration level indicated that ALYREF can be a potential therapeutic target. Exploring the regulatory mechanism of ALYREF in tumor tissues may expose the reason for poor efficacy of immunotherapy and offer more directions of tumor treatment.

Keywords: ALYREF, pan-cancer, immunotherapy, PD-L1

Procedia PDF Downloads 71
1617 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter

Authors: Amartya Hatua, Trung Nguyen, Andrew Sung

Abstract:

In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.

Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter

Procedia PDF Downloads 391
1616 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 171
1615 An Activatable Prodrug for the Treatment of Metastatic Tumors

Authors: Eun-Joong Kim, Sankarprasad Bhuniya, Hyunseung Lee, Hyun Min Kim, Chaejoon Cheong, Su-khendu Maiti, Kwan Soo Hong, Jong Seung Kim

Abstract:

Metastatic cancers have historically been difficult to treat. However, metastatic tumors have been found to have high levels of reactive oxygen species such as hydrogen peroxide (H2O2), supporting the hypothesis that a prodrug could be activated by intracellular H2O2 and lead to a potential anti-metastatic therapy. In this study, prodrug 7 was designed to be activated by H2O2-mediated boronate oxidation, resulting in activation of the fluorophore for detection and release of the therapeutic agent, SN-38. Drug release from prodrug 7 was investigated by monitoring fluorescence after addition of H2O2 to the cancer cells. Prodrug 7 activated by H2O2 selectively inhibited tumor cell growth. Furthermore, intratracheally administered prodrug 7 showed effective anti-tumor activity in a mouse model of metastatic lung disease. Thus, this H2O2-responsive prodrug has therapeutic potential as a novel treatment for metastatic cancer via cellular imaging with fluorescence as well as selective release of the anti-cancer drug, SN-38.

Keywords: hydrogen peroxide, prodrug, metastatic tumors, fluorescence

Procedia PDF Downloads 453
1614 Leveraging the HDAC Inhibitory Pharmacophore to Construct Deoxyvasicinone Based Tractable Anti-Lung Cancer Agent and pH-Responsive Nanocarrier

Authors: Ram Sharma, Esha Chatterjee, Santosh Kumar Guru, Kunal Nepali

Abstract:

A tractable anti-lung cancer agent was identified via the installation of a Ring C expanded synthetic analogue of the alkaloid vasicinone [7,8,9,10-tetrahydroazepino[2,1-b] quinazolin-12(6H)-one (TAZQ)] as a surface recognition part in the HDAC inhibitory three-component model. Noteworthy to mention that the candidature of TAZQ was deemed suitable for accommodation in HDAC inhibitory pharmacophore as per the results of the fragment recruitment process conducted by our laboratory. TAZQ was pinpointed through the fragment screening program as a synthetically flexible fragment endowed with some moderate cell growth inhibitory activity against the lung cancer cell lines, and it was anticipated that the use of the aforementioned fragment to generate hydroxamic acid functionality (zinc-binding motif) bearing HDAC inhibitors would boost the antitumor efficacy of TAZQ. Consistent with our aim of applying epigenetic targets to the treatment of lung cancer, a strikingly potent anti-lung cancer scaffold (compound 6) was pinpointed through a series of in-vitro experiments. Notably, the compounds manifested a magnificent activity profile against KRAS and EGFR mutant lung cancer cell lines (IC50 = 0.80 - 0.96 µM), and the effects were found to be mediated through preferential HDAC6 inhibition (IC50 = 12.9 nM). In addition to HDAC6 inhibition, the compounds also elicited HDAC1 and HDAC3 inhibitory activity with an IC50 value of 49.9 nM and 68.5 nM, respectively. The HDAC inhibitory ability of compound 6 was also confirmed from the results of the western blot experiment that revealed its potential to decrease the expression levels of HDAC isoforms (HDAC1, HDAC3, and HDAC6). Noteworthy to mention that complete downregulation of the HDAC6 isoform was exerted by compound 6 at 0.5 and 1 µM. Moreover, in another western blot experiment, treatment with hydroxamic acid 6 led to upregulation of H3 acK9 and α-Tubulin acK40 levels, ascertaining its inhibitory activity toward both the class I HDACs and Class II B HDACs. The results of other assays were also encouraging as treatment with compound 6 led to the suppression of the colony formation ability of A549 cells, induction of apoptosis, and increase in autophagic flux. In silico studies led us to rationalize the results of the experimental assay, and some key interactions of compound 6 with the amino acid residues of HDAC isoforms were identified. In light of the impressive activity spectrum of compound 6, a pH-responsive nanocarrier (hyaluronic acid-compound 6 nanoparticles) was prepared. The dialysis bag approach was used for the assessment of the nanoparticles under both normal and acidic circumstances, and the pH-sensitive nature of hyaluronic acid-compound 6 nanoparticles was confirmed. Delightfully, the nanoformulation was devoid of cytotoxicity against the L929 mouse fibroblast cells (normal settings) and exhibited selective cytotoxicity towards the A549 lung cancer cell lines. In a nutshell, compound 6 appears to be a promising adduct, and a detailed investigation of this compound might yield a therapeutic for the treatment of lung cancer.

Keywords: HDAC inhibitors, lung cancer, scaffold, hyaluronic acid, nanoparticles

Procedia PDF Downloads 95
1613 A 5G Architecture Based to Dynamic Vehicular Clustering Enhancing VoD Services Over Vehicular Ad hoc Networks

Authors: Lamaa Sellami, Bechir Alaya

Abstract:

Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.

Keywords: video-on-demand, vehicular ad-hoc network, mobility, vehicular traffic load, small cell, wireless backhaul, LTE-advanced, latency, packet loss

Procedia PDF Downloads 141
1612 Design, Development and Characterization of Pioglitazone Transdermal Drug Delivery System

Authors: Dwarakanadha Reddy Peram, D. Swarnalatha, C. Gopinath

Abstract:

The main aim of this research work was to design and development characterization of Pioglitazone transdermal drug delivery system by using various polymers such as Olibanum with different concentration by solvent evaporation technique. The prepared formulations were evaluated for different physicochemical characteristics like thickness, folding endurance, drug content, percentage moisture absorption, percentage moisture loss, percentage elongation break test and weight uniformity. The diffusion studies were performed by using modified Franz diffusion cells. The result of dissolution studies shows that formulation, F3 (Olibanum with 50 mg) showed maximum release of 99.95 % in 12hrs, whereas F1 (Olibanum and EC backing membrane) showed minimum release of 93.65% in 12 hr. Based on the drug release and physicochemical values obtained the formulation F3 is considered as an optimized formulation which shows higher percentage of drug release of 99.95 % in 12 hr. The developed transdermal patches increase the therapeutic efficacy and reduced toxic effect of pioglitazone.

Keywords: pioglitazone, olibanum, transdermal drug delivery system, drug release percantage

Procedia PDF Downloads 209
1611 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction

Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin

Abstract:

Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.

Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria

Procedia PDF Downloads 94
1610 Molecular Basis of Anti-Biofilm and Anti-Adherence Activity of Syzygium aromaticum on Streptococcus mutans: In Vitro and in Vivo Study

Authors: Mohd Adil, Rosina Khan, Asad U. Khan, Vasantha Rupasinghe HP

Abstract:

The study examined the effects of Syzygium aromaticum extracts on the virulence properties of Streptococcus mutans. The activity of glucosyltransferases in the presence of crude and diethylether fraction was reduced to 80% at concentration 78.12μg/ml and 39.06μg/ml respectively. The glycolytic pH drop by S. mutans cells was also disrupted by these extracts without affecting the bacterial viability. Microscopic analysis revealed morphological changes of the S. mutans biofilms, indicating that these plant extracts at sub-MICs could significantly affect the ability of S. mutans to form biofilm with distorted extracellular matrix. Furthermore, with the help of quantitative RT-PCR, the expression of different genes involved in adherence, quorum sensing, in the presence of these extracts were down regulated. The crude and active fractions were found effective in preventing caries development in rats. The data showed that S. aromaticum holds promise as a naturally occurring source of compounds that may prevent biofilm-related oral diseases.

Keywords: biofilm, quorum sensing, Streptococcus mutans, Syzygium aromaticum extract

Procedia PDF Downloads 307
1609 Hypothesis of a Holistic Treatment of Cancer: Crab Method

Authors: Devasis Ghosh

Abstract:

The main hindrance to total cure of cancer is a) the failure to control continued production of cancer cells, b) its sustenance and c) its metastasis. This review study has tried to address this issue of total cancer cure in a more innovative way. A 10-pronged “CRAB METHOD”, a novel holistic scientific approach of Cancer treatment has been hypothesized in this paper. Apart from available Chemotherapy, Radiotherapy and Oncosurgery, (which shall not be discussed here), seven other points of interference and treatment has been suggested, i.e. 1. Efficient stress management. 2. Dampening of ATF3 expression. 3. Selective inhibition of Platelet Activity. 4. Modulation of serotonin production, metabolism and 5HT receptor antagonism. 5. Auxin, its anti-proliferative potential and its modulation. 6. Melatonin supplementation because of its oncostatic properties. 7. HDAC Inhibitors especially valproic acid use due to its apoptotic role in many cancers. If all the above stated seven steps are thoroughly taken care of at the time of initial diagnosis of cancer along with the available treatment modalities of Chemotherapy, Radiotherapy and Oncosurgery, then perhaps, the morbidity and mortality rate of cancer may be greatly reduced.

Keywords: ATF3 dampening, auxin modulation, cancer, platelet activation, serotonin, stress, valproic acid

Procedia PDF Downloads 270
1608 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images

Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara

Abstract:

Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.

Keywords: attention-based fully convolutional network, optic disc detection and segmentation, retinal fundus image, screening of ocular diseases

Procedia PDF Downloads 142
1607 Improving Axial-Attention Network via Cross-Channel Weight Sharing

Authors: Nazmul Shahadat, Anthony S. Maida

Abstract:

In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.

Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks

Procedia PDF Downloads 83
1606 Electrochemical Activity of NiCo-GDC Cermet Anode for Solid Oxide Fuel Cells Operated in Methane

Authors: Kamolvara Sirisuksakulchai, Soamwadee Chaianansutcharit, Kazunori Sato

Abstract:

Solid Oxide Fuel Cells (SOFCs) have been considered as one of the most efficient large unit power generators for household and industrial applications. The efficiency of an electronic cell depends mainly on the electrochemical reactions in the anode. The development of anode materials has been intensely studied to achieve higher kinetic rates of redox reactions and lower internal resistance. Recent studies have introduced an efficient cermet (ceramic-metallic) material for its ability in fuel oxidation and oxide conduction. This could expand the reactive site, also known as the triple-phase boundary (TPB), thus increasing the overall performance. In this study, a bimetallic catalyst Ni₀.₇₅Co₀.₂₅Oₓ was combined with Gd₀.₁Ce₀.₉O₁.₉₅ (GDC) to be used as a cermet anode (NiCo-GDC) for an anode-supported type SOFC. The synthesis of Ni₀.₇₅Co₀.₂₅Oₓ was carried out by ball milling NiO and Co3O4 powders in ethanol and calcined at 1000 °C. The Gd₀.₁Ce₀.₉O₁.₉₅ was prepared by a urea co-precipitation method. Precursors of Gd(NO₃)₃·6H₂O and Ce(NO₃)₃·6H₂O were dissolved in distilled water with the addition of urea and were heated subsequently. The heated mixture product was filtered and rinsed thoroughly, then dried and calcined at 800 °C and 1500 °C, respectively. The two powders were combined followed by pelletization and sintering at 1100 °C to form an anode support layer. The fabrications of an electrolyte layer and cathode layer were conducted. The electrochemical performance in H₂ was measured from 800 °C to 600 °C while for CH₄ was from 750 °C to 600 °C. The maximum power density at 750 °C in H₂ was 13% higher than in CH₄. The difference in performance was due to higher polarization resistances confirmed by the impedance spectra. According to the standard enthalpy, the dissociation energy of C-H bonds in CH₄ is slightly higher than the H-H bond H₂. The dissociation of CH₄ could be the cause of resistance within the anode material. The results from lower temperatures showed a descending trend of power density in relevance to the increased polarization resistance. This was due to lowering conductivity when the temperature decreases. The long-term stability was measured at 750 °C in CH₄ monitoring at 12-hour intervals. The maximum power density tends to increase gradually with time while the resistances were maintained. This suggests the enhanced stability from charge transfer activities in doped ceria due to the transition of Ce⁴⁺ ↔ Ce³⁺ at low oxygen partial pressure and high-temperature atmosphere. However, the power density started to drop after 60 h, and the cell potential also dropped from 0.3249 V to 0.2850 V. These phenomena was confirmed by a shifted impedance spectra indicating a higher ohmic resistance. The observation by FESEM and EDX-mapping suggests the degradation due to mass transport of ions in the electrolyte while the anode microstructure was still maintained. In summary, the electrochemical test and stability test for 60 h was achieved by NiCo-GDC cermet anode. Coke deposition was not detected after operation in CH₄, hence this confirms the superior properties of the bimetallic cermet anode over typical Ni-GDC.

Keywords: bimetallic catalyst, ceria-based SOFCs, methane oxidation, solid oxide fuel cell

Procedia PDF Downloads 154
1605 A Framework for Automated Nuclear Waste Classification

Authors: Seonaid Hume, Gordon Dobie, Graeme West

Abstract:

Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.

Keywords: nuclear decommissioning, radiation detection, object detection, waste classification

Procedia PDF Downloads 200
1604 Folliculitis Decalvans: Update

Authors: Abdullah Alyoussef

Abstract:

Folliculitis decalvans is a rare inflammatory scalp disorder. This paper gives an update to patient management and treatment modalities. Folliculitis decalvans is classified as primary neutrophilic cicatricial alopecia and predominantly occurs in middle-aged adults. The cause of folliculitis decalvans (FD) remains unknown. Staphylococcus aureus and a deficient host immune response seem to play an important role in the development of this disfiguring scalp disease. Lesions occur mainly in the vertex and occipital area. Clinically, the lesions present with follicular pustules, lack of ostia, diffuse and perifollicular erythema, follicular tufting, and, oftentimes, hemorrhagic crusts and erosions. Histology displays a mainly neutrophilic inflammatory infiltrate in early lesions and additionally lymphocytes and plasma cells in advanced lesions. Treatment is focused on the eradication of S. aureus and anti-inflammatory agents. Although the etiology of FD is unclear, S. aureus is almost always isolated from affected areas, and eradication is an important part of therapeutic management, in combination with systemic and ⁄ or topical anti-inflammatory treatment.

Keywords: cicatricial alopecia, folliculitis decalvans, tufted folliculitis, erosion

Procedia PDF Downloads 412
1603 Technology Maps in Energy Applications Based on Patent Trends: A Case Study

Authors: Juan David Sepulveda

Abstract:

This article reflects the current stage of progress in the project “Determining technological trends in energy generation”. At first it was oriented towards finding out those trends by employing such tools as the scientometrics community had proved and accepted as effective for getting reliable results. Because a documented methodological guide for this purpose could not be found, the decision was made to reorient the scope and aim of this project, changing the degree of interest in pursuing the objectives. Therefore it was decided to propose and implement a novel guide from the elements and techniques found in the available literature. This article begins by explaining the elements and considerations taken into account when implementing and applying this methodology, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.

Keywords: energy, technology mapping, patents, univariate analysis

Procedia PDF Downloads 476
1602 A Survey and Theory of the Effects of Various Hamlet Videos on Viewers’ Brains

Authors: Mark Pizzato

Abstract:

How do ideas, images, and emotions in stage-plays and videos affect us? Do they evoke a greater awareness (or cognitive reappraisal of emotions) through possible shifts between left-cortical, right-cortical, and subcortical networks? To address these questions, this presentation summarizes the research of various neuroscientists, especially Bernard Baars and others involved in Global Workspace Theory, Matthew Lieberman in social neuroscience, Iain McGilchrist on left and right cortical functions, and Jaak Panksepp on the subcortical circuits of primal emotions. Through such research, this presentation offers an ‘inner theatre’ model of the brain, regarding major hubs of neural networks and our animal ancestry. It also considers recent experiments, by Mario Beauregard, on the cognitive reappraisal of sad, erotic, and aversive film clips. Finally, it applies the inner-theatre model and related research to survey results of theatre students who read and then watched the ‘To be or not to be’ speech in 8 different video versions (from stage and screen productions) of William Shakespeare’s Hamlet. Findings show that students become aware of left-cortical, right-cortical, and subcortical brain functions—and shifts between them—through staging and movie-making choices in each of the different videos.

Keywords: cognitive reappraisal, Hamlet, neuroscience, Shakespeare, theatre

Procedia PDF Downloads 315
1601 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.

Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics

Procedia PDF Downloads 163
1600 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation

Authors: Muhammad Zubair Khan, Yugyung Lee

Abstract:

Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.

Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network

Procedia PDF Downloads 103