Search results for: heat optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6098

Search results for: heat optimization

2828 Investigation of Steel Infill Panels under Blast Impulsive Loading

Authors: Seyed M. Zahrai, Saeid Lotfi

Abstract:

If an infill panel does not have enough ductility against the loading, it breaks and gets damaged before depreciation and load transfer. As steel infill panel has appropriate ductility before fracture, it can be used as an alternative to typical infill panels under blast loading. Concerning enough ductility of out-of-plane behavior the infill panel, the impact force enters the horizontal diaphragm and is distributed among the lateral elements which can be made from steel infill panels. This article investigates the behavior of steel infill panels with different thickness and stiffeners using finite element analysis with geometric and material nonlinearities for optimization of the steel plate thickness and stiffeners arrangement to obtain more efficient design for its out-of-plane behavior.

Keywords: blast loading, ductility, maximum displacement, steel infill panel

Procedia PDF Downloads 281
2827 Effect of Magnetic Field on Unsteady MHD Poiseuille Flow of a Third Grade Fluid Under Exponential Decaying Pressure Gradient with Ohmic Heating

Authors: O. W. Lawal, L. O. Ahmed, Y. K. Ali

Abstract:

The unsteady MHD Poiseuille flow of a third grade fluid between two parallel horizontal nonconducting porous plates is studied with heat transfer. The two plates are fixed but maintained at different constant temperature with the Joule and viscous dissipation taken into consideration. The fluid motion is produced by a sudden uniform exponential decaying pressure gradient and external uniform magnetic field that is perpendicular to the plates. The momentum and energy equations governing the flow are solved numerically using Maple program. The effects of magnetic field and third grade fluid parameters on velocity and temperature profile are examined through several graphs.

Keywords: exponential decaying pressure gradient, MHD flow, Poiseuille flow, third grade fluid

Procedia PDF Downloads 486
2826 Block Mining: Block Chain Enabled Process Mining Database

Authors: James Newman

Abstract:

Process mining is an emerging technology that looks to serialize enterprise data in time series data. It has been used by many companies and has been the subject of a variety of research papers. However, the majority of current efforts have looked at how to best create process mining from standard relational databases. This paper is the first pass at outlining a database custom-built for the minimal viable product of process mining. We present Block Miner, a blockchain protocol to store process mining data across a distributed network. We demonstrate the feasibility of storing process mining data on the blockchain. We present a proof of concept and show how the intersection of these two technologies helps to solve a variety of issues, including but not limited to ransomware attacks, tax documentation, and conflict resolution.

Keywords: blockchain, process mining, memory optimization, protocol

Procedia PDF Downloads 108
2825 Genetic Algorithm for Solving the Flexible Job-Shop Scheduling Problem

Authors: Guilherme Baldo Carlos

Abstract:

The flexible job-shop scheduling problem (FJSP) is an NP-hard combinatorial optimization problem, which can be applied to model several applications in a wide array of industries. This problem will have its importance increase due to the shift in the production mode that modern society is going through. The demands are increasing and for products personalized and customized. This work aims to apply a meta-heuristic called a genetic algorithm (GA) to solve this problem. A GA is a meta-heuristic inspired by the natural selection of Charles Darwin; it produces a population of individuals (solutions) and selects, mutates, and mates the individuals through generations in order to find a good solution for the problem. The results found indicate that the GA is suitable for FJSP solving.

Keywords: genetic algorithm, evolutionary algorithm, scheduling, flexible job-shop scheduling

Procedia PDF Downloads 150
2824 Dynamic Synthesis of a Flexible Multibody System

Authors: Mohamed Amine Ben Abdallah, Imed Khemili, Nizar Aifaoui

Abstract:

This work denotes an insight into dynamic synthesis of multibody systems. A set of mechanism parameters design variable are synthetized based on a desired mechanism response, such as, velocity, acceleration and bodies deformations. Moreover, knowing the work space, for a robot, and mechanism response allow defining optimal parameters mechanism handling with the desired target response. To this end, evolutionary genetic algorithm has been deployed. A demonstrative example for imperfect mechanism has been treated, mainly, a slider crank mechanism with a flexible connecting rod. The transversal deflection of the connecting rod has been chosen as response to identify the mechanism design parameters.

Keywords: dynamic response, evolutionary genetic algorithm, flexible bodies, optimization

Procedia PDF Downloads 325
2823 Layersomes for Oral Delivery of Amphotericin B

Authors: A. C. Rana, Abhinav Singh Rana

Abstract:

Layer by layer coating of biocompatible polyelectrolytes converts the liposomes into stable version i.e 'layersomes'. This system was further used to deliver the Amphotericin B through the oral route. Extensive optimization of different process variables resulted in the formation of layersomes with the particle size of 238.4±5.1, PDI of 0.24±0.16, the zeta potential of 34.6±1.3, and entrapment efficiency of 71.3±1.2. TEM analysis further confirmed the formation of spherical particles. Trehalose (10% w/w) resulted in the formation of fluffy and easy to redisperse cake in freeze dried layersomes. Controlled release up to 50 % within 24 h was observed in the case of layersomes. The layersomes were found stable in simulated biological fluids and resulted in the 3.59 fold higher bioavailability in comparison to free Amp-B. Furthermore, the developed formulation was found to be safe in comparison to Fungizone as indicated by blood urea nitrogen (BUN) and creatinine level.

Keywords: amphotericin B, layersomes, liposomes, toxicity

Procedia PDF Downloads 533
2822 Quantifying the Effects of Canopy Cover and Cover Crop Species on Water Use Partitioning in Micro-Sprinkler Irrigated Orchards in South Africa

Authors: Zanele Ntshidi, Sebinasi Dzikiti, Dominic Mazvimavi

Abstract:

South Africa is a dry country and yet it is ranked as the 8th largest exporter of fresh apples (Malus Domestica) globally. Prime apple producing regions are in the Eastern and Western Cape Provinces of the country where all the fruit is grown under irrigation. Climate change models predict increasingly drier future conditions in these regions and the frequency and severity of droughts is expected to increase. For the sustainability and growth of the fruit industry it is important to minimize non-beneficial water losses from the orchard floor. The aims of this study were firstly to compare the water use of cover crop species used in South African orchards for which there is currently no information. The second aim was to investigate how orchard water use (evapotranspiration) was partitioned into beneficial (tree transpiration) and non-beneficial (orchard floor evaporation) water uses for micro-sprinkler irrigated orchards with different canopy covers. This information is important in order to explore opportunities to minimize non-beneficial water losses. Six cover crop species (four exotic and two indigenous) were grown in 2 L pots in a greenhouse. Cover crop transpiration was measured using the gravimetric method on clear days. To establish how water use was partitioned in orchards, evapotranspiration (ET) was measured using an open path eddy covariance system, while tree transpiration was measured hourly throughout the season (October to June) on six trees per orchard using the heat ratio sap flow method. On selected clear days, soil evaporation was measured hourly from sunrise to sunset using six micro-lysimeters situated at different wet/dry and sun/shade positions on the orchard floor. Transpiration of cover crops was measured using miniature (2 mm Ø) stem heat balance sap flow gauges. The greenhouse study showed that exotic cover crops had significantly higher (p < 0.01) average transpiration rates (~3.7 L/m2/d) than the indigenous species (~ 2.2 L/m²/d). In young non-bearing orchards, orchard floor evaporative fluxes accounted for more than 60% of orchard ET while this ranged from 10 to 30% in mature orchards with a high canopy cover. While exotic cover crops are preferred by most farmers, this study shows that they use larger quantities of water than indigenous species. This in turn contributes to a larger orchard floor evaporation flux. In young orchards non-beneficial losses can be minimized by adopting drip or short range micro-sprinkler methods that reduce the wetted soil fraction thereby conserving water.

Keywords: evapotranspiration, sap flow, soil evaporation, transpiration

Procedia PDF Downloads 390
2821 Determination of the Minimum Time and the Optimal Trajectory of a Moving Robot Using Picard's Method

Authors: Abbes Lounis, Kahina Louadj, Mohamed Aidene

Abstract:

This paper presents an optimal control problem applied to a robot; the problem is to determine a command which makes it possible to reach a final state from a given initial state in record time. The approach followed to solve this optimization problem with constraints on the control starts by presenting the equations of motion of the dynamic system then by applying Pontryagin's maximum principle (PMP) to determine the optimal control, and Picard's successive approximation method combined with the shooting method to solve the resulting differential system.

Keywords: robotics, Pontryagin's Maximum Principle, PMP, Picard's method, shooting method, non-linear differential systems

Procedia PDF Downloads 258
2820 Review of Suitable Advanced Oxidation Processes for Degradation of Organic Compounds in Produced Water during Enhanced Oil Recovery

Authors: Smita Krishnan, Krittika Chandran, Chandra Mohan Sinnathambi

Abstract:

Produced water and its treatment and management are growing challenges in all producing regions. This water is generally considered as a nonrevenue product, but it can have significant value in enhanced oil recovery techniques if it meets the required quality standards. There is also an interest in the beneficial uses of produced water for agricultural and industrial applications. Advanced Oxidation Process is a chemical technology that has been growing recently in the wastewater treatment industry, and it is highly recommended for non-easily removal of organic compounds. The efficiency of AOPs is compound specific, therefore, the optimization of each process should be done based on different aspects.

Keywords: advanced oxidation process, photochemical processes, degradation, organic contaminants

Procedia PDF Downloads 509
2819 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 286
2818 Optimization of Human Hair Concentration for a Natural Rubber Based Composite

Authors: Richu J. Babu, Sony Mathew, Sharon Rony Jacob, Soney C. George, Jibin C. Jacob

Abstract:

Human hair is a non-biodegradable waste available in plenty throughout the world but is rarely explored for applications in engineering fields. Tensile strength of human hair ranges from 170 to 220 MPa. This property of human hair can be made use in the field of making bio-composites[1]. The composite is prepared by commixing the human hair and natural rubber in a two roll mill along with additives followed by vulcanization. Here the concentration of the human hair is varied by fine-tuning the fiber length as 20 mm and sundry tests like tensile, abrasion, tear and hardness were conducted. While incrementing the fiber length up to a certain range the mechanical properties shows superior amendments.

Keywords: human hair, natural rubber, composite, vulcanization, fiber loading

Procedia PDF Downloads 386
2817 Matrix Completion with Heterogeneous Cost

Authors: Ilqar Ramazanli

Abstract:

The matrix completion problem has been studied broadly under many underlying conditions. The problem has been explored under adaptive or non-adaptive, exact or estimation, single-phase or multi-phase, and many other categories. In most of these cases, the observation cost of each entry is uniform and has the same cost across the columns. However, in many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.

Keywords: matroid optimization, matrix completion, linear algebra, algorithms

Procedia PDF Downloads 112
2816 Motion Planning and Posture Control of the General 3-Trailer System

Authors: K. Raghuwaiya, B. Sharma, J. Vanualailai

Abstract:

This paper presents a set of artificial potential field functions that improves upon; in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of the general 3-trailer system in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. Simulations are provided to demonstrate the effectiveness of the controls laws.

Keywords: artificial potential fields, 3-trailer systems, motion planning, posture

Procedia PDF Downloads 431
2815 Sustainable Rehabilitation of Concrete Buildings in Iran: Harnessing Sunlight and Navigating Limited Water Resources

Authors: Amin Khamoosh, Hamed Faramarzifar

Abstract:

In the capital of Iran, Tehran, numerous buildings constructed when extreme climates were not prevalent now face the need for rehabilitation, typically within their first decade. Our data delves into the performance metrics and economic advantages of sustainable rehabilitation practices compared to traditional methods. With a focus on the scarcity of water resources, we specifically scrutinize water-efficient techniques throughout construction, rehabilitation, and usage. Examining design elements that optimize natural light while efficiently managing heat transmission is crucial, given the reliance on water for cooling devices in this region. The data aims to present a comprehensive strategy, addressing immediate structural concerns while harmonizing with Iran's unique environmental conditions.

Keywords: sustainable rehabilitation, concrete buildings, iran, solar energy, water-efficient techniques

Procedia PDF Downloads 59
2814 Parallel Computing: Offloading Matrix Multiplication to GPU

Authors: Bharath R., Tharun Sai N., Bhuvan G.

Abstract:

This project focuses on developing a Parallel Computing method aimed at optimizing matrix multiplication through GPU acceleration. Addressing algorithmic challenges, GPU programming intricacies, and integration issues, the project aims to enhance efficiency and scalability. The methodology involves algorithm design, GPU programming, and optimization techniques. Future plans include advanced optimizations, extended functionality, and integration with high-level frameworks. User engagement is emphasized through user-friendly interfaces, open- source collaboration, and continuous refinement based on feedback. The project's impact extends to significantly improving matrix multiplication performance in scientific computing and machine learning applications.

Keywords: matrix multiplication, parallel processing, cuda, performance boost, neural networks

Procedia PDF Downloads 63
2813 Investigation of Soot Regeneration Behavior in the DPF Cleaning Device

Authors: Won Jun Jo, Man Young Kim

Abstract:

To meet stringent diesel particulate matter regulations, DPF system is essential after treatment technology providing exceptional reliability and filtration performance. At low load driving conditions, the passive type of DPF system is ineffective for regeneration method due to the inadequate of engine exhaust heat in removing accumulated soot from the filter. Therefore, DPF cleaning device is necessary to remove the soot particles. In this work, the numerical analysis on the active regeneration of DPF in DPF cleaning device is performed to find the optimum operating conditions. In order to find the DPF regeneration characteristics during active regeneration, 5 different initial soot loading condition are investigated. As the initial soot mass increases, the maximum temperature of DPF and regeneration rate also increase.

Keywords: active regeneration, DPF cleaning device, pressure drop, Diesel Particulate Filter, particulate matters, computational fluid dynamics

Procedia PDF Downloads 298
2812 Evaluation of Biomass Introduction Methods in Coal Co-Gasification

Authors: Ruwaida Abdul Rasid, Kevin J. Hughes, Peter J. Henggs, Mohamed Pourkashanian

Abstract:

Heightened concerns over the amount of carbon emitted from coal-related processes are generating shifts to the application of biomass. In co-gasification, where coal is gasified along with biomass, the biomass may be fed together with coal (co-feeding) or an independent biomass gasifier needs to be integrated with the coal gasifier. The main aim of this work is to evaluate the biomass introduction methods in coal co-gasification. This includes the evaluation of biomass concentration input (B0 to B100) and its gasification performance. A process model is developed and simulated in Aspen HYSYS, where both coal and biomass are modeled according to its ultimate analysis. It was found that the syngas produced increased with increasing biomass content for both co-feeding and independent schemes. However, the heating values and heat duties decreases with biomass concentration as more CO2 are produced from complete combustion.

Keywords: aspen HYSYS, biomass, coal, co-gasification modelling, simulation

Procedia PDF Downloads 413
2811 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: data mining, data analysis, prediction, optimization, building operational performance

Procedia PDF Downloads 856
2810 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures

Authors: C. Mayr, J. Periya, A. Kariminezhad

Abstract:

In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.

Keywords: machine learning, radar, signal processing, autonomous driving

Procedia PDF Downloads 250
2809 Biogas Control: Methane Production Monitoring Using Arduino

Authors: W. Ait Ahmed, M. Aggour, M. Naciri

Abstract:

Extracting energy from biomass is an important alternative to produce different types of energy (heat, electricity, or both) assuring low pollution and better efficiency. It is a new yet reliable approach to reduce green gas emission by extracting methane from industry effluents and use it to power machinery. We focused in our project on using paper and mill effluents, treated in a UASB reactor. The methane produced is used in the factory’s power supply. The aim of this work is to develop an electronic system using Arduino platform connected to a gas sensor, to measure and display the curve of daily methane production on processing. The sensor will send the gas values in ppm to the Arduino board so that the later sends the RS232 hardware protocol. The code developed with processing will transform the values into a curve and display it on the computer screen.

Keywords: biogas, Arduino, processing, code, methane, gas sensor, program

Procedia PDF Downloads 328
2808 Ballast Water Management Triad: Administration, Ship Owner and the Seafarer

Authors: Rajoo Balaji, Omar Yaakob

Abstract:

The Ballast Water Convention requires less than 5% of the world tonnage for ratification. Consequently, ships will have to comply with the requirements. Compliance evaluation and enforcement will become mandatory. Ship owners have to invest in treatment systems and shipboard personnel have to operate them and ensure compliance. The monitoring and enforcement will be the responsibilities of the Administrations. Herein, a review of the current status of the Ballast Water Management and the issues faced by these are projected. Issues range from efficacy and economics of the treatment systems to sampling and testing. Health issues of chemical systems, paucity of data for decision support etc., are other issues. It is emphasized that management of ballast water must be extended to ashore and sustainable solutions must be researched upon. An exemplar treatment system based on ship’s waste heat is also suggested.

Keywords: Ballast Water Management, compliance evaluation, compliance enforcement, sustainability

Procedia PDF Downloads 442
2807 Structural Analysis of an Active Morphing Wing for Enhancing UAV Performance

Authors: E. Kaygan, A. Gatto

Abstract:

A numerical study of a design concept for actively controlling wing twist is described in this paper. The concept consists of morphing elements which were designed to provide a rigid and seamless skin while maintaining structural rigidity. The wing structure is first modeled in CATIA V5 then imported into ANSYS for structural analysis. Athena Vortex Lattice method (AVL) is used to estimate aerodynamic response as well as aerodynamic loads of morphing wings, afterwards a structural optimization performed via ANSYS Static. Overall, the results presented in this paper show that the concept provides efficient wing twist while preserving an aerodynamically smooth and compliant surface. Sufficient structural rigidity in bending is also obtained. This concept is suggested as a possible alternative for morphing skin applications. 

Keywords: aircraft, morphing, skin, twist

Procedia PDF Downloads 399
2806 Graphene Materials for Efficient Hybrid Solar Cells: A Spectroscopic Investigation

Authors: Mohammed Khenfouch, Fokotsa V. Molefe, Bakang M. Mothudi

Abstract:

Nowadays, graphene and its composites are universally known as promising materials. They show their potential in a large field of applications including photovoltaics. This study reports on the role of nanohybrids and nanosystems known as strong light harvesters in the efficiency of graphene hybrid solar cells. Our system included Graphene/ZnO/Porphyrin/P3HT layers. Moreover, the physical properties including surface/interface, optical and vibrational properties were also studied. Our investigations confirmed the interaction between the different components as well as the sensitivity of their photonics to the synthesis conditions. Remarkable energy and charge transfer were detected and deeply investigated. Hence, the optimization of the conditions will lead to the fabrication of higher conversion efficiency in graphene solar cells.

Keywords: graphene, optoelectronics, nanohybrids, solar cells

Procedia PDF Downloads 171
2805 Choice of Optimal Methods for Processing Phosphate Raw Materials into Complex Mineral Fertilizers

Authors: Andrey Norov

Abstract:

Based on the generalization of scientific and production experience and the latest developments of JSC “NIUIF”, the oldest (founded in September 1919) and the only Russian research institute for phosphorus-containing fertilizers, this paper shows the factors that determine the reasonable choice of a method for processing phosphate raw materials into complex fertilizers. These factors primarily include the composition of phosphate raw materials and the impurities contained in it, as well as some parameters of the process mode, wastelessness, ecofriendliness, energy saving, maximum use of the heat of chemical reactions, fire and explosion safety, efficiency, productive capacity, the required product range and the possibility of creating flexible technologies, compliance with BAT principles, etc. The presented data allow to choose the right technology for complex granular fertilizers, depending on the abovementioned factors.

Keywords: BAT, ecofriendliness, energy saving, phosphate raw materials, wastelessness

Procedia PDF Downloads 89
2804 Sustainable Tourism from a Multicriteria Analysis Perspective

Authors: Olga Blasco-Blasco, Vicente Liern

Abstract:

The development of tourism since the mid-20th century has raised problems of overcrowding, indiscriminate construction in seaside areas and gentrification. Increasingly, the World Tourism Organisation and public institutions are promoting policies that encourage sustainability. From the perspective of sustainability, three types of tourism can be established: traditional tourism, sustainable tourism and sustainable impact tourism. Measuring sustainability is complex due to its multiple dimensions of different relative importance and diversity in nature. In order to try to answer this problem and to identify the benefits of applying policies that promote sustainable tourism, a decision-making analysis will be carried out through the application of a multicriteria analysis method. The proposal is applied to hotel reservations and to the evaluation and management of tourism sustainability in the Spanish Autonomous Communities.

Keywords: sustainable tourism, multicriteria analysis, flexible optimization, composite indicators

Procedia PDF Downloads 316
2803 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors

Authors: Anwar Jarndal

Abstract:

In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.

Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization

Procedia PDF Downloads 385
2802 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 235
2801 The Inverse Problem in Energy Beam Processes Using Discrete Adjoint Optimization

Authors: Aitor Bilbao, Dragos Axinte, John Billingham

Abstract:

The inverse problem in Energy Beam (EB) Processes consists of defining the control parameters, in particular the 2D beam path (position and orientation of the beam as a function of time), to arrive at a prescribed solution (freeform surface). This inverse problem is well understood for conventional machining, because the cutting tool geometry is well defined and the material removal is a time independent process. In contrast, EB machining is achieved through the local interaction of a beam of particular characteristics (e.g. energy distribution), which leads to a surface-dependent removal rate. Furthermore, EB machining is a time-dependent process in which not only the beam varies with the dwell time, but any acceleration/deceleration of the machine/beam delivery system, when performing raster paths will influence the actual geometry of the surface to be generated. Two different EB processes, Abrasive Water Machining (AWJM) and Pulsed Laser Ablation (PLA), are studied. Even though they are considered as independent different technologies, both can be described as time-dependent processes. AWJM can be considered as a continuous process and the etched material depends on the feed speed of the jet at each instant during the process. On the other hand, PLA processes are usually defined as discrete systems and the total removed material is calculated by the summation of the different pulses shot during the process. The overlapping of these shots depends on the feed speed and the frequency between two consecutive shots. However, if the feed speed is sufficiently slow compared with the frequency, then consecutive shots are close enough and the behaviour can be similar to a continuous process. Using this approximation a generic continuous model can be described for both processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at each single pixel on the surface using a linear model of the process. However, this approach does not always lead to the good solution since linear models are only valid when shallow surfaces are etched. The solution of the inverse problem is improved by using a discrete adjoint optimization algorithm. Moreover, the calculation of the Jacobian matrix consumes less computation time than finite difference approaches. The influence of the dynamics of the machine on the actual movement of the jet is also important and should be taken into account. When the parameters of the controller are not known or cannot be changed, a simple approximation is used for the choice of the slope of a step profile. Several experimental tests are performed for both technologies to show the usefulness of this approach.

Keywords: abrasive waterjet machining, energy beam processes, inverse problem, pulsed laser ablation

Procedia PDF Downloads 279
2800 Phasor Measurement Unit Based on Particle Filtering

Authors: Rithvik Reddy Adapa, Xin Wang

Abstract:

Phasor Measurement Units (PMUs) are very sophisticated measuring devices that find amplitude, phase and frequency of various voltages and currents in a power system. Particle filter is a state estimation technique that uses Bayesian inference. Particle filters are widely used in pose estimation and indoor navigation and are very reliable. This paper studies and compares four different particle filters as PMUs namely, generic particle filter (GPF), genetic algorithm particle filter (GAPF), particle swarm optimization particle filter (PSOPF) and adaptive particle filter (APF). Two different test signals are used to test the performance of the filters in terms of responsiveness and correctness of the estimates.

Keywords: phasor measurement unit, particle filter, genetic algorithm, particle swarm optimisation, state estimation

Procedia PDF Downloads 17
2799 Pre- and Post-Analyses of Disruptive Quay Crane Scheduling Problem

Authors: K. -H. Yang

Abstract:

In the past, the quay crane operations have been well studied. There were a certain number of scheduling algorithms for quay crane operations, but without considering some nuisance factors that might disrupt the quay crane operations. For example, bad grapples make a crane unable to load or unload containers or a sudden strong breeze stops operations temporarily. Although these disruptive conditions randomly occur, they influence the efficiency of quay crane operations. The disruption is not considered in the operational procedures nor is evaluated in advance for its impacts. This study applies simulation and optimization approaches to develop structures of pre-analysis and post-analysis for the Quay Crane Scheduling Problem to deal with disruptive scenarios for quay crane operation. Numerical experiments are used for demonstrations for the validity of the developed approaches.

Keywords: disruptive quay crane scheduling, pre-analysis, post-analysis, disruption

Procedia PDF Downloads 225