Search results for: accuracy improvement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7898

Search results for: accuracy improvement

4628 Rock Thickness Measurement by Using Self-Excited Acoustical System

Authors: Janusz Kwaśniewski, Ireneusz Dominik, Krzysztof Lalik

Abstract:

The knowledge about rock layers thickness, especially above drilled mining pavements are crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-Excited Acoustical System is presented in the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rock layer. The idea is to find two resonance frequencies of the self-exited system, which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented.

Keywords: auto-oscillator, non-destructive testing, rock thickness measurement, geotechnic

Procedia PDF Downloads 379
4627 Sentiment Analysis: An Enhancement of Ontological-Based Features Extraction Techniques and Word Equations

Authors: Mohd Ridzwan Yaakub, Muhammad Iqbal Abu Latiffi

Abstract:

Online business has become popular recently due to the massive amount of information and medium available on the Internet. This has resulted in the huge number of reviews where the consumers share their opinion, criticisms, and satisfaction on the products they have purchased on the websites or the social media such as Facebook and Twitter. However, to analyze customer’s behavior has become very important for organizations to find new market trends and insights. The reviews from the websites or the social media are in structured and unstructured data that need a sentiment analysis approach in analyzing customer’s review. In this article, techniques used in will be defined. Definition of the ontology and description of its possible usage in sentiment analysis will be defined. It will lead to empirical research that related to mobile phones used in research and the ontology used in the experiment. The researcher also will explore the role of preprocessing data and feature selection methodology. As the result, ontology-based approach in sentiment analysis can help in achieving high accuracy for the classification task.

Keywords: feature selection, ontology, opinion, preprocessing data, sentiment analysis

Procedia PDF Downloads 201
4626 Landscape Management in the Emergency Hazard Planning Zone of the Nuclear Power Plant Temelin: Preventive Improvement of Landscape Functions

Authors: Ivana Kašparová, Emilie Pecharová

Abstract:

The experience of radiological contamination of land, especially after the Chernobyl and Fukushima disasters have shown the need to explore possibilities to the capture of radionuclides in the area affected and to adapt the landscape management to this purpose ex –ante the considered accident in terms of prevention. The project‚ Minimizing the impact of radiation contamination on land in the emergency zone of Temelin NPP‘ (2012-2015), dealt with the possibility of utilization of wetlands as retention sites for water carrying radionuclides in the case of a radiation accident. A model artificial wetland was designed and adopted as a utility model by the Ministry of Industry and Trade of the Czech Republic. The article shows the conditions of construction of designed wetlands in the landscape with regard to minimizing the negative effect on agricultural production and enhancing the hydrological functionality of the landscape.

Keywords: artificial wetland, land use/ land cover, old maps, surface-to-water transport of radionuclides

Procedia PDF Downloads 363
4625 Bridge Construction and Type of Bridges and Their Construction Methods

Authors: Mokhtar Nikgoo

Abstract:

Definition of bridge: A bridge is a structure that allows people to pass through the communication road with two points. There are many different types of bridges, each of which is designed to perform a specific function. This article introduces the concept, history, components, uses, types, construction methods, selected factors, damage factors and principles of bridge maintenance. A bridge is a structure to cross a passage such as a water, valley or road without blocking another path underneath. This structure makes it possible to pass obstacles that are difficult or impossible to pass. There are different designs for bridge construction, each of which is used for a particular function and condition. In the old definition, a bridge is an arch over a river, valley, or any type of passage that makes traffic possible. But today, in the topic of urban management, the bridge is considered as a structure to cross physical barriers, so that while using space (not just the surface of the earth), it can facilitate the passage and access to places. The useful life of bridges may be between 30 and 80 years depending on the location and the materials used. But with proper maintenance and improvement, their life may last for hundreds of years.

Keywords: bridge, road construction, surveying, transportation

Procedia PDF Downloads 516
4624 Forecasting Unemployment Rate in Selected European Countries Using Smoothing Methods

Authors: Ksenija Dumičić, Anita Čeh Časni, Berislav Žmuk

Abstract:

The aim of this paper is to select the most accurate forecasting method for predicting the future values of the unemployment rate in selected European countries. In order to do so, several forecasting techniques adequate for forecasting time series with trend component, were selected, namely: double exponential smoothing (also known as Holt`s method) and Holt-Winters` method which accounts for trend and seasonality. The results of the empirical analysis showed that the optimal model for forecasting unemployment rate in Greece was Holt-Winters` additive method. In the case of Spain, according to MAPE, the optimal model was double exponential smoothing model. Furthermore, for Croatia and Italy the best forecasting model for unemployment rate was Holt-Winters` multiplicative model, whereas in the case of Portugal the best model to forecast unemployment rate was Double exponential smoothing model. Our findings are in line with European Commission unemployment rate estimates.

Keywords: European Union countries, exponential smoothing methods, forecast accuracy unemployment rate

Procedia PDF Downloads 370
4623 Quality of Life of Poor Residential Neighborhoods in Oshogbo, Nigeria

Authors: Funmilayo L. Amao

Abstract:

As a result of the high cost of housing, the increasing population is forced to live in substandard housing and unhealthy conditions giving rise to poor residential neighborhoods. The paper examines the causes and characteristics of poor residential neighborhood. The paper finds the problems that have influence poor neighborhoods to; poverty, growth of informal sector and housing shortage. The paper asserts that poor residential neighborhoods have adverse effects on the people. The secondary data was obtained from books, journals and seminar papers while primary data relating to building and environmental quality from structured questionnaire administered on sample of 500 household heads, from sampling frame of 5000 housing units. The study reveals that majority of the respondents are poor and employed in informal sector. The paper suggests urban renewal and slum upgrading programs as methods in dealing with the situation and an improvement in the socio-economic circumstances of the inhabitants.

Keywords: environmental degeneration, housing, poverty, quality of life, urban upgrading

Procedia PDF Downloads 397
4622 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training

Procedia PDF Downloads 94
4621 An Approach to Make an Adaptive Immunoassay to Detect an Unknown Disease

Authors: Josselyn Mata Calidonio, Arianna I. Maddox, Kimberly Hamad-Schifferli

Abstract:

Rapid diagnostics are critical infectious disease tools that are designed to detect a known biomarker using antibodies specific to that biomarker. However, a way to detect unknown viruses has not yet been achieved in a paper test format. We describe here a route to make an adaptable paper immunoassay that can detect an unknown biomarker, demonstrating it on SARS-CoV-2 variants. The immunoassay repurposes cross-reactive antibodies raised against the alpha variant. Gold nanoparticles of two different colors conjugated to two different antibodies create a colorimetric signal, and machine learning of the resulting colorimetric pattern is used to train the assay to discriminate between variants of alpha and Omicron BA.5. By using principal component analysis, the colorimetric test patterns can pick up and discriminate an unknown that it has not encountered before, Omicron BA.1. The test has an accuracy of 100% and a potential calculated discriminatory power of 900. We show that it can be used adaptively and that it can be used to pick up emerging variants without the need to raise new antibodies.

Keywords: adaptive immunoassay, detecting unknown viruses, gold nanoparticles, paper immunoassay, repurposing antibodies

Procedia PDF Downloads 119
4620 Numerical Analysis of Fire Performance of Timber Structures

Authors: Van Diem Thi, Mourad Khelifa, Mohammed El Ganaoui, Yann Rogaume

Abstract:

An efficient numerical method has been developed to incorporate the effects of heat transfer in timber panels on partition walls exposed to real building fires. The procedure has been added to the software package Abaqus/Standard as a user-defined subroutine (UMATHT) and has been verified using both time-and spatially dependent heat fluxes in two- and three-dimensional problems. The aim is to contribute to the development of simulation tools needed to assist structural engineers and fire testing laboratories in technical assessment exercises. The presented method can also be used under the developmental stages of building components to optimize performance in real fire conditions. The accuracy of the used thermal properties and the finite element models was validated by comparing the predicted results with three different available fire tests in literature. It was found that the model calibrated to results from standard fire conditions provided reasonable predictions of temperatures within assemblies exposed to real building fire.

Keywords: Timber panels, heat transfer, thermal properties, standard fire tests

Procedia PDF Downloads 346
4619 Research on the Aero-Heating Prediction Based on Hybrid Meshes and Hybrid Schemes

Authors: Qiming Zhang, Youda Ye, Qinxue Jiang

Abstract:

Accurate prediction of external flowfield and aero-heating at the wall of hypersonic vehicle is very crucial for the design of aircrafts. Unstructured/hybrid meshes have more powerful advantages than structured meshes in terms of pre-processing, parallel computing and mesh adaptation, so it is imperative to develop high-resolution numerical methods for the calculation of aerothermal environment on unstructured/hybrid meshes. The inviscid flux scheme is one of the most important factors affecting the accuracy of unstructured/ hybrid mesh heat flux calculation. Here, a new hybrid flux scheme is developed and the approach of interface type selection is proposed: i.e. 1) using the exact Riemann scheme solution to calculate the flux on the faces parallel to the wall; 2) employing Sterger-Warming (S-W) scheme to improve the stability of the numerical scheme in other interfaces. The results of the heat flux fit the one observed experimentally and have little dependence on grids, which show great application prospect in unstructured/ hybrid mesh.

Keywords: aero-heating prediction, computational fluid dynamics, hybrid meshes, hybrid schemes

Procedia PDF Downloads 257
4618 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks

Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy

Abstract:

With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.

Keywords: localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI, GPS

Procedia PDF Downloads 344
4617 Registration of Multi-Temporal Unmanned Aerial Vehicle Images for Facility Monitoring

Authors: Dongyeob Han, Jungwon Huh, Quang Huy Tran, Choonghyun Kang

Abstract:

Unmanned Aerial Vehicles (UAVs) have been used for surveillance, monitoring, inspection, and mapping. In this paper, we present a systematic approach for automatic registration of UAV images for monitoring facilities such as building, green house, and civil structures. The two-step process is applied; 1) an image matching technique based on SURF (Speeded up Robust Feature) and RANSAC (Random Sample Consensus), 2) bundle adjustment of multi-temporal images. Image matching to find corresponding points is one of the most important steps for the precise registration of multi-temporal images. We used the SURF algorithm to find a quick and effective matching points. RANSAC algorithm was used in the process of finding matching points between images and in the bundle adjustment process. Experimental results from UAV images showed that our approach has a good accuracy to be applied to the change detection of facility.

Keywords: building, image matching, temperature, unmanned aerial vehicle

Procedia PDF Downloads 297
4616 Influencing Factors of Residents’ Intention to Participate in the Governance of Old Community Renewal: A Case Study of Nanjing

Authors: Tiantian Gu, Dezhi Li, Mian Zhang, Ying Jiang

Abstract:

Considering the characteristics of residents’ participation in the governance of old community renewal (OCR), a theoretical model of the determinant of residents’ intention to participate in the governance of OCR has been built based on the theory of planned behavior. Seven old communities in Nanjing have been chosen as cases to conduct empirical analysis. The result indicates that participation attitude, subjective norm and perceived behavioral control have significant positive effects on residents’ intention to participate in the governance of the OCR. Recognition of the community, cognition of the OCR and perceived behavioral control have indirect positive effects on residents’ intention to participate in the OCR. In addition, the education level and the length of residence have positive effects on their participation intention, while the gender, age, and monthly income have little effect on it. The research result provides suggestions for the improvement of residents’ participation in the OCR.

Keywords: old community renewal, residents’ participation in governance, intention, theory of planned behavior

Procedia PDF Downloads 190
4615 Nigerian Football System: Examining Micro-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport

Authors: Iorwase Derek Kaka’an, Peter Smolianov, Steven Dion, Christopher Schoen, Jaclyn Norberg, Charles Gabriel Iortimah

Abstract:

This study examines the current state of football in Nigeria to identify the country's practices, which could be useful internationally, and to determine areas for improvement. Over 200 sources of literature on sport delivery systems in successful sports nations were analyzed to construct a globally applicable model of elite football integrated with mass participation, comprising of the following three levels: macro (socio-economic, cultural, legislative, and organizational), meso (infrastructures, personnel, and services enabling sports programs) and micro level (operations, processes, and methodologies for the development of individual athletes). The model has received scholarly validation and has shown to be a framework for program analysis that is not culturally bound. It has recently been utilized for further understanding such sports systems as US rugby, tennis, soccer, swimming, and volleyball, as well as Dutch and Russian swimming. A questionnaire was developed using the above-mentioned model. Survey questions were validated by 12 experts including academicians, executives from sports governing bodies, football coaches, and administrators. To identify best practices and determine areas for improvement of football in Nigeria, 116 coaches completed the questionnaire. Useful exemplars and possible improvements were further identified through semi-structured discussions with 10 Nigerian football administrators and experts. Finally, a content analysis of the Nigeria Football Federation's website and organizational documentation was conducted. This paper focuses on the micro level of Nigerian football delivery, particularly talent search and development as well as advanced athlete preparation and support. Results suggested that Nigeria could share such progressive practices as the provision of football programs in all schools and full-time coaches paid by governments based on the level of coach education. Nigerian football administrators and coaches could provide better football services affordable for all, where success in mass and elite sports is guided by science focused on athletes' needs. Better implemented could be international best practices such as lifelong guidelines for health and excellence of everyone and integration of fitness tests into player development and ranking as done in best Dutch, English, French, Russian, Spanish, and other European clubs; integration of educational and competitive events for elite and developing athletes as well as fans as done at the 2018 World Cup Russia; and academies with multi-stage athlete nurturing as done by Ajax in Africa as well as Barcelona FC and other top clubs expanding across the world. The methodical integration of these practices into the balanced development of mass and elite football will help contribute to international sports success as well as national health, education, crime control, and social harmony in Nigeria.

Keywords: football, high performance, mass participation, Nigeria, sport development

Procedia PDF Downloads 75
4614 The Determination of Total Microbial Count and Prevalence of Salmonella in the Shrimp Supply in Khuzestan Province

Authors: Sana Mohammad Jafar

Abstract:

Salmonella is one of the major causes of foodborne diseases throughout the world. Shrimp are an important commodity in world fishery trade. The microbiological quality of shrimp must be evaluated for assurance of shrimp. The aim of this study was to evaluate the microbiological quality and to determine the prevalence of Salmonella in shrimp sold in Khuzestan province. In this study, a total of 245 samples of shrimp sold in Khuzestan province were tested for Salmonella prevalence and total microbial population. The mean aerobic bacterial count in 50.2% of samples was 2200, in 29.8% of samples was 13,600, in 20% of samples was 36,700, and the mean aerobic bacterial count in the total samples was 20,000. (20,000 cfu/cc). Of the total samples, 33 samples were positive for Salmonella and the prevalence of Salmonella was determined 13.4%. These results indicate the possibility that shrimp contribute to foodborne infections. The improvement of shrimp quality is an important issue, and shrimp before consuming should be washed with water containing chlorine, with the aim of increasing safety. In addition, it should be avoided to eat shrimp as raw or not cooked properly.

Keywords: determination, total microbial, Salmonella, shrimp

Procedia PDF Downloads 242
4613 Design of Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring Application

Authors: Arafat A. A. Shabaneh

Abstract:

Harsh environments demand a developed detection of an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBG) are emerging sensing instruments that respond to variations in strain and temperature via varying wavelengths. In this paper, cascaded uniform FBG as a strain sensor for 6 km length at 1550 nm wavelength with 30 oC is designed with analyzing of dynamic strain and wavelength shifts. FBG is placed in a small segment of optical fiber, which reflects light of a specific wavelength and passes the remaining wavelengths. This makes a periodic alteration in the refractive index within the fiber core. The alteration in the modal index of fiber produced due to strain consequences in a Bragg wavelength. When the developed sensor exposure to a strain of cascaded uniform FBG by 0.01, the wavelength is shifted to 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show reliable and effective strain monitoring sensors for remote sensing applications.

Keywords: Cascaded fiber Bragg gratings, Strain sensor, Remote sensing, Wavelength shift

Procedia PDF Downloads 206
4612 Shock and Particle Velocity Determination from Microwave Interrogation

Authors: Benoit Rougier, Alexandre Lefrancois, Herve Aubert

Abstract:

Microwave interrogation in the range 10-100 GHz is identified as an advanced technique to investigate simultaneously shock and particle velocity measurements. However, it requires the understanding of electromagnetic wave propagation in a multi-layered moving media. The existing models limit their approach to wave guides or evaluate the velocities with a fitting method, restricting therefore the domain of validity and the precision of the results. Moreover, few data of permittivity on high explosives at these frequencies under dynamic compression have been reported. In this paper, shock and particle velocities are computed concurrently for steady and unsteady shocks for various inert and reactive materials, via a propagation model based on Doppler shifts and signal amplitude. Refractive index of the material under compression is also calculated. From experimental data processing, it is demonstrated that Hugoniot curve can be evaluated. The comparison with published results proves the accuracy of the proposed method. This microwave interrogation technique seems promising for shock and detonation waves studies.

Keywords: electromagnetic propagation, experimental setup, Hugoniot measurement, shock propagation

Procedia PDF Downloads 216
4611 Non-Local Simultaneous Sparse Unmixing for Hyperspectral Data

Authors: Fanqiang Kong, Chending Bian

Abstract:

Sparse unmixing is a promising approach in a semisupervised fashion by assuming that the observed pixels of a hyperspectral image can be expressed in the form of linear combination of only a few pure spectral signatures (end members) in an available spectral library. However, the sparse unmixing problem still remains a great challenge at finding the optimal subset of endmembers for the observed data from a large standard spectral library, without considering the spatial information. Under such circumstances, a sparse unmixing algorithm termed as non-local simultaneous sparse unmixing (NLSSU) is presented. In NLSSU, the non-local simultaneous sparse representation method for endmember selection of sparse unmixing, is used to finding the optimal subset of endmembers for the similar image patch set in the hyperspectral image. And then, the non-local means method, as a regularizer for abundance estimation of sparse unmixing, is used to exploit the abundance image non-local self-similarity. Experimental results on both simulated and real data demonstrate that NLSSU outperforms the other algorithms, with a better spectral unmixing accuracy.

Keywords: hyperspectral unmixing, simultaneous sparse representation, sparse regression, non-local means

Procedia PDF Downloads 253
4610 Mental Health Literacy in Ghana: Consequences of Religiosity, Education, and Stigmatization

Authors: Peter Adu

Abstract:

Although research on the concept of Mental Health Literacy (MHL) is growing internationally, to the authors’ best of knowledge, the beliefs and knowledge of Ghanaians on specific mental disorders have not yet been explored. This vignette study was conducted to explore the relationships between religiosity, education, stigmatization, and MHL among Ghanaians using a sample of laypeople (N = 409). The adapted questionnaire presented two vignettes (depression and schizophrenia) about a hypothetical person. The results revealed that more participants were able to recognize depression (47.4%) than schizophrenia (15.9%). Religiosity was not significantly associated with recognition of mental disorders (MHL) but was positively related with both social and personal stigma for depression and negatively associated with personal and perceived stigma for schizophrenia. Moreover, education was found to relate positively with MHL and negatively with perceived stigma. Finally, perceived stigma was positively associated with MHL, whereas personal stigma for schizophrenia related negatively to MHL. In conclusion, education but not religiosity predicted identification accuracy, but both predictors were associated with various forms of stigma. Findings from this study have implications for MHL and anti-stigma campaigns in Ghana and other developing countries in the region.

Keywords: depression, education, mental health literacy, religiosity, schizophrenia

Procedia PDF Downloads 162
4609 Effect of Zr Addition to Aluminum Grain Refined by Ti+B on Its Wear Resistance after Extrusion Condition

Authors: Adnan I. O. Zaid, Safwan M. A. Alqawabah

Abstract:

Review of the available literature on grain refinement of aluminum and its alloys reveals that little work is published on the effect of refiners on mechanical characteristics and wear resistance. In this paper, the effect of addition of Zr to Al grain refined by Ti+B on its metallurgical, mechanical characteristics and wear resistance both in the as cast and after extrusion condition are presented and discussed. It was found that Addition of Zr to Al resulted in deterioration of its mechanical strength and hardness, whereas it resulted in improvement of both of them when added to Al grain refined by Ti+B. Furthermore it was found that the direct extrusion process resulted in further increase of the mechanical strength and hardness of Al and its micro-alloys. Also it resulted in increase of their work hardening index, n, i.e. improved their formability, hence it reduces the number of stages required for forming at large strains in excess of the plastic instability before Zr addition.

Keywords: aluminum, grain refinement, titanium + boron, zirconium, mechanical characteristics, wear resistance, direct extrusion

Procedia PDF Downloads 449
4608 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network

Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan

Abstract:

Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.

Keywords: deep convolution networks, Yolo, machine learning, agriculture

Procedia PDF Downloads 123
4607 Exploring Relationship between Attention and Consciousness

Authors: Aarushi Agarwal, Tara Singh, Anju Lata Singh, Trayambak Tiwari, Indramani Lal Singh

Abstract:

The existing interdependent relationship between attention and consciousness has been put to debate since long. To testify the nature, dual-task paradigm has been used to simultaneously manipulate awareness and attention. With central discrimination task which is attentional demanding, participants also perform simple discrimination task in the periphery in near absence of attention. Individual-based analysis of performance accuracy in single and dual condition showed and above chance level performance i.e. more than 80%. In order to widen the understanding of extent of discrimination carried in near absence of attention, natural image and its geometric equivalent shape were presented in the periphery; synthetic objects accounted to lower level of performance than natural objects in dual condition. The gaze plot and heatmap indicate that peripheral performance do not necessarily involve saccade every time, verifying the discrimination in the periphery was in near absence of attention. Thus our studies show an interdependent nature of attention and awareness.

Keywords: attention, awareness, dual task paradigm, natural and geometric images

Procedia PDF Downloads 522
4606 Spatial Integrity of Seismic Data for Oil and Gas Exploration

Authors: Afiq Juazer Rizal, Siti Zaleha Misnan, M. Zairi M. Yusof

Abstract:

Seismic data is the fundamental tool utilized by exploration companies to determine potential hydrocarbon. However, the importance of seismic trace data will be undermined unless the geo-spatial component of the data is understood. Deriving a proposed well to be drilled from data that has positional ambiguity will jeopardize business decision and millions of dollars’ investment that every oil and gas company would like to avoid. Spatial integrity QC workflow has been introduced in PETRONAS to ensure positional errors within the seismic data are recognized throughout the exploration’s lifecycle from acquisition, processing, and seismic interpretation. This includes, amongst other tests, quantifying that the data is referenced to the appropriate coordinate reference system, survey configuration validation, and geometry loading verification. The direct outcome of the workflow implementation helps improve reliability and integrity of sub-surface geological model produced by geoscientist and provide important input to potential hazard assessment where positional accuracy is crucial. This workflow’s development initiative is part of a bigger geospatial integrity management effort, whereby nearly eighty percent of the oil and gas data are location-dependent.

Keywords: oil and gas exploration, PETRONAS, seismic data, spatial integrity QC workflow

Procedia PDF Downloads 231
4605 The Importance of Patenting and Technology Exports as Indicators of Economic Development

Authors: Hugo Rodríguez

Abstract:

The patenting of inventions is the result of an organized effort to achieve technological improvement and its consequent positive impact on the population's standard of living. Technology exports, either of high-tech goods or of Information and Communication Technology (ICT) services, represent the level of acceptance that world markets have of that technology acquired or developed by a country, either in public or private settings. A quantitative measure of the above variables is expected to have a positive and relevant impact on the level of economic development of the countries, measured on this first occasion through their level of Gross Domestic Product (GDP). And in that sense, it not only explains the performance of an economy but the difference between nations. We present an econometric model where we seek to explain the difference between the GDP levels of 178 countries through their different performance in the outputs of the technological production process. We take the variables of Patenting, ICT Exports and High Technology Exports as results of the innovation process. This model achieves an explanatory power for four annual cuts (2000, 2005, 2010 and 2015) equivalent to an adjusted r2 of 0.91, 0.87, 0.91 and 0.96, respectively.

Keywords: Development, exports, patents, technology

Procedia PDF Downloads 116
4604 A Study of Achievement and Attitude on Learning Science in English by Using Co – Teaching Method

Authors: Sakchai Rachniyom

Abstract:

Owing to the ASEAN community will formally take place in the few months; therefore, Thais should realize about the importance of English language. Since, it is regarded as a working language in the community. To promote Science students’ English proficiency, teacher should be able to teach in English language appropriately and effectively. The purposes of the quasi – experimental research are (1) to measure the learning achievement, (2) to evaluate students’ satisfaction on the teaching and learning and (3) to study the consequences of co – teaching method in order comprehend the learning achievement and improvement. The participants were 40 general science students teacher. Two types of research instruments were included; (1) an achievement test, and (2) a questionnaire. This research was conducted for 1 semester. The statistics used in this research were arithmetic mean and standard deviation. The findings of the study revealed that students’ achievement score was significantly increased at statistical level .05 and the students satisfied the teaching and learning at the highest level . The students’ involvement and teachers’ support were promoted. It was also reported students’ learning was improved by co – teaching method.

Keywords: co – teaching method, learning science in english, teacher, education

Procedia PDF Downloads 484
4603 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand

Authors: Neeta Kumari, Gopal Pathak

Abstract:

Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.

Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination

Procedia PDF Downloads 554
4602 Modeling and Analyzing Controversy in Large-Scale Cyber-Argumentation

Authors: Najla Althuniyan

Abstract:

Online discussions take place across different platforms. These discussions have the potential to extract crowd wisdom and capture the collective intelligence from a different perspective. However, certain phenomena, such as controversy, often appear in online argumentation that makes the discussion between participants heated. Heated discussions can be used to extract new knowledge. Therefore, detecting the presence of controversy is an essential task to determine if collective intelligence can be extracted from online discussions. This paper uses existing measures for estimating controversy quantitatively in cyber-argumentation. First, it defines controversy in different fields, and then it identifies the attributes of controversy in online discussions. The distributions of user opinions and the distance between opinions are used to calculate the controversial degree of a discussion. Finally, the results from each controversy measure are discussed and analyzed using an empirical study generated by a cyber-argumentation tool. This is an improvement over the existing measurements because it does not require ground-truth data or specific settings and can be adapted to distribution-based or distance-based opinions.

Keywords: online argumentation, controversy, collective intelligence, agreement analysis, collaborative decision-making, fuzzy logic

Procedia PDF Downloads 120
4601 Nutritional Composition of Iranian Desi and Kabuli Chickpea (Cicer arietinum L.) Cultivars in Autumn Sowing

Authors: Khosro Mohammadi

Abstract:

The grain quality of chickpea in Iran is low and instable, which may be attributed to the evolution of cultivars with a narrow genetic base making them vulnerable to biotic stresses. Four chickpea varieties from diverse geographic origins were chosen and arranged in a randomized complete block design. Mesorhizobium Sp. cicer strain SW7 was added to all the chickpea seeds. Chickpea seeds were planted on October 9, 2013. Each genotype was sown 5 m in length, with 35 cm inter-row spacing, in 3 rows. Weeds were removed manually in all plots. Results showed that analysis of variance on the studied traits showed significant differences among genotypes for N, P, K and Fe contents of chickpea, but there is not a significant difference among Ca, Zn and Mg continents of chickpea. The experimental coefficient of variation (CV) varied from 7.3 to 15.8. In general, the CV value lower than 20% is considered to be good, indicating the accuracy of conducted experiments. The highest grain N was observed in Hashem and Jam cultivars. The highest grain P was observed in Jam cultivar. Phosphorus content (mg/100g) ranged from 142.3 to 302.3 with a mean value of 221.3. The negative correlation (-0.126) was observed between the N and P of chickpea cultivars. The highest K and Fe contents were observed in Jam cultivar.

Keywords: cultivar, genotype, nitrogen, nutrient, yield

Procedia PDF Downloads 355
4600 Two-Dimensional Nanostack Based On Chip Wiring

Authors: Nikhil Jain, Bin Yu

Abstract:

The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h-BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h-BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects.

Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, heterostructure, interconnects

Procedia PDF Downloads 458
4599 Curriculum Based Measurement and Precision Teaching in Writing Empowerment Enhancement: Results from an Italian Learning Center

Authors: I. Pelizzoni, C. Cavallini, I. Salvaderi, F. Cavallini

Abstract:

We present the improvement in writing skills obtained by 94 participants (aged between six and 10 years) with special educational needs through a writing enhancement program based on fluency principles. The study was planned and conducted with a single-subject experimental plan for each of the participants, in order to confirm the results in the literature. These results were obtained using precision teaching (PT) methodology to increase the number of written graphemes per minute in the pre- and post-test, by curriculum based measurement (CBM). Results indicated an increase in the number of written graphemes for all participants. The average overall duration of the intervention is 144 minutes in five months of treatment. These considerations have been analyzed taking account of the complexity of the implementation of measurement systems in real operational contexts (an Italian learning center) and important aspects of replicability and cost-effectiveness of such interventions.

Keywords: curriculum based measurement, precision teaching, writing skill, Italian learning center

Procedia PDF Downloads 132