Search results for: potential intelligence
12410 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts
Authors: Akhila Potluru
Abstract:
Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.Keywords: artificial intelligence, machine learning, transboundary water conflict, water management
Procedia PDF Downloads 10512409 Ambivalence in Embracing Artificial Intelligence in the Units of a Public Hospital in South Africa
Authors: Sanele E. Nene L., Lia M. Hewitt
Abstract:
Background: Artificial intelligence (AI) has a high value in healthcare, various applications have been developed for the efficiency of clinical operations, such as appointment/surgery scheduling, diagnostic image analysis, prognosis, prediction and management of specific ailments. Purpose: The purpose of this study was to explore, describe, contrast, evaluate, and develop the various leadership strategies as a conceptual framework, applied by public health Operational Managers (OMs) to embrace AI benefits, with the aim to improve the healthcare system in a public hospital. Design and Method: A qualitative, exploratory, descriptive and contextual research design was followed and a descriptive phenomenological approach. Five phases were followed to conduct this study. Phenomenological individual interviews and focus groups were used to collect data and a phenomenological thematic data analysis method was used. Findings and conclusion: Three themes surfaced as the experiences of AI by the OMs; Positive experiences related to AI, Management and leadership processes in AI facilitation, and Challenges related to AI.Keywords: ambivalence, embracing, Artificial intelligence, public hospital
Procedia PDF Downloads 7912408 Organizational Commitment in Islamic Boarding School: The Implementation of Organizational Behavior Integrative Model
Authors: Siswoyo Haryono
Abstract:
Purpose – The fundamental goal of this research is to see if the integrative organizational behavior model can be used effectively in Islamic boarding schools. This paper also seeks to assess the effect of Islamic organizational culture, leadership, and spiritual intelligence on teachers' organizational commitment to Islamic Boarding schools. The goal of the mediation analysis is to see if the Islamic work ethic has a more significant effect on the instructors' organizational commitment than the direct effects of Islamic organizational culture, leadership, and Islamic spiritual intelligence. Design/methodology/approach – A questionnaire survey was used to obtain data from teachers at Islamic Boarding Schools. This study used the AMOS technique for structural equation modeling to evaluate the expected direct effect. To test the hypothesized indirect effect, employed Sobel test. Findings – Islamic organizational culture, Islamic leadership, and Islamic spiritual intelligence significantly affect Islamic work ethic. When it comes to Islamic corporate culture, Islamic leadership, Islamic spiritual intelligence, and Islamic work ethics have a significant impact. The findings of the mediation study reveal that Islamic organizational culture, leadership, and spiritual intelligence influences organizational commitment through Islamic work ethic. The total effect analysis shows that the most effective path to increasing teachers’ organizational commitment is Islamic leadership - Islamic work ethic – organizational commitment. Originality/value – This study evaluates the Integrative Model of Organizational Behavior by Colquitt (2016) applied in Islamic Boarding School. The model consists of contemporary leadership and individual characteristic as the antecedent. The mediating variables of the model consist of individual mechanisms such as trust, justice, and ethic. Individual performance and organizational commitment are the model's outcomes. These variables, on the other hand, do not represent the Islamic viewpoint as a whole. As a result, this study aims to assess the role of Islamic principles in the model. The study employs reliability and validity tests to get reliable and valid measures. The findings revealed that the evaluation model is proven to improve organizational commitment at Islamic Boarding School.Keywords: Islamic leadership, Islamic spiritual intelligence, Islamic work ethic, organizational commitment, Islamic boarding school
Procedia PDF Downloads 16112407 Analysing “The Direction of Artificial Intelligence Legislation from a Global Perspective” from the Perspective of “AIGC Copyright Protection” Content
Authors: Xiaochen Mu
Abstract:
Due to the diversity of stakeholders and the ambiguity of ownership boundaries, the current protection models for Artificial Intelligence Generated Content (AIGC) have many disadvantages. In response to this situation, there are three different protection models worldwide. The United States Copyright Office stipulates that works autonomously generated by artificial intelligence ‘lack’ the element of human creation, and non-human AI cannot create works. To protect and promote investment in the field of artificial intelligence, UK legislation, through Section 9(3) of the CDPA, designates the author of AI-generated works as ‘the person by whom the arrangements necessary for the creation of the work are undertaken.’ China neither simply excludes the work attributes of AI-generated content based on the lack of a natural person subject as the sole reason, nor does it generalize that AIGC should or should not be protected. Instead, it combines specific case circumstances and comprehensively evaluates the degree of originality of AIGC and the contributions of natural persons to AIGC. In China's first AI drawing case, the court determined that the image in question was the result of the plaintiff's design and selection through inputting prompt words and setting parameters, reflecting the plaintiff's intellectual investment and personalized expression, and should be recognized as a work in the sense of copyright law. Despite opposition, the ruling also established the feasibility of the AIGC copyright protection path. The recognition of the work attributes of AIGC will not lead to overprotection that hinders the overall development of the AI industry. Just as with the legislation and regulation of AI by various countries, there is a need for a balance between protection and development. For example, the provisional agreement reached on the EU AI Act, based on a risk classification approach, seeks a dynamic balance between copyright protection and the development of the AI industry.Keywords: generative artificial intelligence, originality, works, copyright
Procedia PDF Downloads 4212406 Emotional Intelligence: Strategies in the Sphere of Leadership
Authors: Raghavi Janaswamy, Srinivas Janaswamy
Abstract:
Emotional Intelligence (EI) measures the degree to which individuals can identify, understand and manage emotions. Indeed, it highlights the intricate relationship between thoughts, feelings, and behavior of an individual. In today's world, EI competencies appear to be more valuable compared to cognitive and/or technical expertise. Higher EI endows realistic confidence to perceive challenges with positive thinking and, in turn, offers a steady growth as well as the speed of work and discerning ability. It certainly plays a vital role for aspirants to ascend the organizational ladder and distinguishes outstanding leaders from the rest. Emotional maturity further reflects on the behavioral pattern toward dealing with self and the immediate environment. Indeed, it aids in cementing inter-personal relations at a workplace with a thorough understanding and certainly paves the way for leaders to their prosperity as well as organizational growth. Herein, EI contributions to an individual, team, and organizational success are discussed with an emphasis on the required tools to acquire higher EI traits. The strategies for promoting self-awareness, empathy, and social skills and changing trends of the new programs for the EI improvement are also highlighted.Keywords: emotional intelligence, leadership, organizational growth, self-awareness skills
Procedia PDF Downloads 8212405 Hidden Stones When Implementing Artificial Intelligence Solutions in the Engineering, Procurement, and Construction Industry
Authors: Rimma Dzhusupova, Jan Bosch, Helena Holmström Olsson
Abstract:
Artificial Intelligence (AI) in the Engineering, Procurement, and Construction (EPC) industry has not yet a proven track record in large-scale projects. Since AI solutions for industrial applications became available only recently, deployment experience and lessons learned are still to be built up. Nevertheless, AI has become an attractive technology for organizations looking to automate repetitive tasks to reduce manual work. Meanwhile, the current AI market has started offering various solutions and services. The contribution of this research is that we explore in detail the challenges and obstacles faced in developing and deploying AI in a large-scale project in the EPC industry based on real-life use cases performed in an EPC company. Those identified challenges are not linked to a specific technology or a company's know-how and, therefore, are universal. The findings in this paper aim to provide feedback to academia to reduce the gap between research and practice experience. They also help reveal the hidden stones when implementing AI solutions in the industry.Keywords: artificial intelligence, machine learning, deep learning, innovation, engineering, procurement and construction industry, AI in the EPC industry
Procedia PDF Downloads 11912404 Ethical Considerations of Disagreements Between Clinicians and Artificial Intelligence Recommendations: A Scoping Review
Authors: Adiba Matin, Daniel Cabrera, Javiera Bellolio, Jasmine Stewart, Dana Gerberi (librarian), Nathan Cummins, Fernanda Bellolio
Abstract:
OBJECTIVES: Artificial intelligence (AI) tools are becoming more prevalent in healthcare settings, particularly for diagnostic and therapeutic recommendations, with an expected surge in the incoming years. The bedside use of this technology for clinicians opens the possibility of disagreements between the recommendations from AI algorithms and clinicians’ judgment. There is a paucity in the literature analyzing nature and possible outcomes of these potential conflicts, particularly related to ethical considerations. The goal of this scoping review is to identify, analyze and classify current themes and potential strategies addressing ethical conflicts originating from the conflict between AI and human recommendations. METHODS: A protocol was written prior to the initiation of the study. Relevant literature was searched by a medical librarian for the terms of artificial intelligence, healthcare and liability, ethics, or conflict. Search was run in 2021 in Ovid Cochrane Central Register of Controlled Trials, Embase, Medline, IEEE Xplore, Scopus, and Web of Science Core Collection. Articles describing the role of AI in healthcare that mentioned conflict between humans and AI were included in the primary search. Two investigators working independently and in duplicate screened titles and abstracts and reviewed full-text of potentially eligible studies. Data was abstracted into tables and reported by themes. We followed methodological guidelines for Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). RESULTS: Of 6846 titles and abstracts, 225 full texts were selected, and 48 articles included in this review. 23 articles were included as original research and review papers. 25 were included as editorials and commentaries with similar themes. There was a lack of consensus in the included articles on who would be held liable for mistakes incurred by following AI recommendations. It appears that there is a dichotomy of the perceived ethical consequences depending on if the negative outcome is a result of a human versus AI conflict or secondary to a deviation from standard of care. Themes identified included transparency versus opacity of recommendations, data bias, liability of outcomes, regulatory framework, and the overall scope of artificial intelligence in healthcare. A relevant issue identified was the concern by clinicians of the “black box” nature of these recommendations and the ability to judge appropriateness of AI guidance. CONCLUSION AI clinical tools are being rapidly developed and adopted, and the use of this technology will create conflicts between AI algorithms and healthcare workers with various outcomes. In turn, these conflicts may have legal, and ethical considerations. There is limited consensus about the focus of ethical and liability for outcomes originated from disagreements. This scoping review identified the importance of framing the problem in terms of conflict between standard of care or not, and informed by the themes of transparency/opacity, data bias, legal liability, absent regulatory frameworks and understanding of the technology. Finally, limited recommendations to mitigate ethical conflicts between AI and humans have been identified. Further work is necessary in this field.Keywords: ethics, artificial intelligence, emergency medicine, review
Procedia PDF Downloads 9312403 Analyzing the Influence of Principals’ Cultural Intelligence on Teachers’ Perceived Diversity Climate
Authors: Meghry Nazarian, Ibrahim Duyar
Abstract:
Effective management of a diverse workforce in the United Arab Emirates (UAE) presents peculiar importance as two-thirds of residents are expatriates who have diverse ethnic and cultural backgrounds. Like any other organization in the country, UAE schools have become upmost diverse settings in the world. The purpose of this study was to examine whether principals’ cultural intelligence has direct and indirect (moderating) influences on teachers’ perceived diversity climate. A quantitative causal-comparative research design was employed to analyze the data. Participants included random samples of principals and teachers working in the private and charter schools in the Emirate of Abu Dhabi. The data-gathering online questionnaires included previously developed and validated scales as the measures of study variables. More specifically, the multidimensional short-form measure of Cultural Intelligence (CQ) and the diversity climate scale were used to measure the study variables. Multivariate statistics, including the analysis of multivariate analysis of variance (MANCOVA) and structural equation modeling (SEM), were employed to examine the relationships between the study variables. The preliminary analyses of data showed that principals and teachers have differing views of diversity management and climate in schools. Findings also showed that principals’ cultural intelligence has both direct and moderating influences on teachers’ perceived diversity climate. The study findings are expected to inform policymakers and practicing educational leaders in addressing diversity management in a country where the majority of the residents are the minority who have diverse ethnic and cultural backgrounds.Keywords: diversity management, united arab emirates, school principals’ cultural intelligence (CQ), teachers’ perceived diversity climate
Procedia PDF Downloads 11212402 Relationship between Leadership and Emotional Intelligence in Educational Supervision in Saudi Arabia
Authors: Jawaher Bakheet Almudarra
Abstract:
The Saudi Arabian educational system shared the philosophical principles, in its foundation, which concentrated on the achievement of goals, thereby taking up authoritative styles of leadership. However, organisations are beginning to be more liberal in today’s environment than in the 1940s and 1950s, and appealing to emotional intelligence as a tool and skill are needed for effective leadership. In the Saudi Arabian case, such developments are characterised by changes such as that of the educational supervisor having the role redefined to that of a director. This review tracks several parts: the first section helps western reader to understand the subtleties, complexities, and intricacies of the Saudi Arabia education system and its approach to leadership system of education, history, culture and political contribution. This can lead to the larger extent understand if emotional intelligence is a provocation for better leadership of Saudi Arabian education sector or not. The second part is the growth of educational supervision in Saudi Arabia, focusing on the education system, and evaluates the impact of emotional intelligence as a necessary skill in leadership. The third section looks at emotions and emotional intelligence, gender roles, and contributions by emotional intelligence in the education system. The education system of Saudi Arabia has undergone significant transformation. To fully understand the current climate of Saudi Arabia, it is essential to review this process of transformation in terms of the historical, cultural, political and social positions and transformations. Over the years, the education system in Saudi Arabia has undergone significant metamorphosis. The Saudi government has instituted a wide range of reforms in an attempt to improve education standards and outcomes, facilitate improvements and ensure that high standards of education standards are upheld to keep pace with the global environment and knowledge economy. Leadership itself has become an increasingly prominent aspect of educational reform worldwide. Emotional intelligence is often considered a significant aspect of leadership, but it is in its early stages in Saudi Arabia. Its recognition and adoption may improve leadership practices, particularly among educational supervisors and contribute to national and international understandings of leadership in Saudi Arabia. Studying leadership in the Saudi Arabian context is imperative as the new generation of leaders need to cultivate pertinent skills that will allow them to become fundamentally and positively involved in the regions’ decision making processes in order to impact the progression of the Saudi Arabian education system. Understanding leadership in the education context will allow for suitable inculcation of leadership skills. These skills include goal-setting, sound decision-making as well as problem-solving within the education system of Saudi Arabia.Keywords: educational supervision, educational administration, emotional intelligence, educational leadership
Procedia PDF Downloads 29712401 Accountability of Artificial Intelligence: An Analysis Using Edgar Morin’s Complex Thought
Authors: Sylvie Michel, Sylvie Gerbaix, Marc Bidan
Abstract:
Artificial intelligence (AI) can be held accountable for its detrimental impacts. This question gains heightened relevance given AI's pervasive reach across various domains, magnifying its power and potential. The expanding influence of AI raises fundamental ethical inquiries, primarily centering on biases, responsibility, and transparency. This encompasses discriminatory biases arising from algorithmic criteria or data, accidents attributed to autonomous vehicles or other systems, and the imperative of transparent decision-making. This article aims to stimulate reflection on AI accountability, denoting the necessity to elucidate the effects it generates. Accountability comprises two integral aspects: adherence to legal and ethical standards and the imperative to elucidate the underlying operational rationale. The objective is to initiate a reflection on the obstacles to this "accountability," facing the challenges of the complexity of artificial intelligence's system and its effects. Then, this article proposes to mobilize Edgar Morin's complex thought to encompass and face the challenges of this complexity. The first contribution is to point out the challenges posed by the complexity of A.I., with fractional accountability between a myriad of human and non-human actors, such as software and equipment, which ultimately contribute to the decisions taken and are multiplied in the case of AI. Accountability faces three challenges resulting from the complexity of the ethical issues combined with the complexity of AI. The challenge of the non-neutrality of algorithmic systems as fully ethically non-neutral actors is put forward by a revealing ethics approach that calls for assigning responsibilities to these systems. The challenge of the dilution of responsibility is induced by the multiplicity and distancing between the actors. Thus, a dilution of responsibility is induced by a split in decision-making between developers, who feel they fulfill their duty by strictly respecting the requests they receive, and management, which does not consider itself responsible for technology-related flaws. Accountability is confronted with the challenge of transparency of complex and scalable algorithmic systems, non-human actors self-learning via big data. A second contribution involves leveraging E. Morin's principles, providing a framework to grasp the multifaceted ethical dilemmas and subsequently paving the way for establishing accountability in AI. When addressing the ethical challenge of biases, the "hologrammatic" principle underscores the imperative of acknowledging the non-ethical neutrality of algorithmic systems inherently imbued with the values and biases of their creators and society. The "dialogic" principle advocates for the responsible consideration of ethical dilemmas, encouraging the integration of complementary and contradictory elements in solutions from the very inception of the design phase. Aligning with the principle of organizing recursiveness, akin to the "transparency" of the system, it promotes a systemic analysis to account for the induced effects and guides the incorporation of modifications into the system to rectify deviations and reintroduce modifications into the system to rectify its drifts. In conclusion, this contribution serves as an inception for contemplating the accountability of "artificial intelligence" systems despite the evident ethical implications and potential deviations. Edgar Morin's principles, providing a lens to contemplate this complexity, offer valuable perspectives to address these challenges concerning accountability.Keywords: accountability, artificial intelligence, complexity, ethics, explainability, transparency, Edgar Morin
Procedia PDF Downloads 6312400 Examining the Relationship Between Job Stress And Burnout Among Academic Staff During The Covid-19 Pandemic; The Importance Of Emotional Intelligence
Authors: Parisa Gharibi Khoshkar
Abstract:
The global outbreak of Covid-19 forced a swift shift in the education sector, transitioning from traditional in-person settings to remote online setups in a short period. This abrupt change, coupled with health risks and other stressors such as the lack of social interaction, has had a negative impact on academic staff, leading to increased job-related stress and psychological pressures that can result in burnout. To address this, the current research aims to investigate the relationship between job stress and burnout among academic staff in Hebron, Palestine. Furthermore, this study examines the moderating role of emotional intelligence to gain a deeper understanding of its effects in reducing burnout among academic staff and teachers. This research posits that emotional intelligence plays a vital role in helping individuals manage job-related stress and anxiety, thereby preventing burnout. Using a self-administered questionnaire, the study gathered data from 185 samples comprising teachers and administrative staff from two universities in Hebron. The data was analyzed using moderated regression analysis, ANOVA model, and interaction plots. The findings indicate that work-related stress has a direct and significant influence on burnout. Moreover, the current results highlight that emotional intelligence serves as a key determinant in managing the negative effects of the pandemic-induced stress that can lead to burnout among individuals. Given the high-demand nature of the education sector, this research strongly recommends that school authorities take proactive measures to provide much-needed support to academic staff, enabling them to better cope with job stress and fostering an environment that prioritizes individuals' wellbeing. The results of this study hold practical implications for both scholars and practitioners, as they highlight the importance of emotional intelligence in managing stress and anxiety effectively. Understanding the significance of emotional intelligence can aid in implementing targeted interventions and support systems to promote the well-being and resilience of academic staff amidst challenging circumstances.Keywords: job stress, burnout, employee wellbeing, emotional intelligence, industrial organizational psychology, human resource management, organizational psychology
Procedia PDF Downloads 7012399 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 8612398 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences
Authors: Nayer Mofidtabatabaei
Abstract:
Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations
Procedia PDF Downloads 7012397 Google Translate: AI Application
Authors: Shaima Almalhan, Lubna Shukri, Miriam Talal, Safaa Teskieh
Abstract:
Since artificial intelligence is a rapidly evolving topic that has had a significant impact on technical growth and innovation, this paper examines people's awareness, use, and engagement with the Google Translate application. To see how familiar aware users are with the app and its features, quantitative and qualitative research was conducted. The findings revealed that consumers have a high level of confidence in the application and how far people they benefit from this sort of innovation and how convenient it makes communication.Keywords: artificial intelligence, google translate, speech recognition, language translation, camera translation, speech to text, text to speech
Procedia PDF Downloads 15412396 Awarding Copyright Protection to Artificial Intelligence Technology for its Original Works: The New Way Forward
Authors: Vibhuti Amarnath Madhu Agrawal
Abstract:
Artificial Intelligence (AI) and Intellectual Property are two emerging concepts that are growing at a fast pace and have the potential of having a huge impact on the economy in the coming times. In simple words, AI is nothing but work done by a machine without any human intervention. It is a coded software embedded in a machine, which over a period of time, develops its own intelligence and begins to take its own decisions and judgments by studying various patterns of how people think, react to situations and perform tasks, among others. Intellectual Property, especially Copyright Law, on the other hand, protects the rights of individuals and Companies in content creation that primarily deals with application of intellect, originality and expression of the same in some tangible form. According to some of the reports shared by the media lately, ChatGPT, an AI powered Chatbot, has been involved in the creation of a wide variety of original content, including but not limited to essays, emails, plays and poetry. Besides, there have been instances wherein AI technology has given creative inputs for background, lights and costumes, among others, for films. Copyright Law offers protection to all of these different kinds of content and much more. Considering the two key parameters of Copyright – application of intellect and originality, the question, therefore, arises that will awarding Copyright protection to a person who has not directly invested his / her intellect in the creation of that content go against the basic spirit of Copyright laws? This study aims to analyze the current scenario and provide answers to the following questions: a. If the content generated by AI technology satisfies the basic criteria of originality and expression in a tangible form, why should such content be denied protection in the name of its creator, i.e., the specific AI tool / technology? B. Considering the increasing role and development of AI technology in our lives, should it be given the status of a ‘Legal Person’ in law? C. If yes, what should be the modalities of awarding protection to works of such Legal Person and management of the same? Considering the current trends and the pace at which AI is advancing, it is not very far when AI will start functioning autonomously in the creation of new works. Current data and opinions on this issue globally reflect that they are divided and lack uniformity. In order to fill in the existing gaps, data obtained from Copyright offices from the top economies of the world have been analyzed. The role and functioning of various Copyright Societies in these countries has been studied in detail. This paper provides a roadmap that can be adopted to satisfy various objectives, constraints and dynamic conditions related AI technology and its protection under Copyright Law.Keywords: artificial intelligence technology, copyright law, copyright societies, intellectual property
Procedia PDF Downloads 7112395 Applying Epistemology to Artificial Intelligence in the Social Arena: Exploring Fundamental Considerations
Authors: Gianni Jacucci
Abstract:
Epistemology traditionally finds its place within human research philosophies and methodologies. Artificial intelligence methods pose challenges, particularly given the unresolved relationship between AI and pivotal concepts in social arenas such as hermeneutics and accountability. We begin by examining the essential criteria governing scientific rigor in the human sciences. We revisit the three foundational philosophies underpinning qualitative research methods: empiricism, hermeneutics, and phenomenology. We elucidate the distinct attributes, merits, and vulnerabilities inherent in the methodologies they inspire. The integration of AI, e.g., deep learning algorithms, sparks an interest in evaluating these criteria against the diverse forms of AI architectures. For instance, Interpreted AI could be viewed as a hermeneutic approach, relying on a priori interpretations, while straight AI may be perceived as a descriptive phenomenological approach, processing original and uncontaminated data. This paper serves as groundwork for such explorations, offering preliminary reflections to lay the foundation and outline the initial landscape.Keywords: artificial intelligence, deep learning, epistemology, qualitative research, methodology, hermeneutics, accountability
Procedia PDF Downloads 3812394 Emotional Intelligence in Educational Arena and Its Pragmatic Concerns
Authors: Mehar Fatima
Abstract:
This study intends to make analysis of Emotional Intelligence (EI) in the process of pedagogy and look into its repercussions in different educational institutions including school, college, and university in the capital state of India, Delhi in 2015. Field of education is a complex area with challenging issues in a modern society. Education is the breeding ground for nurturing human souls, and personalities. Since antiquity, man has been in search of truth, wisdom, contentment, peace. His efforts have brought him to acquire these through hardship, evidently through the process of teaching and learning. Computer aids and artificial intelligence have made life easy but complex. Efficient pedagogy involves direct human intervention despite the flux of technological advancements. Time and again, pedagogical practices demand sincere human efforts to understand and improve upon life’s many pragmatic concerns. Apart from the intense academic scientific approaches, EI in academia plays a vital role in the growth of education, positively achieving national progression; ‘pedagogy of pragmatic purpose.’ Use of literature is found to be one of the valuable pragmatic tools of Emotional Intelligence. This research examines the way literature provides useful influence in building better practices in teaching-learning process. The present project also scrutinizes various pieces of world literature and translation, incorporating efforts of intellectuals in promoting comprehensive amity. The importance of EI in educational arena with its pragmatic uses was established by the study of interviews, and questionnaire collected from teachers and students. In summary the analysis of obtained empirical data makes it possible to accomplish that the use Emotional Intelligence in academic scenario yields multisided positive pragmatic outcomes; positive attitude, constructive aptitude, value-added learning, enthusiastic participation, creative thinking, lower apprehension, diminished fear, leading to individual as well as collective advancement, progress, and growth of pedagogical agents.Keywords: emotional intelligence, human efforts, pedagogy, pragmatic concerns
Procedia PDF Downloads 37012393 Design and Implementation of Wireless Syncronized AI System for Security
Authors: Saradha Priya
Abstract:
Developing virtual human is very important to meet the challenges occurred in many applications where human find difficult or risky to perform the task. A robot is a machine that can perform a task automatically or with guidance. Robotics is generally a combination of artificial intelligence and physical machines (motors). Computational intelligence involves the programmed instructions. This project proposes a robotic vehicle that has a camera, PIR sensor and text command based movement. It is specially designed to perform surveillance and other few tasks in the most efficient way. Serial communication has been occurred between a remote Base Station, GUI Application, and PC.Keywords: Zigbee, camera, pirsensor, wireless transmission, DC motor
Procedia PDF Downloads 34812392 Impacts of Artificial Intelligence on the Doctor-Patient Relationship: Ethical Principles, Informed Consent and Medical Obligation
Authors: Rafaella Nogaroli
Abstract:
It is presented hypothetical cases in the context of AI algorithms to support clinical decisions, in order to discuss the importance of doctors to respect AI ethical principles. Regarding the principle of transparency and explanation, there is an impact on the new model of patient consent and on the understanding of qualified information. Besides, the human control of technology (AI as a tool) should guide the physician's activity; otherwise, he breaks the patient's legitimate expectation in a specific result, with the consequent transformation of the medical obligation nature.Keywords: medical law, artificial intelligence, ethical principles, patient´s informed consent, medical obligations
Procedia PDF Downloads 10212391 An Exploration of Anti-Terrorism Laws in Nigeria
Authors: Sani Mohammed Adam
Abstract:
This work seeks to review the security challenges facing Nigeria and explore the relevance of laws and policies in tackling the menace. The work looks at the adequacy of available legislations and the functionality of relevant institutions such as the Armed Forces, the Nigeria Police Force, the State Security Service, the Defence Intelligence Agency and the Nigerian Intelligence Agency etc. Comparisons would be made with other jurisdictions, such as inter alia, the Homeland Security in the USA and Counter Terrorism Laws of the United Kingdom. Recommendations would be made on how to strengthen both institutions and laws to curtail the growth of Terrorism in Nigeria.Keywords: legislations, Nigeria, security, terrorism
Procedia PDF Downloads 67912390 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price
Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin
Abstract:
Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer
Procedia PDF Downloads 47512389 Actionable Personalised Learning Strategies to Improve a Growth-Mindset in an Educational Setting Using Artificial Intelligence
Authors: Garry Gorman, Nigel McKelvey, James Connolly
Abstract:
This study will evaluate a growth mindset intervention with Junior Cycle Coding and Senior Cycle Computer Science students in Ireland, where gamification will be used to incentivise growth mindset behaviour. An artificial intelligence (AI) driven personalised learning system will be developed to present computer programming learning tasks in a manner that is best suited to the individuals’ own learning preferences while incentivising and rewarding growth mindset behaviour of persistence, mastery response to challenge, and challenge seeking. This research endeavours to measure mindset with before and after surveys (conducted nationally) and by recording growth mindset behaviour whilst playing a digital game. This study will harness the capabilities of AI and aims to determine how a personalised learning (PL) experience can impact the mindset of a broad range of students. The focus of this study will be to determine how personalising the learning experience influences female and disadvantaged students' sense of belonging in the computer science classroom when tasks are presented in a manner that is best suited to the individual. Whole Brain Learning will underpin this research and will be used as a framework to guide the research in identifying key areas such as thinking and learning styles, cognitive potential, motivators and fears, and emotional intelligence. This research will be conducted in multiple school types over one academic year. Digital games will be played multiple times over this period, and the data gathered will be used to inform the AI algorithm. The three data sets are described as follows: (i) Before and after survey data to determine the grit scores and mindsets of the participants, (ii) The Growth Mind-Set data from the game, which will measure multiple growth mindset behaviours, such as persistence, response to challenge and use of strategy, (iii) The AI data to guide PL. This study will highlight the effectiveness of an AI-driven personalised learning experience. The data will position AI within the Irish educational landscape, with a specific focus on the teaching of CS. These findings will benefit coding and computer science teachers by providing a clear pedagogy for the effective delivery of personalised learning strategies for computer science education. This pedagogy will help prevent students from developing a fixed mindset while helping pupils to exhibit persistence of effort, use of strategy, and a mastery response to challenges.Keywords: computer science education, artificial intelligence, growth mindset, pedagogy
Procedia PDF Downloads 8712388 Artificial Intelligence for Cloud Computing
Authors: Sandesh Achar
Abstract:
Artificial intelligence is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remain a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights excellent investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.Keywords: artificial intelligence, cloud computing, deep learning, machine learning, internet of things
Procedia PDF Downloads 10912387 Suggestions to the Legislation about Medical Ethics and Ethics Review in the Age of Medical Artificial Intelligence
Authors: Xiaoyu Sun
Abstract:
In recent years, the rapid development of Artificial Intelligence (AI) has extensively promoted medicine, pharmaceutical, and other related fields. The medical research and development of artificial intelligence by scientific and commercial organizations are on the fast track. The ethics review is one of the critical procedures of registration to get the products approved and launched. However, the SOPs for ethics review is not enough to guide the healthy and rapid development of artificial intelligence in healthcare in China. Ethical Review Measures for Biomedical Research Involving Human Beings was enacted by the National Health Commission of the People's Republic of China (NHC) on December 1st, 2016. However, from a legislative design perspective, it was neither updated timely nor in line with the trends of AI international development. Therefore, it was great that NHC published a consultation paper on the updated version on March 16th, 2021. Based on the most updated laws and regulations in the States and EU, and in-depth-interviewed 11 subject matter experts in China, including lawmakers, regulators, and key members of ethics review committees, heads of Regulatory Affairs in SaMD industry, and data scientists, several suggestions were proposed on top of the updated version. Although the new version indicated that the Ethics Review Committees need to be created by National, Provincial and individual institute levels, the review authorities of different levels were not clarified. The suggestion is that the precise scope of review authorities for each level should be identified based on Risk Analysis and Management Model, such as the complicated leading technology, gene editing, should be reviewed by National Ethics Review Committees, it will be the job of individual institute Ethics Review Committees to review and approve the clinical study with less risk such as an innovative cream to treat acne. Furthermore, to standardize the research and development of artificial intelligence in healthcare in the age of AI, more clear guidance should be given to data security in the layers of data, algorithm, and application in the process of ethics review. In addition, transparency and responsibility, as two of six principles in the Rome Call for AI Ethics, could be further strengthened in the updated version. It is the shared goal among all countries to manage well and develop AI to benefit human beings. Learned from the other countries who have more learning and experience, China could be one of the most advanced countries in artificial intelligence in healthcare.Keywords: biomedical research involving human beings, data security, ethics committees, ethical review, medical artificial intelligence
Procedia PDF Downloads 16812386 The Use of Artificial Intelligence in the Prevention of Micro and Macrovascular Complications in Type Diabetic Patients in Low and Middle-Income Countries
Authors: Ebere Ellison Obisike, Justina N. Adalikwu-Obisike
Abstract:
Artificial intelligence (AI) is progressively transforming health and social care. With the rapid invention of various electronic devices, machine learning, and computing systems, the use of AI istraversing many health and social care practices. In this systematic review of journal and grey literature, this study explores how the applications of AI might promote the prevention of micro and macrovascular complications in type 1 diabetic patients. This review focuses on the use of a digitized blood glucose meter and the application of insulin pumps for the effective management of type 1 diabetes in low and middle-income countries. It is projected that the applications of AI may assist individuals with type 1 diabetes to monitor and control their blood glucose level and prevent the early onset of micro and macrovascular complications.Keywords: artificial intelligence, blood glucose meter, insulin pump, low and middle-income countries, micro and macrovascular complications, type 1 diabetes
Procedia PDF Downloads 19612385 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation
Authors: Abdal-Hafeez Alhussein
Abstract:
Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.Keywords: artificial intelligence, information technology, automation, scalability
Procedia PDF Downloads 1712384 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center
Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael
Abstract:
Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency
Procedia PDF Downloads 3312383 The Academic-Practitioner Nexus in Countering Terrorism in New Zealand
Authors: John Battersby, Rhys Ball
Abstract:
After the 15 March 2019 Mosque attacks in Christchurch, the New Zealand security sector has had to address its training and preparedness levels for dealing with contemporary terrorist threats as well as potential future manifestations of terrorism. From time to time, members of the academic community from Australia and New Zealand have been asked to assist agencies in this endeavour. In the course of 2018, New Zealand security sector professionals working in the counter-terrorism area were interviewed about how they regarded academic contributions to understanding terrorism and counter-terrorism. Responses were mixed, ranging from anti-intellectualism, a belief that the inability to access classified material rendered academic work practically useless - to some genuine interest and desire for broad based academic studies on issues practitioners did not have the time to look at. Twelve months later, researchers have revisited those spoken to prior to the Brenton Tarrant 15 March shooting to establish if there has been a change in the way academic research is perceived, viewed and valued, and what key factors have contributed to this shift in thinking. This paper takes this data, combined with a consideration of the literature on higher education within professional police and intelligence forces, and on the general perception of academics by practitioners, to present a series of findings that will contribute to a more proactive and effective set of engagements, between two distinct but important security sectors, that reflect more closely with international practice.Keywords: academic, counter terrorism, intelligence, practitioner, research, security
Procedia PDF Downloads 10812382 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies
Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda
Abstract:
Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation
Procedia PDF Downloads 3212381 Leveraging Natural Language Processing for Legal Artificial Intelligence: A Longformer Approach for Taiwanese Legal Cases
Abstract:
Legal artificial intelligence (LegalAI) has been increasing applications within legal systems, propelled by advancements in natural language processing (NLP). Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. Most existing language models have difficulty understanding the long-distance dependencies between different structures. Another unique challenge is that while the Judiciary of Taiwan has released legal judgments from various levels of courts over the years, there remains a significant obstacle in the lack of labeled datasets. This deficiency makes it difficult to train models with strong generalization capabilities, as well as accurately evaluate model performance. To date, models in Taiwan have yet to be specifically trained on judgment data. Given these challenges, this research proposes a Longformer-based pre-trained language model explicitly devised for retrieving similar judgments in Taiwanese legal documents. This model is trained on a self-constructed dataset, which this research has independently labeled to measure judgment similarities, thereby addressing a void left by the lack of an existing labeled dataset for Taiwanese judgments. This research adopts strategies such as early stopping and gradient clipping to prevent overfitting and manage gradient explosion, respectively, thereby enhancing the model's performance. The model in this research is evaluated using both the dataset and the Average Entropy of Offense-charged Clustering (AEOC) metric, which utilizes the notion of similar case scenarios within the same type of legal cases. Our experimental results illustrate our model's significant advancements in handling similarity comparisons within extensive legal judgments. By enabling more efficient retrieval and analysis of legal case documents, our model holds the potential to facilitate legal research, aid legal decision-making, and contribute to the further development of LegalAI in Taiwan.Keywords: legal artificial intelligence, computation and language, language model, Taiwanese legal cases
Procedia PDF Downloads 72