Search results for: molecular detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5243

Search results for: molecular detection

4943 Airborne Molecular Contamination in Clean Room Environment

Authors: T. Rajamäki

Abstract:

In clean room environment molecular contamination in very small concentrations can cause significant harm for the components and processes. This is commonly referred as airborne molecular contamination (AMC). There is a shortage of high sensitivity continuous measurement data for existence and behavior of several of these contaminants. Accordingly, in most cases correlation between concentration of harmful molecules and their effect on processes is not known. In addition, the formation and distribution of contaminating molecules are unclear. In this work sensitive optical techniques are applied in clean room facilities for investigation of concentrations, forming mechanisms and effects of contaminating molecules. Special emphasis is on reactive acid and base gases ammonia (NH3) and hydrogen fluoride (HF). They are the key chemicals in several operations taking place in clean room processes.

Keywords: AMC, clean room, concentration, reactive gas

Procedia PDF Downloads 269
4942 Molecular Characterization of Cysticercus tenuicolis of Slaughtered Livestock in Upper-Egypt Governorates

Authors: Mosaab A. Omara, Layla O. Elmajdoubb, Mohammad Saleh Al-Aboodyc, Ahmed ElSifyd, Ahmed O. Elkhtamd

Abstract:

The aim of this study is to present the molecular characterization of cysticercus tenuicolis of Taenia hydatigena from livestock isolates in Egypt, using the amplification of sequencing of the mt-CO1 gene. We introduce a detailed image of the Cysticercus tenuicolis infection in ruminant animals in Upper Egypt. Cysticercus tenuicolis inhabits such organs in ruminants as the omentum, viscera, and liver. In the present study, the infection rate of Cysticercus tenuicolis was found to be 16% and 19% in sheep and goat sample respectively. Firstly we report one larval stage of Taenia hydatigena detected in the camel liver in Egypt. Cysticercus tenuicolis infection manifested a higher prevalence in females than in males. Those above 2 years of age manifested a higher infection rate than younger animals. The preferred site for the infection was the omentum: a 70% preference in sheep and a 68% preference in goat samples. The molecular characterization using the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene of isolates from sheep, goats and camels corresponded to T. hydatigena. For this study, molecular characterizations of T. hydatigena were done for the first time in Egypt. Molecular tools are of great assistance in characterizing the Cysticercus tenuicolis parasite especially when the morphological character cannot be detected because the metacestodes are frequently confused with infection by the Hydatid cyst, especially when these occur in the visceral organs. In the present study, Cysticercus tenuicolis manifested high identity in the goat and sheep samples, while differences were found more frequently in the camel samples (10 pairbase). Clearly molecular diagnosis for Cysticercus tenuicolis infection significantly helps to differentiate it from such other metacestodes.

Keywords: cysticercus tenuicolis, its2, genetic, qena, molecular and taenia hydatigena

Procedia PDF Downloads 510
4941 Improving Early Detection, Diagnosis And Intervention For Children With Autism Spectrum Disorder: A Cross-sectional Survey In China

Authors: Yushen Dai, Tao Deng, Miaoying Chen, Baoqin Huang, Yan Ji, Yongshen Feng, Shaofei Liu, Dongmei Zhong, Tao Zhang, Lifeng Zhang

Abstract:

Background: Detection and diagnosis are prerequisites for early interventions in the care of children with Autism Spectrum Disorder (ASD). However, few studies have focused on this topic. Aim: This study aims to characterize the timing from symptom detection to intervention in children with ASD and to identify the potential predictors of early detection, diagnosis, and intervention. Methods and procedures: A cross-sectional survey was conducted with 314 parents of children with ASD in Guangzhou, China. Outcomes and Results: This study found that most children (76.24%) were diagnosed within one year after detection, and 25.8% of them did not receive the intervention after diagnosis. Predictors to ASD diagnosis included ASD-related symptoms identified at a younger age, more serious symptoms, and initial symptoms with abnormal development and sensory anomalies. ASD-related symptoms observed at an older age, initial symptoms with the social deficit, sensory anomalies, and without language impairment, parents as the primary caregivers, family with lower income and less social support utilization increased the odds of the time lag between detection and diagnosis. Children whose fathers had a lower level of education were less likely to receive the intervention. Conclusions and Implications: The study described the time for detection, diagnosis, and interventions of children with ASD. Findings suggest that the ASD-related symptoms, the timing at which symptoms first become a concern, primary caregivers’ roles, father’s educational level, and the family economic status should be considered when offering support to improve early detection, diagnosis, and intervention. Helping children and their families take full advantage of support is also important.

Keywords: autism spectrum disorder, child, detection, diagnosis, intervention, social support

Procedia PDF Downloads 75
4940 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images

Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn

Abstract:

The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.

Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation

Procedia PDF Downloads 349
4939 An Exploration of the Pancreatic Cancer miRNome during the Progression of the Disease

Authors: Barsha Saha, Shouvik Chakravarty, Sukanta Ray, Kshaunish Das, Nidhan K. Biswas, Srikanta Goswami

Abstract:

Pancreatic Ductal Adenocarcinoma is a well-recognised cause of cancer death with a five-year survival rate of about 9%, and its incidence in India has been found to be increased manifold in recent years. Due to delayed detection, this highly metastatic disease has a poor prognosis. Several molecular alterations happen during the progression of the disease from pre-cancerous conditions, and many such alterations could be investigated for their biomarker potential. MicroRNAs have been shown to be prognostic for PDAC patients in a variety of studies. We hereby used NGS technologies to evaluate the role of small RNA changes during pancreatic cancer development from chronic pancreatitis. Plasma samples were collected from pancreatic cancer patients (n=16), chronic pancreatitis patients (n=8), and also from normal individuals (n=16). Pancreatic tumour tissue (n=5) and adjacent normal tissue samples (n=5) were also collected. Sequencing of small RNAs was carried out after small RNAs were isolated from plasma samples and tissue samples. We find that certain microRNAs are highly deregulated in pancreatic cancer patients in comparison to normal samples. A combinatorial analysis of plasma and tissue microRNAs and subsequent exploration of their targets and altered molecular pathways could not only identify potential biomarkers for disease diagnosis but also help to understand the underlying mechanism.

Keywords: small RNA sequencing, pancreatic cancer, biomarkers, tissue sample

Procedia PDF Downloads 79
4938 Improvement of Brain Tumors Detection Using Markers and Boundaries Transform

Authors: Yousif Mohamed Y. Abdallah, Mommen A. Alkhir, Amel S. Algaddal

Abstract:

This was experimental study conducted to study segmentation of brain in MRI images using edge detection and morphology filters. For brain MRI images each film scanned using digitizer scanner then treated by using image processing program (MatLab), where the segmentation was studied. The scanned image was saved in a TIFF file format to preserve the quality of the image. Brain tissue can be easily detected in MRI image if the object has sufficient contrast from the background. We use edge detection and basic morphology tools to detect a brain. The segmentation of MRI images steps using detection and morphology filters were image reading, detection entire brain, dilation of the image, filling interior gaps inside the image, removal connected objects on borders and smoothen the object (brain). The results of this study were that it showed an alternate method for displaying the segmented object would be to place an outline around the segmented brain. Those filters approaches can help in removal of unwanted background information and increase diagnostic information of Brain MRI.

Keywords: improvement, brain, matlab, markers, boundaries

Procedia PDF Downloads 503
4937 Both Floristic Studies and Molecular Markers Are Necessary to Study of the Flora of a Region

Authors: Somayeh Akrami, Vali-Allah Mozaffarian, Habib Onsori

Abstract:

The studied region in this research, watershed Kuhkamar river, is about 112.66 square kilometers, it is located between 45º 48' 9" to 45º 2' 20" N and 38º 34' 15" to 38º 40' 28" E. The gained results of the studies on flora combinations, proved 287 plant species in 190 genera and 51 families. Asteracea with 49 and Lamiaceae with 27 plant species are the major plant families. Among collected species one interesting plant was found and determined as a new record Anemone narcissiflora L. for flora of Iran. This plant is known as a complex species that shows intraspecific speciation and is classified into about 12 subspecies and 10 varieties in world. To identify the infraspecies taxons of this species, in addition to morphological characteristics, the use of appropriate molecular markers for the better isolation of the individuals were needed.

Keywords: Anemone narcissiflora, floristic Study, kuhkamar, molecular marker

Procedia PDF Downloads 472
4936 Feasibility of Weakly Interacting Massive Particles as Dark Matter Candidates: Exploratory Study on The Possible Reasons for Lack of WIMP Detection

Authors: Sloka Bhushan

Abstract:

Dark matter constitutes a majority of matter in the universe, yet very little is known about it due to its extreme lack of interaction with regular matter and the fundamental forces. Weakly Interacting Massive Particles, or WIMPs, have been contested to be one of the strongest candidates for dark matter due to their promising theoretical properties. However, various endeavors to detect these elusive particles have failed. This paper explores the various particles which may be WIMPs and the detection techniques being employed to detect WIMPs (such as underground detectors, LHC experiments, and so on). There is a special focus on the reasons for the lack of detection of WIMPs so far, and the possibility of limits in detection being a reason for the lack of physical evidence of the existence of WIMPs. This paper also explores possible inconsistencies within the WIMP particle theory as a reason for the lack of physical detection. There is a brief review on the possible solutions and alternatives to these inconsistencies. Additionally, this paper also reviews the supersymmetry theory and the possibility of the supersymmetric neutralino (A possible WIMP particle) being detectable. Lastly, a review on alternate candidates for dark matter such as axions and MACHOs has been conducted. The explorative study in this paper is conducted through a series of literature reviews.

Keywords: dark matter, particle detection, supersymmetry, weakly interacting massive particles

Procedia PDF Downloads 125
4935 Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection

Authors: Pradthana Sianglam, Wittaya Ngeontae

Abstract:

A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results.

Keywords: circular dichroism sensor, quantum dots, enaniomer, in-situ generation, chemical sensor, heavy metal ion

Procedia PDF Downloads 357
4934 Material Detection by Phase Shift Cavity Ring-Down Spectroscopy

Authors: Rana Muhammad Armaghan Ayaz, Yigit Uysallı, Nima Bavili, Berna Morova, Alper Kiraz

Abstract:

Traditional optical methods for example resonance wavelength shift and cavity ring-down spectroscopy used for material detection and sensing have disadvantages, for example, less resistance to laser noise, temperature fluctuations and extraction of the required information can be a difficult task like ring downtime in case of cavity ring-down spectroscopy. Phase shift cavity ring down spectroscopy is not only easy to use but is also capable of overcoming the said problems. This technique compares the phase difference between the signal coming out of the cavity with the reference signal. Detection of any material is made by the phase difference between them. By using this technique, air, water, and isopropyl alcohol can be recognized easily. This Methodology has far-reaching applications and can be used in air pollution detection, human breath analysis and many more.

Keywords: materials, noise, phase shift, resonance wavelength, sensitivity, time domain approach

Procedia PDF Downloads 140
4933 Detection and Molecular Identification of Bacteria Forming Polyhydroxyalkanoate and Polyhydroxybutyrate Isolated from Soil in Saudi Arabia

Authors: Ali Bahkali, Rayan Yousef Booq, Mohammad Khiyami

Abstract:

Soil samples were collected from five different regions in the Kingdom of Saudi Arabia. Microbiological methods included dilution methods and pour plates to isolate and purify bacteria soil. The ability of isolates to develop biopolymer was investigated on petri dishes containing elements and substance concentrations stimulating developing biopolymer. Fluorescent stains, Nile red and Nile blue were used to stain the bacterial cells developing biopolymers. In addition, Sudan black was used to detect biopolymers in bacterial cells. The isolates which developed biopolymers were identified based on their gene sequence of 1 6sRNA and their ability to grow and synthesize PHAs on mineral medium supplemented with 1% dates molasses as the only carbon source under nitrogen limitation. During the study 293 bacterial isolates were isolated and detected. Through the initial survey on the petri dishes, 84 isolates showed the ability to develop biopolymers. These bacterial colonies developed a pink color due to accumulation of the biopolymers in the cells. Twenty-three isolates were able to grow on dates molasses, three strains of which showed the ability to accumulate biopolymers. These strains included Bacillus sp., Ralstonia sp. and Microbacterium sp. They were detected by Nile blue A stain with fluorescence microscopy (OLYMPUS IX 51). Among the isolated strains Ralstonia sp. was selected after its ability to grow on molasses dates in the presence of a limited nitrogen source was detected. The optimum conditions for formation of biopolymers by isolated strains were investigated. Conditions studied included, best incubation duration (2 days), temperature (30°C) and pH (7-8). The maximum PHB production was raised by 1% (v1v) when using concentrations of dates molasses 1, 2, 3, 4 and 5% in MSM. The best inoculated with 1% old inoculum (1= OD). The ideal extraction method of PHA and PHB proved to be 0.4% sodium hypochlorite solution, producing a quantity of polymer 98.79% of the cell's dry weight. The maximum PHB production was 1.79 g/L recorded by Ralstonia sp. after 48 h, while it was 1.40 g/L produced by R.eutropha ATCC 17697 after 48 h.

Keywords: bacteria forming polyhydroxyalkanoate, detection, molecular, Saudi Arabia

Procedia PDF Downloads 331
4932 Rational Design of Potent Compounds for Inhibiting Ca2+ -Dependent Calmodulin Kinase IIa, a Target of Alzheimer’s Disease

Authors: Son Nguyen, Thanh Van, Ly Le

Abstract:

Ca2+ - dependent calmodulin kinase IIa (CaMKIIa) has recently been found to associate with protein tau missorting and polymerization in Alzheimer’s Disease (AD). However, there has yet inhibitors targeting CaMKIIa to investigate the correlation between CaMKIIa activity and protein tau polymer formation. Combining virtual screening and our statistics in binding contribution scoring function (BCSF), we rationally identified potential compounds that bind to specific CaMKIIa active site and specificity-affinity distribution of the ligand within the active site. Using molecular dynamics simulation, we identified structural stability of CaMKIIa and potent inhibitors, and site-directed bonding, separating non-specific and specific molecular interaction features. Despite of variation in confirmation of simulation time, interactions of the potent inhibitors were found to be strongly associated with the unique chemical features extracted from molecular binding poses. In addition, competitive inhibitors within CaMKIIa showed an important molecular recognition pattern toward specific ligand features. Our approach combining virtual screening with BCSF may provide an universally applicable method for precise identification in the discovery of compounds.

Keywords: Alzheimer’s disease, Ca 2+ -dependent calmodulin kinase IIa, protein tau, molecular docking

Procedia PDF Downloads 259
4931 Proposed Fault Detection Scheme on Low Voltage Distribution Feeders

Authors: Adewusi Adeoluwawale, Oronti Iyabosola Busola, Akinola Iretiayo, Komolafe Olusola Aderibigbe

Abstract:

The complex and radial structure of the low voltage distribution network (415V) makes it vulnerable to faults which are due to system and the environmental related factors. Besides these, the protective scheme employed on the low voltage network which is the fuse cannot be monitored remotely such that in the event of sustained fault, the utility will have to rely solely on the complaint brought by customers for loss of supply and this tends to increase the length of outages. A microcontroller based fault detection scheme is hereby developed to detect low voltage and high voltage fault conditions which are common faults on this network. Voltages below 198V and above 242V on the distribution feeders are classified and detected as low voltage and high voltages respectively. Results shows that the developed scheme produced a good response time in the detection of these faults.

Keywords: fault detection, low voltage distribution feeders, outage times, sustained faults

Procedia PDF Downloads 527
4930 Verifying the Performance of the Argon-41 Monitoring System from Fluorine-18 Production for Medical Applications

Authors: Nicole Virgili, Romolo Remetti

Abstract:

The aim of this work is to characterize, from radiation protection point of view, the emission into the environment of air contaminated by argon-41. In this research work, 41Ar is produced by a TR19PET cyclotron, operated at 19 MeV, installed at 'A. Gemelli' University Hospital, Rome, Italy, for fluorine-18 production. The production rate of 41Ar has been calculated on the basis of the scheduled operation cycles of the cyclotron and by utilising proper production algorithms. Then extensive Monte Carlo calculations, carried out by MCNP code, have allowed to determine the absolute detection efficiency to 41Ar gamma rays of a Geiger Muller detector placed in the terminal part of the chimney. Results showed unsatisfactory detection efficiency values and the need for integrating the detection system with more efficient detectors.

Keywords: Cyclotron, Geiger Muller detector, MCNPX, argon-41, emission of radioactive gas, detection efficiency determination

Procedia PDF Downloads 139
4929 Deep Learning Based Road Crack Detection on an Embedded Platform

Authors: Nurhak Altın, Ayhan Kucukmanisa, Oguzhan Urhan

Abstract:

It is important that highways are in good condition for traffic safety. Road crashes (road cracks, erosion of lane markings, etc.) can cause accidents by affecting driving. Image processing based methods for detecting road cracks are available in the literature. In this paper, a deep learning based road crack detection approach is proposed. YOLO (You Look Only Once) is adopted as core component of the road crack detection approach presented. The YOLO network structure, which is developed for object detection, is trained with road crack images as a new class that is not previously used in YOLO. The performance of the proposed method is compared using different training methods: using randomly generated weights and training their own pre-trained weights (transfer learning). A similar training approach is applied to the simplified version of the YOLO network model (tiny yolo) and the results of the performance are examined. The developed system is able to process 8 fps on NVIDIA Jetson TX1 development kit.

Keywords: deep learning, embedded platform, real-time processing, road crack detection

Procedia PDF Downloads 329
4928 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms

Authors: Mohammad Besharatloo

Abstract:

Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.

Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree

Procedia PDF Downloads 74
4927 Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements

Authors: Mahmoud E. Mohamed, Ahmed F. Shalash, Hanan A. Kamal

Abstract:

In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, Despite the tradeoff between the noise level and the speed of the detection. In this paper, An improvement is introduced in the Kalman filter, Through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, The effect on the response to false alarms is also presented and false alarm rate show improvement.

Keywords: Kalman filter, innovation, false detection, improvement

Procedia PDF Downloads 589
4926 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm

Authors: Sukhleen Kaur

Abstract:

In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.

Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper

Procedia PDF Downloads 405
4925 Predicting the Solubility of Aromatic Waste Petroleum Paraffin Wax in Organic Solvents to Separate Ultra-Pure Phase Change Materials (PCMs) by Molecular Dynamics Simulation

Authors: Fathi Soliman

Abstract:

With the ultimate goal of developing the separation of n-paraffin as phase change material (PCM) by means of molecular dynamic simulations, we attempt to predict the solubility of aromatic n-paraffin in two organic solvents: Butyl Acetate (BA) and Methyl Iso Butyl Ketone (MIBK). A simple model of aromatic paraffin: 2-hexadecylantharacene with amorphous molecular structure and periodic boundary conditions was constructed. The results showed that MIBK is the best solvent to separate ultra-pure phase change materials and this data was compatible with experimental data done to separate ultra-pure n-paraffin from waste petroleum aromatic paraffin wax, the separated n-paraffin was characterized by XRD, TGA, GC and DSC, moreover; data revealed that the n-paraffin separated by using MIBK is better as PCM than that separated using BA.

Keywords: molecular dynamics simulation, n-paraffin, organic solvents, phase change materials, solvent extraction

Procedia PDF Downloads 177
4924 Refined Edge Detection Network

Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni

Abstract:

Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.

Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone

Procedia PDF Downloads 89
4923 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods

Authors: Abdelghani Chahmi

Abstract:

This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.

Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation

Procedia PDF Downloads 128
4922 Experimental Study on the Molecular Spring Isolator

Authors: Muchun Yu, Xue Gao, Qian Chen

Abstract:

As a novel passive vibration isolation technology, molecular spring isolator (MSI) is investigated in this paper. An MSI consists of water and hydrophobic zeolites as working medium. Under periodic excitation, water molecules intrude into hydrophobic pores of zeolites when the pressure rises and water molecules extrude from hydrophobic pores when pressure drops. At the same time, energy is stored, released and dissipated. An MSI of piston-cylinder structure was designed in this work. Experiments were conducted to investigate the stiffness properties of MSI. The results show that MSI exhibits high-static-low dynamic (HSLD) stiffness. Furthermore, factors such as the quantity of zeolites, temperature, and ions in water are proved to have an influence on the stiffness properties of MSI.

Keywords: hydrophobic zeolites, molecular spring, stiffness, vibration isolation

Procedia PDF Downloads 461
4921 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection

Authors: Hussin K. Ragb, Vijayan K. Asari

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor

Procedia PDF Downloads 469
4920 Molecular Farming: Plants Producing Vaccine and Diagnostic Reagent

Authors: Katerina H. Takova, Ivan N. Minkov, Gergana G. Zahmanova

Abstract:

Molecular farming is the production of recombinant proteins in plants with the aim to use the protein as a purified product, crude extract or directly in the planta. Plants gain more attention as expression systems compared to other ones due to the cost effective production of pharmaceutically important proteins, appropriate post-translational modifications, assembly of complex proteins, absence of human pathogens to name a few. In addition, transient expression in plant leaves enables production of recombinant proteins within few weeks. Hepatitis E virus (HEV) is a causative agent of acute hepatitis. HEV causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. Presently, all efforts for development of Hepatitis E vaccine are focused on the Open Read Frame 2 (ORF2) capsid protein as it contains epitopes that can induce neutralizing antibodies. For our purpose, we used the CMPV-based vector-pEAQ-HT for transient expression of HEV ORF2 in Nicotiana benthamina. Different molecular analysis (Western blot and ELISA) showed that HEV ORF2 capsid protein was expressed in plant tissue in high-yield up to 1g/kg of fresh leaf tissue. Electron microscopy showed that the capsid protein spontaneously assembled in low abundance virus-like particles (VLPs), which are highly immunogenic structures and suitable for vaccine development. The expressed protein was recognized by both human and swine HEV positive sera and can be used as a diagnostic reagent for the detection of HEV infection. Production of HEV capsid protein in plants is a promising technology for further HEV vaccine investigations. Here, we reported for a rapid high-yield transient expression of a recombinant protein in plants suitable for vaccine production as well as a diagnostic reagent. Acknowledgments -The authors’ research on HEV is supported with grants from the Project PlantaSYST under the Widening Program, H2020 as well as under the UK Biotechnological and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant ‘Understanding and Exploiting Plant and Microbial Secondary Metabolism’ (BB/J004596/1). The authors want to thank Prof. George Lomonossoff (JIC, Norwich, UK) for his contribution.

Keywords: hepatitis E virus, plant molecular farming, transient expression, vaccines

Procedia PDF Downloads 138
4919 Hazardous Vegetation Detection in Right-Of-Way Power Transmission Lines in Brazil Using Unmanned Aerial Vehicle and Light Detection and Ranging

Authors: Mauricio George Miguel Jardini, Jose Antonio Jardini

Abstract:

Transmission power utilities participate with kilometers of circuits, many with particularities in terms of vegetation growth. To control these rights-of-way, maintenance teams perform ground, and air inspections, and the identification method is subjective (indirect). On a ground inspection, when identifying an irregularity, for example, high vegetation threatening contact with the conductor cable, pruning or suppression is performed immediately. In an aerial inspection, the suppression team is mobilized to the identified point. This work investigates the use of 3D modeling of a transmission line segment using RGB (red, blue, and green) images and LiDAR (Light Detection and Ranging) sensor data. Both sensors are coupled to unmanned aerial vehicle. The goal is the accurate and timely detection of vegetation along the right-of-way that can cause shutdowns.

Keywords: 3D modeling, LiDAR, right-of-way, transmission lines, vegetation

Procedia PDF Downloads 120
4918 Molecular Study of P53- and Rb-Tumor Suppressor Genes in Human Papilloma Virus-Infected Breast Cancers

Authors: Shakir H. Mohammed Al-Alwany, Saad Hasan M. Ali, Ibrahim Mohammed S. Shnawa

Abstract:

The study was aimed to define the percentage of detection of high-oncogenic risk types of HPV and their genotyping in archival tissue specimens that ranged from apparently healthy tissue to invasive breast cancer by using one of the recent versions of In Situ Hybridization(ISH) 0.2. To find out rational significance of such genotypes as well as over expressed products of mutants P53 and RB genes on the severity of underlying breast cancers. The DNA of HPV was detected in 46.5 % of tissues from breast cancers while HPV DNA in the tissues from benign breast tumours was detected in 12.5%. No HPV positive–ISH reaction was detected in healthy breast tissues of the control group. HPV DNA of genotypes (16, 18, 31 and 33) was detected in malignant group in frequency of 25.6%, 27.1%, 30.2% and 12.4%, respectively. Over expression of p53 was detected by IHC in 51.2% breast cancer cases and in 50% benign breast tumour group, while none of control group showed P53- over expression. Retinoblastoma protein was detected by IHC test in 49.7% of malignant breast tumours, 54.2% of benign breast tumours but no signal was reported in the tissues of control group. The significance prevalence of expression of mutated p53 & Rb genes as well as detection of high-oncogenic HPV genotypes in patients with breast cancer supports the hypothesis of an etiologic role for the virus in breast cancer development.

Keywords: human papilloma virus, P53, RB, breast cancer

Procedia PDF Downloads 467
4917 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.

Procedia PDF Downloads 345
4916 Non-Linear Assessment of Chromatographic Lipophilicity of Selected Steroid Derivatives

Authors: Milica Karadžić, Lidija Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Anamarija Mandić, Aleksandar Oklješa, Andrea Nikolić, Marija Sakač, Katarina Penov Gaši

Abstract:

Using chemometric approach, the relationships between the chromatographic lipophilicity and in silico molecular descriptors for twenty-nine selected steroid derivatives were studied. The chromatographic lipophilicity was predicted using artificial neural networks (ANNs) method. The most important in silico molecular descriptors were selected applying stepwise selection (SS) paired with partial least squares (PLS) method. Molecular descriptors with satisfactory variable importance in projection (VIP) values were selected for ANN modeling. The usefulness of generated models was confirmed by detailed statistical validation. High agreement between experimental and predicted values indicated that obtained models have good quality and high predictive ability. Global sensitivity analysis (GSA) confirmed the importance of each molecular descriptor used as an input variable. High-quality networks indicate a strong non-linear relationship between chromatographic lipophilicity and used in silico molecular descriptors. Applying selected molecular descriptors and generated ANNs the good prediction of chromatographic lipophilicity of the studied steroid derivatives can be obtained. This article is based upon work from COST Actions (CM1306 and CA15222), supported by COST (European Cooperation and Science and Technology).

Keywords: artificial neural networks, chemometrics, global sensitivity analysis, liquid chromatography, steroids

Procedia PDF Downloads 328
4915 Bacterial Profiling and Development of Molecular Diagnostic Assays for Detection of Bacterial Pathogens Associated with Bovine mastitis

Authors: Aqeela Ashraf, Muhammad Imran, Tahir Yaqub, Muhammad Tayyab, Yung Fu Chang

Abstract:

For the identification of bovine mastitic pathogen, an economical, rapid and sensitive molecular diagnostic assay is developed by PCR multiplexing of gene and pathogenic species specific DNA sequences. The multiplex PCR assay is developed for detecting nine important bacterial pathogens causing mastitis Worldwide. The bacterial species selected for this study are Streptococcus agalactiae, Streptococcus dysagalactiae, Streptococcus uberis, Staphylococcus aureus, Escherichia coli, Staphylococcus haemolyticus, Staphylococcus chromogenes Mycoplasma bovis and Staphylococcus epidermidis. A single reaction assay was developed and validated by 27 reference strains and further tested on 276 bacterial strains obtained from culturing mastitic milk. The multiplex PCR assay developed here is further evaluated by applying directly on genomic DNA isolated from 200 mastitic milk samples. It is compared with bacterial culturing method and proved to be more sensitive, rapid, economical and can specifically identify 9 bacterial pathogens in a single reaction. It has detected the pathogens in few culture negative mastitic samples. Recognition of disease is the foundation of disease control and prevention. This assay can be very helpful for maintaining the udder health and milk monitoring.

Keywords: multiplex PCR, bacteria, mastitis, milk

Procedia PDF Downloads 319
4914 Molecularly Imprinted Nanoparticles (MIP NPs) as Non-Animal Antibodies Substitutes for Detection of Viruses

Authors: Alessandro Poma, Kal Karim, Sergey Piletsky, Giuseppe Battaglia

Abstract:

The recent increasing emergency threat to public health of infectious influenza diseases has prompted interest in the detection of avian influenza virus (AIV) H5N1 in humans as well as animals. A variety of technologies for diagnosing AIV infection have been developed. However, various disadvantages (costs, lengthy analyses, and need for high-containment facilities) make these methods less than ideal in their practical application. Molecularly Imprinted Polymeric Nanoparticles (MIP NPs) are suitable to overcome these limitations by having high affinity, selectivity, versatility, scalability and cost-effectiveness with the versatility of post-modification (labeling – fluorescent, magnetic, optical) opening the way to the potential introduction of improved diagnostic tests capable of providing rapid differential diagnosis. Here we present our first results in the production and testing of MIP NPs for the detection of AIV H5N1. Recent developments in the solid-phase synthesis of MIP NPs mean that for the first time a reliable supply of ‘soluble’ synthetic antibodies can be made available for testing as potential biological or diagnostic active molecules. The MIP NPs have the potential to detect viruses that are widely circulating in farm animals and indeed humans. Early and accurate identification of the infectious agent will expedite appropriate control measures. Thus, diagnosis at an early stage of infection of a herd or flock or individual maximizes the efficiency with which containment, prevention and possibly treatment strategies can be implemented. More importantly, substantiating the practicability’s of these novel reagents should lead to an initial reduction and eventually to a potential total replacement of animals, both large and small, to raise such specific serological materials.

Keywords: influenza virus, molecular imprinting, nanoparticles, polymers

Procedia PDF Downloads 336