Search results for: long COVID-19
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6088

Search results for: long COVID-19

5788 Thermodynamic Analysis of Hydrogen Plasma Reduction of TiCl₄

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

With increasing demands for high performance materials, intensive interest on the Ti has been focused. Especially, low cost production process of Ti has been extremely necessitated from wide parts and various industries. Tetrachloride (TiCl₄) is produced by fluidized bed using high TiO₂ feedstock and used as an intermediate product for the production of metal titanium sponge. Reduction of TiCl₄ is usually conducted by Kroll process using magnesium as a reduction reagent, producing metallic Ti in the shape of sponge. The process is batch type and takes very long time including post processes treating sponge. As an alternative reduction reagent, hydrogen in the state of plasma has long been strongly recommended. Experimental confirmation has not been completely reported yet and more strict analysis is required. In the present study, hydrogen plasma reduction process has been thermodynamically analyzed focusing the effects of temperature, pressure and concentration. All thermodynamic calculations were performed using the FactSage® thermodynamical software.

Keywords: TiCl₄, titanium, hydrogen, plasma, reduction, thermodynamic calculation

Procedia PDF Downloads 325
5787 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 128
5786 The Influence of Contextual Factors on Long-Term Contraceptive Use in East Java

Authors: Ni'mal Baroya, Andrei Ramani, Irma Prasetyowati

Abstract:

The access to reproduction health services, including with safe and effective contraception were human rights regardless of social stratum and residence. In addition to individual factors, family and contextual factors were also believed to be the cause in the use of contraceptive methods. This study aimed to assess the determinants of long-term contraceptive methods (LTCM) by considering all the factors at either the individual level or contextual level. Thereby, this study could provide basic information for program development of prevalence enhancement of MKJP in East Java. The research, which used cross-sectional design, utilized Riskesdas 2013 data, particularly in East Java Province for further analysis about multilevel modeling of MKJP application. The sample of this study consisted of 20.601 married women who were not in pregnant that were drawn by using probability sampling following the sampling technique of Riskesdas 2013. Variables in this study were including the independent variables at the individual level that consisted of education, age, occupation, access to family planning services (KB), economic status and residence. As independent variables in district level were the Human Development Index (HDI, henceforth as IPM) in each districts of East Java Province, the ratio of field officers, the ratio of midwives, the ratio of community health centers and the ratio of doctors. As for the dependent variable was the use of Long-Term Contraceptive Method (LTCM or MKJP). The data were analyzed by using chi-square test and Pearson product moment correlation. The multivariable analysis was using multilevel logistic regression with 95% of Confidence Interval (CI) at the significance level of p < 0.05 and 80% of strength test. The results showed a low CPR LTCM was concentrated in districts in Madura Island and the north coast. The women which were 25 to 35 or more than 35 years old, at least high school education, working, and middle-class social status were more likely to use LTCM or MKJP. The IPM and low PLKB ratio had implications for poor CPR LTCM / MKJP.

Keywords: multilevel, long-term contraceptive methods, east java, contextual factor

Procedia PDF Downloads 240
5785 Long-term Care Facility for the Elderly and Its Relationship with Energy Efficiency

Authors: Gabriela Sardinha Pacheco

Abstract:

In a context of elderly population growth, the need to provide high quality infrastructure and services to these people becomes even more evident. The act of designing a space dedicated to elderly people goes beyond the concept of well-being and reaches to a point of evaluating and changing the way which society sees this part of the population as well as how it can build a relationship with energy efficiency. In this context, the care facilities for elderly have an extremely important role to provide this infrastructure to the population. A common issue is that, for many times, these facilities face financial issues, and the full operation of the establishment can be impacted. The intention of this work is to develop a project in which the energy efficiency measures can be lived daily and that the residents of the institution can participate actively, directly, or indirectly in the construction of this relationship. The use of energy efficiency strategies should become a natural process when thinking about buildings as it is an essential step to provide increased well-being, climate change mitigation, and cost reduction.

Keywords: energy efficiency, environmental comfort, long-term care facility, well-being

Procedia PDF Downloads 57
5784 Long-Term Variabilities and Tendencies in the Zonally Averaged TIMED-SABER Ozone and Temperature in the Middle Atmosphere over 10°N-15°N

Authors: Oindrila Nath, S. Sridharan

Abstract:

Long-term (2002-2012) temperature and ozone measurements by Sounding of Atmosphere by Broadband Emission Radiometry (SABER) instrument onboard Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite zonally averaged over 10°N-15°N are used to study their long-term changes and their responses to solar cycle, quasi-biennial oscillation and El Nino Southern Oscillation. The region is selected to provide more accurate long-term trends and variabilities, which were not possible earlier with lidar measurements over Gadanki (13.5°N, 79.2°E), which are limited to cloud-free nights, whereas continuous data sets of SABER temperature and ozone are available. Regression analysis of temperature shows a cooling trend of 0.5K/decade in the stratosphere and that of 3K/decade in the mesosphere. Ozone shows a statistically significant decreasing trend of 1.3 ppmv per decade in the mesosphere although there is a small positive trend in stratosphere at 25 km. Other than this no significant ozone trend is observed in stratosphere. Negative ozone-QBO response (0.02ppmv/QBO), positive ozone-solar cycle (0.91ppmv/100SFU) and negative response to ENSO (0.51ppmv/SOI) have been found more in mesosphere whereas positive ozone response to ENSO (0.23ppmv/SOI) is pronounced in stratosphere (20-30 km). The temperature response to solar cycle is more positive (3.74K/100SFU) in the upper mesosphere and its response to ENSO is negative around 80 km and positive around 90-100 km and its response to QBO is insignificant at most of the heights. Composite monthly mean of ozone volume mixing ratio shows maximum values during pre-monsoon and post-monsoon season in middle stratosphere (25-30 km) and in upper mesosphere (85-95 km) around 10 ppmv. Composite monthly mean of temperature shows semi-annual variation with large values (~250-260 K) in equinox months and less values in solstice months in upper stratosphere and lower mesosphere (40-55 km) whereas the SAO becomes weaker above 55 km. The semi-annual variation again appears at 80-90 km, with large values in spring equinox and winter months. In the upper mesosphere (90-100 km), less temperature (~170-190 K) prevails in all the months except during September, when the temperature is slightly more. The height profiles of amplitudes of semi-annual and annual oscillations in ozone show maximum values of 6 ppmv and 2.5 ppmv respectively in upper mesosphere (80-100 km), whereas SAO and AO in temperature show maximum values of 5.8 K and 4.6 K in lower and middle mesosphere around 60-85 km. The phase profiles of both SAO and AO show downward progressions. These results are being compared with long-term lidar temperature measurements over Gadanki (13.5°N, 79.2°E) and the results obtained will be presented during the meeting.

Keywords: trends, QBO, solar cycle, ENSO, ozone, temperature

Procedia PDF Downloads 408
5783 The Role of Long-Chain Ionic Surfactants on Extending Drug Delivery from Contact Lenses

Authors: Cesar Torres, Robert Briber, Nam Sun Wang

Abstract:

Eye drops are the most commonly used treatment for short-term and long-term ophthalmic diseases. However, eye drops could deliver only about 5% of the functional ingredients contained in a burst dosage. To address the limitations of eye drops, the use of therapeutic contact lenses has been introduced. Drug-loaded contact lenses provide drugs a longer residence time in the tear film and hence, decrease the potential risk of side effects. Nevertheless, a major limitation of contact lenses as drug delivery devices is that most of the drug absorbed is released within the first few hours. This fact limits their use for extended release. The present study demonstrates the application of long-alkyl chain ionic surfactants on extending drug release kinetics from commercially available silicone hydrogel contact lenses. In vitro release experiments were carried by immersing drug-containing contact lenses in phosphate buffer saline at physiological pH. The drug concentration as a function of time was monitored using ultraviolet-visible spectroscopy. The results of the study demonstrate that release kinetics is dependent on the ionic surfactant weight percent in the contact lenses, and on the length of the hydrophobic alkyl chain of the ionic surfactants. The use of ionic surfactants in contact lenses can extend the delivery of drugs from a few hours to a few weeks, depending on the physicochemical properties of the drugs. Contact lenses embedded with ionic surfactants could be potential biomaterials to be used for extended drug delivery and in the treatment of ophthalmic diseases. However, ocular irritation and toxicity studies would be needed to evaluate the safety of the approach.

Keywords: contact lenses, drug delivery, controlled release, ionic surfactant

Procedia PDF Downloads 141
5782 Opportunities of Diversification Strategy Investment among the Top Ten Cryptocurrencies in Crypto Industry

Authors: Surayyo Shaamirova, Anwar Hasan Abdullah Othman

Abstract:

This study investigates the co-integration association between the top 10 cryptocurrencies, namely Bitcoin, Ethereum, Ripple, Bitcoin Cash, EOS, Cardano, Litecoin, Stellar, IOTA, and NEO. The study applies Johansen Juselius co-integration test to examine the long-run co-integration and utilize the Engle and Granger casualty test to examine the short-run relationship. The findings of the study show that there is a strong co-integration relationship among the cryptocurrencies; however, in the short run, there is no causal relationship among the crypto currencies. These results, therefore, suggest that there are portfolio diversification opportunities in the cryptocurrencies industry when it comes to long run investment decisions, on the other hand, the cryptocurrencies industry shows the characteristics of efficiency in the short-run. This is an indication of a non-speculation investment in the cryptocurrencies industry in the short term investment.

Keywords: cryptocurrencies, Johansen-Juselius co-integration test, Engle and Granger casualty test, portfolio diversification

Procedia PDF Downloads 138
5781 Simple Rheological Method to Estimate the Branch Structures of Polyethylene under Reactive Modification

Authors: Mahdi Golriz

Abstract:

The aim of this work is to estimate the change in molecular structure of linear low-density polyethylene (LLDPE) during peroxide modification can be detected by a simple rheological method. For this purpose a commercial grade LLDPE (Exxon MobileTM LL4004EL) was reacted with different doses of dicumyl peroxide (DCP). The samples were analyzed by size-exclusion chromatography coupled with a light scattering detector. The dynamic shear oscillatory measurements showed a deviation of the δ-׀G ׀٭curve from that of the linear LLDPE, which can be attributed to the presence of long-chain branching (LCB). By the use of a simple rheological method that utilizes melt rheology, transformations in molecular architecture induced on an originally linear low density polyethylene during the early stages of reactive modification were indicated. Reasonable and consistent estimates are obtained, concerning the degree of LCB, the volume fraction of the various molecular species produced in peroxide modification of LLDPE.

Keywords: linear low-density polyethylene, peroxide modification, long-chain branching, rheological method

Procedia PDF Downloads 152
5780 The Asymptotic Hole Shape in Long Pulse Laser Drilling: The Influence of Multiple Reflections

Authors: Torsten Hermanns, You Wang, Stefan Janssen, Markus Niessen, Christoph Schoeler, Ulrich Thombansen, Wolfgang Schulz

Abstract:

In long pulse laser drilling of metals, it can be demonstrated that the ablation shape approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from ultra short pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in long pulse drilling of metals is identified, a model for the description of the asymptotic hole shape numerically implemented, tested and clearly confirmed by comparison with experimental data. The model assumes a robust process in that way that the characteristics of the melt flow inside the arising melt film does not change qualitatively by changing the laser or processing parameters. Only robust processes are technically controllable and thus of industrial interest. The condition for a robust process is identified by a threshold for the mass flow density of the assist gas at the hole entrance which has to be exceeded. Within a robust process regime the melt flow characteristics can be captured by only one model parameter, namely the intensity threshold. In analogy to USP ablation (where it is already known for a long time that the resulting hole shape results from a threshold for the absorbed laser fluency) it is demonstrated that in the case of robust long pulse ablation the asymptotic shape forms in that way that along the whole contour the absorbed heat flux density is equal to the intensity threshold. The intensity threshold depends on the special material and radiation properties and has to be calibrated be one reference experiment. The model is implemented in a numerical simulation which is called AsymptoticDrill and requires such a few amount of resources that it can run on common desktop PCs, laptops or even smart devices. Resulting hole shapes can be calculated within seconds what depicts a clear advantage over other simulations presented in literature in the context of industrial every day usage. Against this background the software additionally is equipped with a user-friendly GUI which allows an intuitive usage. Individual parameters can be adjusted using sliders while the simulation result appears immediately in an adjacent window. A platform independent development allow a flexible usage: the operator can use the tool to adjust the process in a very convenient manner on a tablet during the developer can execute the tool in his office in order to design new processes. Furthermore, at the best knowledge of the authors AsymptoticDrill is the first simulation which allows the import of measured real beam distributions and thus calculates the asymptotic hole shape on the basis of the real state of the specific manufacturing system. In this paper the emphasis is placed on the investigation of the effect of multiple reflections on the asymptotic hole shape which gain in importance when drilling holes with large aspect ratios.

Keywords: asymptotic hole shape, intensity threshold, long pulse laser drilling, robust process

Procedia PDF Downloads 210
5779 The Future of Sharia Financing Analysis of Green Finance Financing Strategies in the Sharia State of Aceh

Authors: Damanhur Munardi, Muhammad Hafiz, Dina Nurmalita Sari, Syarifah Ridani Alifa

Abstract:

Purpose: This research aims to analyze the Benefits, Opportunity, Cost, and Risk aspects of applying the Green Finance concept and to obtain the right Green Finance financing strategy to be implemented within a long-term and short-term strategic framework.Methodology: This research method uses a qualitative-descriptive analysis approach. The analysis technique uses Analytical Network Process (ANP) with a BOCR network structure approach.Findings: The research results show that the most priority long-term strategic alternative based on the long-term BOCR analysis is increasing awareness among the public and industry by 52% and the importance of coordination between related institutions by 50%. Meanwhile, the most priority short-term strategic alternatives are the importance of coordination between related institutions 29%, increasing awareness among the public and industry 28%, the banking industry proactively funding environmentally friendly companies and technology 23%, the existence of Green Finance POS (Standard Operating Procedures) 20%.Implications: This research can be used as a reference for regulators and policymakers in making strategic decisions that can increase green finance financing. The novelty of this research is identifying problems that occur in green finance financing in Aceh province by analyzing opinions from experts in related fields and financial regulators in Aceh to create a strategy that can be implemented to increase green finance financing in Aceh province through BPD in Aceh, namely Bank Aceh.

Keywords: green financing, banking, sharia, islamic

Procedia PDF Downloads 64
5778 Dynamical Models for Enviromental Effect Depuration for Structural Health Monitoring of Bridges

Authors: Francesco Morgan Bono, Simone Cinquemani

Abstract:

This research aims to enhance bridge monitoring by employing innovative techniques that incorporate exogenous factors into the modeling of sensor signals, thereby improving long-term predictability beyond traditional static methods. Using real datasets from two different bridges equipped with Linear Variable Displacement Transducer (LVDT) sensors, the study investigates the fundamental principles governing sensor behavior for more precise long-term forecasts. Additionally, the research evaluates performance on noisy and synthetically damaged data, proposing a residual-based alarm system to detect anomalies in the bridge. In summary, this novel approach combines advanced modeling, exogenous factors, and anomaly detection to extend prediction horizons and improve preemptive damage recognition, significantly advancing structural health monitoring practices.

Keywords: structural health monitoring, dynamic models, sindy, railway bridges

Procedia PDF Downloads 37
5777 Tagging a corpus of Media Interviews with Diplomats: Challenges and Solutions

Authors: Roberta Facchinetti, Sara Corrizzato, Silvia Cavalieri

Abstract:

Increasing interconnection between data digitalization and linguistic investigation has given rise to unprecedented potentialities and challenges for corpus linguists, who need to master IT tools for data analysis and text processing, as well as to develop techniques for efficient and reliable annotation in specific mark-up languages that encode documents in a format that is both human and machine-readable. In the present paper, the challenges emerging from the compilation of a linguistic corpus will be taken into consideration, focusing on the English language in particular. To do so, the case study of the InterDiplo corpus will be illustrated. The corpus, currently under development at the University of Verona (Italy), represents a novelty in terms both of the data included and of the tag set used for its annotation. The corpus covers media interviews and debates with diplomats and international operators conversing in English with journalists who do not share the same lingua-cultural background as their interviewees. To date, this appears to be the first tagged corpus of international institutional spoken discourse and will be an important database not only for linguists interested in corpus analysis but also for experts operating in international relations. In the present paper, special attention will be dedicated to the structural mark-up, parts of speech annotation, and tagging of discursive traits, that are the innovational parts of the project being the result of a thorough study to find the best solution to suit the analytical needs of the data. Several aspects will be addressed, with special attention to the tagging of the speakers’ identity, the communicative events, and anthropophagic. Prominence will be given to the annotation of question/answer exchanges to investigate the interlocutors’ choices and how such choices impact communication. Indeed, the automated identification of questions, in relation to the expected answers, is functional to understand how interviewers elicit information as well as how interviewees provide their answers to fulfill their respective communicative aims. A detailed description of the aforementioned elements will be given using the InterDiplo-Covid19 pilot corpus. The data yielded by our preliminary analysis of the data will highlight the viable solutions found in the construction of the corpus in terms of XML conversion, metadata definition, tagging system, and discursive-pragmatic annotation to be included via Oxygen.

Keywords: spoken corpus, diplomats’ interviews, tagging system, discursive-pragmatic annotation, english linguistics

Procedia PDF Downloads 184
5776 Memory Based Reinforcement Learning with Transformers for Long Horizon Timescales and Continuous Action Spaces

Authors: Shweta Singh, Sudaman Katti

Abstract:

The most well-known sequence models make use of complex recurrent neural networks in an encoder-decoder configuration. The model used in this research makes use of a transformer, which is based purely on a self-attention mechanism, without relying on recurrence at all. More specifically, encoders and decoders which make use of self-attention and operate based on a memory, are used. In this research work, results for various 3D visual and non-visual reinforcement learning tasks designed in Unity software were obtained. Convolutional neural networks, more specifically, nature CNN architecture, are used for input processing in visual tasks, and comparison with standard long short-term memory (LSTM) architecture is performed for both visual tasks based on CNNs and non-visual tasks based on coordinate inputs. This research work combines the transformer architecture with the proximal policy optimization technique used popularly in reinforcement learning for stability and better policy updates while training, especially for continuous action spaces, which are used in this research work. Certain tasks in this paper are long horizon tasks that carry on for a longer duration and require extensive use of memory-based functionalities like storage of experiences and choosing appropriate actions based on recall. The transformer, which makes use of memory and self-attention mechanism in an encoder-decoder configuration proved to have better performance when compared to LSTM in terms of exploration and rewards achieved. Such memory based architectures can be used extensively in the field of cognitive robotics and reinforcement learning.

Keywords: convolutional neural networks, reinforcement learning, self-attention, transformers, unity

Procedia PDF Downloads 135
5775 Communicative Competence in French Language for Nigerian Teacher-Trainees in the New-Normal Society Using Mobile Apps as a Lifelong Learning Tool

Authors: Olukemi E. Adetuyi-Olu-Francis

Abstract:

Learning is natural for living. One stops learning when life ends. Hence, there is no negotiating life-long learning. An individual has the innate ability to learn as many languages as he/she desires as long as life exists. French language education to every Nigerian teacher-trainee is a necessity. Nigeria’s geographical location requires that the French language should be upheld for economic and cultural co-operations between Nigeria and the francophone countries sharing borders with her. The French language will enhance the leadership roles of the teacher-trainees and their ability to function across borders. The 21st century learning tools are basically digital, and many apps are complementing the actual classroom interactions. This study examined the communicative competence in the French language to equip Nigerian teacher-trainees in the new-normal society using mobile apps as a lifelong learning tool. Three research questions and hypotheses guided the study, and the researcher adopted a pre-test, a post-test experimental design, using a sample size of 87 teacher-trainees in South-south geopolitical zone of Nigeria. Results showed that the use of mobile apps is effective for learning the French language. One of the recommendations is that the use of mobile apps should be encouraged for all Nigerian youths to learn the French language for enhancing leadership roles in the world of work and for international interactions for socio-economic co-operations with Nigerian neighboring countries.

Keywords: communicative competence, french language, life long learning, mobile apps, new normal society, teacher trainees

Procedia PDF Downloads 234
5774 Multi-Indicator Evaluation of Agricultural Drought Trends in Ethiopia: Implications for Dry Land Agriculture and Food Security

Authors: Dawd Ahmed, Venkatesh Uddameri

Abstract:

Agriculture in Ethiopia is the main economic sector influenced by agricultural drought. A simultaneous assessment of drought trends using multiple drought indicators is useful for drought planning and management. Intra-season and seasonal drought trends in Ethiopia were studied using a suite of drought indicators. Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI), and Z-index for long-rainy, dry, and short-rainy seasons are used to identify drought-causing mechanisms. The Statistical software package R version 3.5.2 was used for data extraction and data analyses. Trend analysis indicated shifts in late-season long-rainy season precipitation into dry in the southwest and south-central portions of Ethiopia. Droughts during the dry season (October–January) were largely temperature controlled. Short-term temperature-controlled hydrologic processes exacerbated rainfall deficits during the short rainy season (February–May) and highlight the importance of temperature- and hydrology-induced soil dryness on the production of short-season crops such as tef. Droughts during the long-rainy season (June–September) were largely driven by precipitation declines arising from the narrowing of the intertropical convergence zone (ITCZ). Increased dryness during long-rainy season had severe consequences on the production of corn and sorghum. PDSI was an aggressive indicator of seasonal droughts suggesting the low natural resilience to combat the effects of slow-acting, moisture-depleting hydrologic processes. The lack of irrigation systems in the nation limits the ability to combat droughts and improve agricultural resilience. There is an urgent need to monitor soil moisture (a key agro-hydrologic variable) to better quantify the impacts of meteorological droughts on agricultural systems in Ethiopia.

Keywords: autocorrelation, climate change, droughts, Ethiopia, food security, palmer z-index, PDSI, SPEI, SPI, trend analysis

Procedia PDF Downloads 140
5773 A Comparative Analysis of Hyper-Parameters Using Neural Networks for E-Mail Spam Detection

Authors: Syed Mahbubuz Zaman, A. B. M. Abrar Haque, Mehedi Hassan Nayeem, Misbah Uddin Sagor

Abstract:

Everyday e-mails are being used by millions of people as an effective form of communication over the Internet. Although e-mails allow high-speed communication, there is a constant threat known as spam. Spam e-mail is often called junk e-mails which are unsolicited and sent in bulk. These unsolicited emails cause security concerns among internet users because they are being exposed to inappropriate content. There is no guaranteed way to stop spammers who use static filters as they are bypassed very easily. In this paper, a smart system is proposed that will be using neural networks to approach spam in a different way, and meanwhile, this will also detect the most relevant features that will help to design the spam filter. Also, a comparison of different parameters for different neural network models has been shown to determine which model works best within suitable parameters.

Keywords: long short-term memory, bidirectional long short-term memory, gated recurrent unit, natural language processing, natural language processing

Procedia PDF Downloads 204
5772 Assessment of the Relationship between Energy Price Dynamics and Green Growth in the Sub-Sharan Africa

Authors: Christopher I. Ifeacho, Adeleke Omolade

Abstract:

The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve green growth that can engender sustainability and stability has received more attention from researchers in recent times. This study uses a panel autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rates have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.

Keywords: green growth, energy price dynamics, Sub Saharan Africa, relationship

Procedia PDF Downloads 96
5771 Impact of Workplace Psychology on Architect's Work Satisfaction

Authors: Sriram Prabhakar

Abstract:

Architects are known for long and unfriendly work hours and thus adapt to routines mandated by nature and surroundings of their work. Work gratification among architects is necessary to have a healthy working condition that sequentially supports to create built environments as work satisfaction has been low among Architects and are also exposed to a number of stress factors like long working hours, the slow pace of work, high workload, and lack of job safety with low pay which negatively impacts their well-being. Additionally, architects have only a limited scope to use their creative skill. This paper studies the case of work satisfaction and the factors that impact it in the state of Indian architects. An eloquent survey in the form of a questionnaire and standardized interviews will be utilized to form a comprehensive method for the study. Factors that basically affect workplaces include restraining over thermal conditions, indoor air quality, recreational spaces, acoustics, views, lighting, and ergonomics. The expected outcome of the paper is to check architects' workplace psychology and their control on their work environment.

Keywords: architects, gratification, stressors, workplace psychology

Procedia PDF Downloads 221
5770 Understanding Mudrocks and Their Shear Strength Deterioration Associated with Inundation

Authors: Haslinda Nahazanan, Afshin Asadi, Zainuddin Md. Yusoff, Nik Nor Syahariati Nik Daud

Abstract:

Mudrocks is considered as a problematic material due to their unexpected behaviour specifically when they are contacting with water or being exposed to the atmosphere. Many instability problems of cutting slopes were found lying on high slaking mudrocks. It has become one of the major concerns to geotechnical engineer as mudrocks cover up to 50% of sedimentary rocks in the geologic records. Mudrocks display properties between soils and rocks which can be very hard to understand. Therefore, this paper aims to review the definition, mineralogy, geo-chemistry, classification and engineering properties of mudrocks. As water has become one of the major factors that will rapidly change the behaviour of mudrocks, a review on the shear strength of mudrocks in Derbyshire has been made using a fully automated hydraulic stress path testing system under three states: dry, short-term inundated and long-term inundated. It can be seen that the strength of mudrocks has deteriorated as it condition changed from dry to short-term inundated and finally to long-term inundated.

Keywords: mudrocks, sedimentary rocks, inundation, shear strength

Procedia PDF Downloads 234
5769 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling

Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou

Abstract:

In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.

Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change

Procedia PDF Downloads 258
5768 Selection of Strategic Suppliers for Partnership: A Model with Two Stages Approach

Authors: Safak Isik, Ozalp Vayvay

Abstract:

Strategic partnerships with suppliers play a vital role for the long-term value-based supply chain. This strategic collaboration keeps still being one of the top priority of many business organizations in order to create more additional value; benefiting mainly from supplier’s specialization, capacity and innovative power, securing supply and better managing costs and quality. However, many organizations encounter difficulties in initiating, developing and managing those partnerships and many attempts result in failures. One of the reasons for such failure is the incompatibility of members of this partnership or in other words wrong supplier selection which emphasize the significance of the selection process since it is the beginning stage. An effective selection process of strategic suppliers is critical to the success of the partnership. Although there are several research studies to select the suppliers in literature, only a few of them is related to strategic supplier selection for long-term partnership. The purpose of this study is to propose a conceptual model for the selection of strategic partnership suppliers. A two-stage approach has been used in proposed model incorporating first segmentation and second selection. In the first stage; considering the fact that not all suppliers are strategically equal and instead of a long list of potential suppliers, Kraljic’s purchasing portfolio matrix can be used for segmentation. This supplier segmentation is the process of categorizing suppliers based on a defined set of criteria in order to identify types of suppliers and determine potential suppliers for strategic partnership. In the second stage, from a pool of potential suppliers defined at first phase, a comprehensive evaluation and selection can be performed to finally define strategic suppliers considering various tangible and intangible criteria. Since a long-term relationship with strategic suppliers is anticipated, criteria should consider both current and future status of the supplier. Based on an extensive literature review; strategical, operational and organizational criteria have been determined and elaborated. The result of the selection can also be used to determine suppliers who are not ready for a partnership but to be developed for strategic partnership. Since the model is based on multiple criteria for both stages, it provides a framework for further utilization of Multi-Criteria Decision Making (MCDM) techniques. The model may also be applied to a wide range of industries and involve managerial features in business organizations.

Keywords: Kraljic’s matrix, purchasing portfolio, strategic supplier selection, supplier collaboration, supplier partnership, supplier segmentation

Procedia PDF Downloads 238
5767 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network

Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin

Abstract:

The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.

Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake

Procedia PDF Downloads 62
5766 Spatial Correlation of Channel State Information in Real Long Range Measurement

Authors: Ahmed Abdelghany, Bernard Uguen, Christophe Moy, Dominique Lemur

Abstract:

The Internet of Things (IoT) is developed to ensure monitoring and connectivity within different applications. Thus, it is critical to study the channel propagation characteristics in Low Power Wide Area Network (LPWAN), especially Long Range Wide Area Network (LoRaWAN). In this paper, an in-depth investigation of the reciprocity between the uplink and downlink Channel State Information (CSI) is done by performing an outdoor measurement campaign in the area of Campus Beaulieu in Rennes. At each different location, the CSI reciprocity is quantified using the Pearson Correlation Coefficient (PCC) which shows a very high linear correlation between the uplink and downlink CSI. This reciprocity feature could be utilized for the physical layer security between the node and the gateway. On the other hand, most of the CSI shapes from different locations are highly uncorrelated from each other. Hence, it can be anticipated that this could achieve significant localization gain by utilizing the frequency hopping in the LoRa systems by getting access to a wider band.

Keywords: IoT, LPWAN, LoRa, effective signal power, onsite measurement

Procedia PDF Downloads 161
5765 Numerical Computation of Generalized Rosenau Regularized Long-Wave Equation via B-Spline Over Butcher’s Fifth Order Runge-Kutta Approach

Authors: Guesh Simretab Gebremedhin, Saumya Rajan Jena

Abstract:

In this work, a septic B-spline scheme has been used to simplify the process of solving an approximate solution of the generalized Rosenau-regularized long-wave equation (GR-RLWE) with initial boundary conditions. The resulting system of first-order ODEs has dealt with Butcher’s fifth order Runge-Kutta (BFRK) approach without using finite difference techniques for discretizing the time-dependent variables at each time level. Here, no transformation or any kind of linearization technique is employed to tackle the nonlinearity of the equation. Two test problems have been selected for numerical justifications and comparisons with other researchers on the basis of efficiency, accuracy, and results of the two invariants Mᵢ (mass) and Eᵢ (energy) of some motion that has been used to test the conservative properties of the proposed scheme.

Keywords: septic B-spline scheme, Butcher's fifth order Runge-Kutta approach, error norms, generalized Rosenau-RLW equation

Procedia PDF Downloads 60
5764 The 10,000 Fold Effect Retrograde Neurotransmission: A Newer Concept for Paraplegia’s Physiological Revival by the Use of Intrathecal Sodium Nitroprusside

Authors: V. K. Tewari, M. Hussain, H. K. D. Gupta

Abstract:

B-Methylprednisolone-level-1-benefit (20%) usually given in paraplegia (but within 8hrs). Patients wait-long-duration for physiological-recovery. Intrathecal-Sodium-Nitroprusside(ITSNP) has been used-in vasospasm-due-to-subarachnoid-hemorrhage. ITSNP-has been studied-here for wide-window-period-range for-treatment, fast-recovery/affordability. 2- for acute-cases-and 1-mechanism-for chronic-cases, which-are-interrelated, are being-proposed-for-physiological-recovery. retrograde-neurotransmission, vasospasm and long-term-potentiation-(ltp) mechanisms are proposed here for recovery. It’s a case-control-prospective-study. 82paraplegia-patients(10patients taken as control-no superfusion or dextrose5% superfusion and 72patients as ITSNP-group). The mean time for superfusion was 14.11 days. ITSNP administered at a dosage of 0.2 mg/kg bo wt. Pre/post ITSNP monitored by SSEP/MEP. After-2-Hours in ITSNP-group Mean-Change-From-Baseline-Asia Motor/Sensory-Score 13.84%/13.10%, after-24-hours MOTOR-1.27-points decrease(3.77%) and SENSORY 10.5points-increase(6.22%)as compared to Control-group no-change noted upto 24-hours, At-7days ITSNP motor/sensory;11.56%/6.22% as compared to Control-group 7.60/4.48%, At-2-months in ITSNP 27.69%/6.22% as compared to Control-group 16.02/4.5%. SSEP/MEP-documented-improvements-noted. ITSNP, a-swift-acting-drug in treatment-of-paraplegia, is effective within-two-hours(mean-change-MOTOR-13.84% and SENSORY-13.10%) on-mean14.11th postparaplegia-day with a small-detrimental-response after-24-hours which-recovers-fast.

Keywords: paraplegias, intrathecal sodium nitroprusside, retrograde transmission, the 10, 000 fold effect, perforators, vasodilatations, long term potenciations

Procedia PDF Downloads 405
5763 Nonlinear Estimation Model for Rail Track Deterioration

Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami

Abstract:

Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.

Keywords: ANFIS, MGT, prediction modeling, rail track degradation

Procedia PDF Downloads 333
5762 Examining Macroeconomics Determinants of Inflation Rate in Somalia

Authors: Farhia Hassan Mohamed

Abstract:

This study examined the macroeconomic factors that affect the inflation Rate in Somalia using quarterly time series data from 1991q1 to 2017q4 retired from World Development Indicators and SESRIC. It employed the vector error correction model (VECM) and Granger Causality method to measure the long-run and short-run causality of the GDP, inflation exchange rate, and unemployment. The study confirmed that there is one cointegration equation between GDP, exchange rate, inflation, and unemployment in Somalia. However, the VECM model's result indicates a long-run relationship among variables. The VEC Granger causality/Block Exogeneity Wald test result confirmed that all covariates are statistically significant at 5% and are Granger's cause of inflation in the short term. Finally, the impulse response result showed that inflation responds negatively to the shocks from the exchange rate and unemployment rate and positively to GDP and itself. Drawing from the empirical findings, the study makes several policy recommendations for both the monetary and Government sides.

Keywords: CPI, OP, exchange rate, inflation ADF, Johansen, PP, VECM, impulse, ECT

Procedia PDF Downloads 44
5761 Assessment of the Relationship Between Energy Price Dynamics and Green Growth in Sub-Saharan Africa

Authors: Christopher Ikechukwu Ifeacho

Abstract:

The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve the green growth that can engender sustainability, and stability has received more attention from researchers in recent times. This study uses a panel Autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rate have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.

Keywords: green growth, energy price dynamics, Sub Sahara Africa., sustainability

Procedia PDF Downloads 19
5760 Embedding Looping Concept into Corporate CSR Strategy for Sustainable Growth: An Exploratory Study

Authors: Vani Tanggamani, Azlan Amran

Abstract:

The issues of Corporate Social Responsibility (CSR) have been extended from developmental economics to corporate and business in recent years. Research in issues related to CSR is deemed to make higher impacts as CSR encourages long-term economy and business success without neglecting social, environmental risks, obligations and opportunities. Therefore, CSR is a key matter for any organisation aiming for long term sustainability since business incorporates principles of social responsibility into each of its business decisions. Thus, this paper presents a theoretical proposition based on stakeholder theory from the organisational perspective as a foundation for better CSR practices. The primary subject of this paper is to explore how looping concept can be effectively embedded into corporate CSR strategy to foster sustainable long term growth. In general, the concept of a loop is a structure or process, the end of which is connected to the beginning, whereas the narrow view of a loop in business field means plan, do, check, and improve. In this sense, looping concept is a blend of balance and agility with the awareness to know when to which. Organisations can introduce similar pull mechanisms by formulating CSR strategies in order to perform the best plan of actions in real time, then a chance to change those actions, pushing them toward well-organized planning and successful performance. Through the analysis of an exploratory study, this paper demonstrates that approaching looping concept in the context of corporate CSR strategy is an important source of new idea to propel CSR practices by deepening basic understanding through the looping concept which is increasingly necessary to attract and retain business stakeholders include people such as employees, customers, suppliers and other communities for long-term business survival. This paper contributes to the literature by providing a fundamental explanation of how the organisations will experience less financial and reputation risk if looping concept logic is integrated into core business CSR strategy.The value of the paper rests in the treatment of looping concept as a corporate CSR strategy which demonstrates "looping concept implementation framework for CSR" that could further foster business sustainability, and help organisations move along the path from laggards to leaders.

Keywords: corporate social responsibility, looping concept, stakeholder theory, sustainable growth

Procedia PDF Downloads 400
5759 Topical Delivery of Griseofulvin via Lipid Nanoparticles

Authors: Yann Jean Tan, Hui Meng Er, Choy Sin Lee, Shew Fung Wong, Wen Huei Lim

Abstract:

Griseofulvin is a long standing fungistatic agent against dermatophytosis. Nevertheless, it has several drawbacks such as poor and highly variable bio availability, long duration of treatment, systemic side effects and drug interactions. Targeted treatment for the superficial skin infection, dermatophytosis via topical route could be beneficial. Nevertheless, griseofulvin is only available in the form of oral preparation. Hence, it generates interest in developing a topical formulation for griseofulvin, by using lipid nano particle as the vehicle. Lipid nanoparticle is a submicron colloidal carrier with a core that is solid in nature (lipid). It has combined advantages of various traditional carriers and is a promising vehicle for topical delivery. The griseofulvin loaded lipid nano particles produced using high pressure homogenization method were characterized and investigated for its skin targeting effect in vitro. It has a mean particle size of 179.8±4.9 nm with polydispersity index of 0.306±0.011. Besides, it showed higher skin permeation and better skin targeting effect compared to the griseofulvin suspension.

Keywords: lipid nanoparticles, griseofulvin, topical, dermatophytosis

Procedia PDF Downloads 455