Search results for: cognitive radio network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6908

Search results for: cognitive radio network

3668 Accessibility Analysis of Urban Green Space in Zadar Settlement, Croatia

Authors: Silvija Šiljeg, Ivan Marić, Ante Šiljeg

Abstract:

The accessibility of urban green spaces (UGS) is an integral element in the quality of life. Due to rapid urbanization, UGS studies have become a key element in urban planning. The potential benefits of space for its inhabitants are frequently analysed. A functional transport network system and the optimal spatial distribution of urban green surfaces are the prerequisites for maintaining the environmental equilibrium of the urban landscape. An accessibility analysis was conducted as part of the Urban Green Belts Project (UGB). The development of a GIS database for Zadar was the first step in generating the UGS accessibility indicator. Data were collected using the supervised classification method of multispectral LANDSAT images and manual vectorization of digital orthophoto images (DOF). An analysis of UGS accessibility according to the ANGst standard was conducted in the first phase of research. The accessibility indicator was generated on the basis of seven objective measurements, which included average UGS surface per capita and accessibility according to six functional levels of green surfaces. The generated indicator was compared with subjective measurements obtained by conducting a survey (718 respondents) within statistical units. The collected data reflected individual assessments and subjective evaluations of UGS accessibility. This study highlighted the importance of using objective and subjective measures in the process of understanding the accessibility of urban green surfaces. It may be concluded that when evaluating UGS accessibility, residents emphasize the immediate residential environment, ignoring higher UGS functional levels. It was also concluded that large areas of UGS within a city do not necessarily generate similar satisfaction with accessibility. The heterogeneity of output results may serve as guidelines for the further development of a functional UGS city network.

Keywords: urban green spaces (UGS), accessibility indicator, subjective and objective measurements, Zadar

Procedia PDF Downloads 259
3667 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 128
3666 Electromagnetic Fields Characterization of an Urban Area in Lagos De Moreno Mexico and Its Correlation with Public Health Hazards

Authors: Marco Vinicio Félix Lerma, Efrain Rubio Rosas, Fernando Ricardez Rueda, Victor Manuel Castaño Meneses

Abstract:

This paper reports a spectral analysis of the exposure levels of radiofrequency electromagnetic fields originating from a wide variety of telecommunications sources present in an urban area of Lagos de Moreno, Jalisco, Mexico. The electromagnetic characterization of the urban zone under study was carried out by measurements in 118 sites. Measurements of TETRA,ISM434, LTE800, ISM868, GSM900, GSM1800, 3G UMTS,4G UMTS, Wlan2.4, LTE2.6, DECT, VHF Television and FM radio signals were performed at distances ranging over 10 to 1000m from 87 broadcasting towers concentrated in an urban area of about 3 hectares. The aim of these measurements is the evaluation of the electromagnetic fields power levels generated by communication systems because of their interaction with the human body. We found that in certain regions the general public exposure limits determined by ICNIRP (International Commission of Non Ionizing Radiation Protection) are overpassed from 5% up to 61% of the upper values, indicating an imminent health public hazard, whereas in other regions we found that these limits are not overpassed. This work proposes an electromagnetic pollution classification for urban zones according with ICNIRP standards. We conclude that the urban zone under study presents diverse levels of pollution and that in certain regions an electromagnetic shielding solution is needed in order to safeguard the health of the population that lives there. A practical solution in the form of paint coatings and fiber curtains for the buildings present in this zone is also proposed.

Keywords: electromagnetic field, telecommunication systems, electropollution, health hazards

Procedia PDF Downloads 393
3665 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 139
3664 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure

Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic

Abstract:

Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.

Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth

Procedia PDF Downloads 88
3663 “MaxSALIVA-II” Advancing a Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection, Regeneration and Repair in a Head and Neck Cancer Pre-Clinical Murine Model

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral, dental, and general health and well-being; where it normally bathes the oral cavity acting as a clearing agent. This becomes more apparent when the amount and quality of saliva are significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the 5th most common malignancy worldwide, during which the salivary glands are included within the radiation field/zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely as they become malnourished and experience a significant decrease in their QoL. Accordingly, the formulation of a radio-protection/-prevention modality and development of an alternative Rx to restore damaged salivary gland tissue is eagerly awaited and highly desirable. Objectives: Assess the pre-clinical radio-protective effect and reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs, followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: cancer, head and neck, oncology, drug development, drug delivery systems, nanotechnology, nanoncology

Procedia PDF Downloads 79
3662 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 133
3661 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment

Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee

Abstract:

Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.

Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation

Procedia PDF Downloads 348
3660 Mobi Navi Tour for Rescue Operations

Authors: V. R. Sadasivam, M. Vipin, P. Vineeth, M. Sajith, G. Sathiskumar, R. Manikandan, N. Vijayarangan

Abstract:

Global positioning system technology is what leads to such things as navigation systems, GPS tracking devices, GPS surveying and GPS mapping. All that GPS does is provide a set of coordinates which represent the location of GPS units with respect to its latitude, longitude and elevation on planet Earth. It also provides time, which is accurate. The tracking devices themselves come in different flavors. They will contain a GPS receiver, and GPS software, along with some way of transmitting the resulting coordinates. GPS in mobile tend to use radio waves to transmit their location to another GPS device. The purpose of this prototype “Mobi Navi Tour for Rescue Operation” timely communication, and lightning fast decision-making with a group of people located in different places with a common goal. Timely communication and tracking the people are a critical issue in many situations, environments. Expedited can find missing person by sending the location and other related information to them through mobile. Information must be drawn from the caller and entered into the system by the administrator or a group leader and transferred to the group leader. This system will locate the closest available person, a group of people working in an organization/company or vehicle to determine availability and their position to track them. Misinformation cannot lead to the wrong decision in the rapidly paced environment in a normal and an abnormal situation. In “Mobi Navi Tour for Rescue Operation” we use Google Cloud Messaging for android (GCM) which is a service that helps developers send data from servers to their android applications on android devices. The service provides a simple, lightweight mechanism that servers can use to tell mobile applications to contact the server directly, to fetch updated application or user data.

Keywords: android, gps, tour, communication, service

Procedia PDF Downloads 396
3659 Helping Older Users Staying Connected

Authors: Q. Raza

Abstract:

Getting old is inevitable, tasks which were once simple are now a daily struggle. This paper is a study of how older users interact with web application based upon a series of experiments. The experiments conducted involved 12 participants and the experiments were split into two parts. The first set gives the users a feel of current social networks and the second set take into considerations from the participants and the results of the two are compared. This paper goes in detail on the psychological aspects such as social exclusion, Metacognition memory and Therapeutic memories and how this relates to users becoming isolated from society, social networking can be the roof on a foundation of successful computer interaction. The purpose of this paper is to carry out a study and to propose new ideas to help users to be able to use social networking sites easily and efficiently.

Keywords: cognitive psychology, special memory, social networking and human computer interaction

Procedia PDF Downloads 445
3658 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System

Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu

Abstract:

In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.

Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission

Procedia PDF Downloads 143
3657 A Comparative Semantic Network Study between Chinese and Western Festivals

Authors: Jianwei Qian, Rob Law

Abstract:

With the expansion of globalization and the increment of market competition, the festival, especially the traditional one, has demonstrated its vitality under the new context. As a new tourist attraction, festivals play a critically important role in promoting the tourism economy, because the organization of a festival can engage more tourists, generate more revenues and win a wider media concern. However, in the current stage of China, traditional festivals as a way to disseminate national culture are undergoing the challenge of foreign festivals and the related culture. Different from those special events created solely for developing economy, traditional festivals have their own culture and connotation. Therefore, it is necessary to conduct a study on not only protecting the tradition, but promoting its development as well. This study conducts a comparative study of the development of China’s Valentine’s Day and Western Valentine’s Day under the Chinese context and centers on newspaper reports in China from 2000 to 2016. Based on the literature, two main research focuses can be established: one is concerned about the festival’s impact and the other is about tourists’ motivation to engage in a festival. Newspaper reports serve as the research discourse and can help cover the two focal points. With the assistance of content mining techniques, semantic networks for both Days are constructed separately to help depict the status quo of these two festivals in China. Based on the networks, two models are established to show the key component system of traditional festivals in the hope of perfecting the positive role festival tourism plays in the promotion of economy and culture. According to the semantic networks, newspaper reports on both festivals have similarities and differences. The difference is mainly reflected in its cultural connotation, because westerners and Chinese may show their love in different ways. Nevertheless, they share more common points in terms of economy, tourism, and society. They also have a similar living environment and stakeholders. Thus, they can be promoted together to revitalize some traditions in China. Three strategies are proposed to realize the aforementioned aim. Firstly, localize international festivals to suit the Chinese context to make it function better. Secondly, facilitate the internationalization process of traditional Chinese festivals to receive more recognition worldwide. Finally, allow traditional festivals to compete with foreign ones to help them learn from each other and elucidate the development of other festivals. It is believed that if all these can be realized, not only the traditional Chinese festivals can obtain a more promising future, but foreign ones are the same as well. Accordingly, the paper can contribute to the theoretical construction of festival images by the presentation of the semantic network. Meanwhile, the identified features and issues of festivals from two different cultures can enlighten the organization and marketing of festivals as a vital tourism activity. In the long run, the study can enhance the festival as a key attraction to keep the sustainable development of both the economy and the society.

Keywords: Chinese context, comparative study, festival tourism, semantic network analysis, valentine’s day

Procedia PDF Downloads 232
3656 Disconnect between Water, Sanitation and Hygiene Related Behaviours of Children in School and Family

Authors: Rehan Mohammad

Abstract:

Background: Improved Water, Sanitation and Hygiene (WASH) practices in schools ensure children’s health, well-being and cognitive performance. In India under various WASH interventions in schools, teachers, and other staff make every possible effort to educate children about personal hygiene, sanitation practices and harms of open defecation. However, once children get back to their families, they see other practicing inappropriate WASH behaviors, and they consequently start following them. This show disconnect between school behavior and family behavior, which needs to be bridged to achieve desired WASH outcomes. Aims and Objectives: The aim of this study is to assess the factors causing disconnect of WASH-related behaviors between school and the family of children. It also suggests behavior change interventions to bridge the gap. Methodology: The present study has chosen a mixed- method approach. Both quantitative and qualitative methods of data collection have been used in the present study. The purposive sampling for data collection has been chosen. The data have been collected from 20% children in each age group of 04-08 years and 09-12 years spread over three primary schools and 20% of households to which they belong to which is spread over three slum communities in south district of Delhi. Results: The present study shows that despite of several behavior change interventions at school level, children still practice inappropriate WASH behaviors due to disconnect between school and family behaviors. These behaviors show variation from one age group to another. The inappropriate WASH behaviors being practiced by children include open defecation, wrong disposal of garbage, not keeping personal hygiene, not practicing hand washing practices during critical junctures and not washing fruits and vegetables before eating. The present study has highlighted that 80% of children in the age group of 04-08 years still practice inappropriate WASH behaviors when they go back to their families after school whereas, this percentage has reduced to 40% in case of children in the age group 09-12 years. Present study uncovers association between school and family teaching which creates a huge gap between WASH-related behavioral practices. The study has established that children learn and de-learn the WASH behaviors due to the evident disconnect between behavior change interventions at schools and household level. The study has also made it clear that children understand the significance of appropriate WASH practices but owing to the disconnect the behaviors remain unsettled. The study proposes several behavior change interventions to sync the behaviors of children at school and family level to ensure children’s health, well-being and cognitive performance.

Keywords: behavioral interventions, child health, family behavior, school behavior, WASH

Procedia PDF Downloads 111
3655 Knowledge and Practice of Family Planning among Rural Women in Ogun State, South West Nigeria

Authors: Tope Olubodun

Abstract:

Background: Family planning practices help individuals and couples avoid unwanted pregnancies, regulate intervals between pregnancies, and determine the number of children in the family. Family planning is an effective intervention for promoting maternal health, but its acceptability and utilization are impeded by many factors in Southwest Nigeria. Aim: This study was conducted to assess women’s knowledge and practice of family planning in two rural communities in Ogun State, Southwest Nigeria, and to determine factors associated with the utilization of family planning among these women. Methods: This was a cross-sectional study conducted among 561 women of reproductive age selected by multistage sampling. The data collection was done using interviewer-administered questionnaires. Data obtained were analyzed using IBM SPSS Statistics version 20. Frequencies were generated, and chi-square test was used to explore associations. The level of significance was set at 0.05. Result: The majority of the respondents were aware of family planning 410 (73.1%). The method most commonly known was male condom 348 (62.0%), then pills 276 (49.2%) and injectables 231(41.3%). The commonest sources of information on family planning were health workers 158 (26.8%), outreaches 162 (27.5%) and TV/radio 136 (23.1%). Respondents that had used family planning, however, only constituted forty–five percent. The methods commonly used were injectables 104 (39.2%) and pills 85 (32.1%). Reasons for choosing not to use family planning include the desire for more children 78 (26.3%), because spouse does not support family planning 56 (18.9%), fear of unbearable side effects 44 (14.9%), and poor knowledge of the methods of family planning as well as where the services can be obtained 39 (13.2%). There is a statistically significant association between age, ethnicity, education, occupation, average monthly income, and use of family planning. Conclusion: Campaigns that promote male involvement in family planning, use of family planning for child spacing, and dispelling of fears is recommended to improve the practice of family planning among such a group of women.

Keywords: family planning, rural, knowledge, practice

Procedia PDF Downloads 151
3654 Life Expansion: Visual Autobiography, Identity, Representation and the Degrees of Fictionalization of the Self on Instagram

Authors: Pablo De Macedo Silveira Vallejos

Abstract:

This article aims to observe autobiographical and visual narrative practices among users on Instagram. In this way, the work proposes to reflect on how image resources are used to develop edited representations of the self in that social network. The research aims to explore the uses of editing and the degrees of fictionalization present on Instagram.

Keywords: autobiography, visual narratives, representation, fiction, social media

Procedia PDF Downloads 74
3653 Applying Swanson's Theory of Caring to Manage Multiple Trauma Patient

Authors: Hsin-Yi Lo, Chia-Yu Hsu

Abstract:

This article is the nursing experience of a multiple trauma case using Swanson's theory of caring, the nursing period is from May 31 to June 4, 2021, collect data through observation, written talks, interviews, listening, direct care and physical assessment, established cases with health problems such as acute pain, impaired tissue integrity, and anxiety. Nursing process including, evaluate the pain index with the pain assessment scale, assist in acupoint massage, use a corset to fix the wound, and give the patient listening to favorite radio programs to divert attention and relieve pain problems; promote wound healing and avoid infection by assessing wound condition and exudation, changing dressings with aseptic technique, and providing appropriate dressings; encourage patients to express their feelings, provide companionship, and assist in self-care and participation in treatment plans, to enable the case to overcome the anxiety caused by being admitted to the intensive care unit for the first time and not knowing about the disease, and assist the case to overcome the injury caused by the accident and return to normal life. There is no video equipment in the intensive care unit during the nursing period. In response to the problem that family visits cannot be opened during the epidemic, it is a limitation this time. It is recommended that the hospital take this into consideration in the future. In the post-epidemic era, it can reduce the risk of various infections for patients and family members. Traveling between home and hospital, improving the quality of high-quality and technological care.

Keywords: swanson's theory of caring, multiple trauma, anxiety, nursing experience

Procedia PDF Downloads 79
3652 The Quasar 3C 47:Extreme Population B Jetted Source with Double-Peaked Profile

Authors: Shimeles Terefe Mengistue, Paola Marziani, Ascensióndel Olmo, Jaime Perea, Mirjana Pović

Abstract:

The theory that rotating accretion disks are responsible for the broad emission-line profiles in quasars is frequently put forth; however, the presence of accretion disk (AD) in active galactic nuclei (AGN) had limited and indirect observational support. In order to evaluate the extent to which the AD is a source of the broad Balmer lines and high ionization UV lines in radio-loud (RL) AGN, we focused on an extremely jetted RL quasar, 3C 47 that clearly shows a double peaked profile. This work presents its optical spectra and UV observations from the HST/FOS covering the rest-frame spectral range from 2000 to 7000 \AA. The fit of the low ionization lines, Hbeta, Halpha and MgII2800 show profiles that are in very good agreement with a relativistic Keplerian AD model. The profile of the prototypical high ionization lines can also be modeled by the contribution of the AD, with additional components due to outflows and emissions from the innermost part of the narrow line regions (NLRs). A prominent fit of the resulting double peaked profiles were found and very important disk parameters of the disk have been determined using the Hbeta, Halpha and MgII2800 lines: the inner and outer radii (both in units of G/mbh, where mbh is the supermassive black hole), an inclination to the line of sight, the emissivity index and the local broadening parameter. In addition, the accretion parameters, /mbh and /lledd are also determined. This work indicates that the line profile of 3C 47 shows the most convincing direct evidence for the presence of a rotating AD in AGN and the broad, double-peaked profiles originate from this AD that surrounds an /mbh.

Keywords: active galactic nuclei, quasars, emission lines, Double-peaked, supermassive black hole

Procedia PDF Downloads 75
3651 Functional Neurocognitive Imaging (fNCI): A Diagnostic Tool for Assessing Concussion Neuromarker Abnormalities and Treating Post-Concussion Syndrome in Mild Traumatic Brain Injury Patients

Authors: Parker Murray, Marci Johnson, Tyson S. Burnham, Alina K. Fong, Mark D. Allen, Bruce McIff

Abstract:

Purpose: Pathological dysregulation of Neurovascular Coupling (NVC) caused by mild traumatic brain injury (mTBI) is the predominant source of chronic post-concussion syndrome (PCS) symptomology. fNCI has the ability to localize dysregulation in NVC by measuring blood-oxygen-level-dependent (BOLD) signaling during the performance of fMRI-adapted neuropsychological evaluations. With fNCI, 57 brain areas consistently affected by concussion were identified as PCS neural markers, which were validated on large samples of concussion patients and healthy controls. These neuromarkers provide the basis for a computation of PCS severity which is referred to as the Severity Index Score (SIS). The SIS has proven valuable in making pre-treatment decisions, monitoring treatment efficiency, and assessing long-term stability of outcomes. Methods and Materials: After being scanned while performing various cognitive tasks, 476 concussed patients received an SIS score based on the neural dysregulation of the 57 previously identified brain regions. These scans provide an objective measurement of attentional, subcortical, visual processing, language processing, and executive functioning abilities, which were used as biomarkers for post-concussive neural dysregulation. Initial SIS scores were used to develop individualized therapy incorporating cognitive, occupational, and neuromuscular modalities. These scores were also used to establish pre-treatment benchmarks and measure post-treatment improvement. Results: Changes in SIS were calculated in percent change from pre- to post-treatment. Patients showed a mean improvement of 76.5 percent (σ= 23.3), and 75.7 percent of patients showed at least 60 percent improvement. Longitudinal reassessment of 24 of the patients, measured an average of 7.6 months post-treatment, shows that SIS improvement is maintained and improved, with an average of 90.6 percent improvement from their original scan. Conclusions: fNCI provides a reliable measurement of NVC allowing for identification of concussion pathology. Additionally, fNCI derived SIS scores direct tailored therapy to restore NVC, subsequently resolving chronic PCS resulting from mTBI.

Keywords: concussion, functional magnetic resonance imaging (fMRI), neurovascular coupling (NVC), post-concussion syndrome (PCS)

Procedia PDF Downloads 356
3650 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack

Authors: Varun Agarwal

Abstract:

Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.

Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images

Procedia PDF Downloads 130
3649 A Settlement Strategy for Health Facilities in Emerging Countries: A Case Study in Brazil

Authors: Domenico Chizzoniti, Monica Moscatelli, Letizia Cattani, Piero Favino, Luca Preis

Abstract:

A settlement strategy is to anticipate and respond the needs of existing and future communities through the provision of primary health care facilities in marginalized areas. Access to a health care network is important to improving healthcare coverage, often lacking, in developing countries. The study explores that a good sanitary system strategy of rural contexts brings advantages to an existing settlement: improving transport, communication, water and social facilities. The objective of this paper is to define a possible methodology to implement primary health care facilities in disadvantaged areas of emerging countries. In this research, we analyze the case study of Lauro de Freitas, a municipality in the Brazilian state of Bahia, part of the Metropolitan Region of Salvador, with an area of 57,662 km² and 194.641 inhabitants. The health localization system in Lauro de Freitas is an integrated process that involves not only geographical aspects, but also a set of factors: population density, epidemiological data, allocation of services, road networks, and more. Data were collected also using semi-structured interviews and questionnaires to the local population. Synthesized data suggest that moving away from the coast where there is the greatest concentration of population and services, a network of primary health care facilities is able to improve the living conditions of small-dispersed communities. Based on the health service needs of populations, we have developed a methodological approach that is particularly useful in rural and remote contexts in emerging countries.

Keywords: healthcare, settlement strategy, urban health, rural

Procedia PDF Downloads 368
3648 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane

Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo

Abstract:

Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.

Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining

Procedia PDF Downloads 86
3647 Using a Card Game as a Tool for Developing a Design

Authors: Matthias Haenisch, Katharina Hermann, Marc Godau, Verena Weidner

Abstract:

Over the past two decades, international music education has been characterized by a growing interest in informal learning for formal contexts and a "compositional turn" that has moved from closed to open forms of composing. This change occurs under social and technological conditions that permeate 21st-century musical practices. This forms the background of Musical Communities in the (Post)Digital Age (MusCoDA), a four-year joint research project of the University of Erfurt (UE) and the University of Education Karlsruhe (PHK), funded by the German Federal Ministry of Education and Research (BMBF). Both explore songwriting processes as an example of collective creativity in (post)digital communities, one in formal and the other in informal learning contexts. Collective songwriting will be studied from a network perspective, that will allow us to view boundaries between both online and offline as well as formal and informal or hybrid contexts as permeable and to reconstruct musical learning practices. By comparing these songwriting processes, possibilities for a pedagogical-didactic interweaving of different educational worlds are highlighted. Therefore, the subproject of the University of Erfurt investigates school music lessons with the help of interviews, videography, and network maps by analyzing new digital pedagogical and didactic possibilities. In the first step, the international literature on songwriting in the music classroom was examined for design development. The analysis focused on the question of which methods and practices are circulating in the current literature. Results from this stage of the project form the basis for the first instructional design that will help teachers in planning regular music classes and subsequently reconstruct musical learning practices under these conditions. In analyzing the literature, we noticed certain structural methods and concepts that recur, such as the Building Blocks method and the pre-structuring of the songwriting process. From these findings, we developed a deck of cards that both captures the current state of research and serves as a method for design development. With this deck of cards, both teachers and students themselves can plan their individual songwriting lessons by independently selecting and arranging topic, structure, and action cards. In terms of science communication, music educators' interactions with the card game provide us with essential insights for developing the first design. The overall goal of MusCoDA is to develop an empirical model of collective musical creativity and learning and an instructional design for teaching music in the postdigital age.

Keywords: card game, collective songwriting, community of practice, network, postdigital

Procedia PDF Downloads 64
3646 Factor Associated with Uncertainty Undergoing Hematopoietic Stem Cell Transplantation

Authors: Sandra Adarve, Jhon Osorio

Abstract:

Uncertainty has been studied in patients with different types of cancer, except in patients with hematologic cancer and undergoing transplantation. The purpose of this study was to identify factors associated with uncertainty in adults patients with malignant hemato-oncology diseases who are scheduled to undergo hematopoietic stem cell transplantation based on Merle Mishel´s Uncertainty theory. This was a cross-sectional study with an analytical purpose. The study sample included 50 patients with leukemia, myeloma, and lymphoma selected by non-probability sampling by convenience and intention. Sociodemographic and clinical variables were measured. Mishel´s Scale of Uncertainty in Illness was used for the measurement of uncertainty. A bivariate and multivariate analyses were performed to explore the relationships and associations between the different variables and uncertainty level. For this analysis, the distribution of the uncertainty scale values was evaluated through the Shapiro-Wilk normality test to identify statistical tests to be used. A multivariate analysis was conducted through a logistic regression using step-by-step technique. Patients were 18-74 years old, with a mean age of 44.8. Over time, the disease course had a median of 9.5 months, an opportunity was found in the performance of the transplantation of < 20 days for 50% of the patients. Regarding the uncertainty scale, a mean score of 95.46 was identified. When the dimensions of the scale were analyzed, the mean score of the framework of stimuli was 25.6, of cognitive ability was 47.4 and structure providers was 22.8. Age was identified to correlate with the total uncertainty score (p=0.012). Additionally, a statistically significant difference was evidenced between different religious creeds and uncertainty score (p=0.023), education level (p=0.012), family history of cancer (p=0.001), the presence of comorbidities (p=0.023) and previous radiotherapy treatment (p=0.022). After performing logistic regression, previous radiotherapy treatment (OR=0.04 IC95% (0.004-0.48)) and family history of cancer (OR=30.7 IC95% (2.7-349)) were found to be factors associated with the high level of uncertainty. Uncertainty is present in high levels in patients who are going to be subjected to bone marrow transplantation, and it is the responsibility of the nurse to assess the levels of uncertainty and the presence of factors that may contribute to their presence. Once it has been valued, the uncertainty must be intervened from the identified associated factors, especially all those that have to do with the cognitive capacity. This implies the implementation and design of intervention strategies to improve the knowledge related to the disease and the therapeutic procedures to which the patients will be subjected. All interventions should favor the adaptation of these patients to their current experience and contribute to seeing uncertainty as an opportunity for growth and transcendence.

Keywords: hematopoietic stem cell transplantation, hematologic diseases, nursing, uncertainty

Procedia PDF Downloads 166
3645 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: redox enzyme, nanomaterials, biosensors, electrical communication

Procedia PDF Downloads 454
3644 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: biosensor, nanomaterials, redox enzyme, thiol-modified Au surface

Procedia PDF Downloads 329
3643 Neural Network Approach For Clustering Host Community: Based on Perceptions Toward Tourism, Their Satisfaction Level and Demographic Attributes in Iran (Lahijan)

Authors: Nasibeh Mohammadpour, Ali Rajabzadeh, Adel Azar, Hamid Zargham Borujeni,

Abstract:

Generally, various industries development depends on their stakeholders and beneficiaries supports. One of the most important stakeholders in tourism industry ( which has become one of the most important lucrative and employment-generating activities at the international level these days) are host communities in tourist destination which are affected and effect on this industry development. Recognizing host community and its segmentations can be important to get their support for future decisions and policy making. In order to identify these segments, in this study, clustering of the residents has been done by using some tools that are designed to encounter human complexities and have ability to model and generalize complex systems without any needs for the initial clusters’ seeds like classic methods. Neural networks can help to meet these expectations. The research have been planned to design neural networks-based mathematical model for clustering the host community effectively according to multi criteria, and identifies differences among segments. In order to achieve this goal, the residents’ segmentation has been done by demographic characteristics, their attitude towards the tourism development, the level of satisfaction and the type of their support in this field. The applied method is self-organized neural networks and the results have compared with K-means. As the results show, the use of Self- Organized Map (SOM) method provides much better results by considering the Cophenetic correlation and between clusters variance coefficients. Based on these criteria, the host community is divided into five sections with unique and distinctive features, which are in the best condition (in comparison other modes) according to Cophenetic correlation coefficient of 0.8769 and between clusters variance of 0.1412.

Keywords: Artificial Nural Network, Clustering , Resident, SOM, Tourism

Procedia PDF Downloads 183
3642 Gender Differences in the Perception of Advertising in Postmodern Era

Authors: J. Zavodny Pospisil, L. S. Zavodna, K. Cerna

Abstract:

The goal of this paper is to identify the main differences in the way men and women perceive TV ads. This paper is based on a research project conducted partly as a review of relevant papers, which deals with gender influence on the cognitive process and postmodern perception of advertising. In addition to that, qualitative research was conducted by means of interviews and structured questionnaires. Furthermore, data acquired from the research were used to evaluate our objectives and hypotheses. The goal of this paper is to compare women's and men's perception of advertisement. Although women are able to perceive more details than men, men are more susceptible to sexual appeals in advertising. Significant differences were also found in the perception of sexual appeals in the context of gender.

Keywords: advertising, consumer, emotion, gender, psychology of advertising

Procedia PDF Downloads 437
3641 Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks

Authors: Afnan Al-Romi, Iman Al-Momani

Abstract:

The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.

Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN

Procedia PDF Downloads 322
3640 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter

Authors: Van-Thanh Ho, Jaiyoung Ryu

Abstract:

In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.

Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model

Procedia PDF Downloads 98
3639 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 75