Search results for: smelting techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6793

Search results for: smelting techniques

3613 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering

Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal

Abstract:

The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.

Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease

Procedia PDF Downloads 204
3612 Vibration-Based Data-Driven Model for Road Health Monitoring

Authors: Guru Prakash, Revanth Dugalam

Abstract:

A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.

Keywords: SVM, data-driven, road health monitoring, pot-hole

Procedia PDF Downloads 86
3611 Optimization in Friction Stir Processing Method with Emphasis on Optimized Process Parameters Laboratory Research

Authors: Atabak Rahimzadeh Ilkhch

Abstract:

Friction stir processing (FSP) has promised for application of thermo-mechanical processing techniques where aims to change the micro structural and mechanical properties of materials in order to obtain high performance and reducing the production time and cost. There are lots of studies focused on the microstructure of friction stir welded aluminum alloys. The main focus of this research is on the grain size obtained in the weld zone. Moreover in second part focused on temperature distribution effect over the entire weld zone and its effects on the microstructure. Also, there is a need to have more efforts on investigating to obtain the optimal value of effective parameters such as rotational speed on microstructure and to use the optimum tool designing method. the final results of this study will be present the variation of structural and mechanical properties of materials in the base of applying Friction stir processing and effect of (FSP) processing and tensile testing on surface quality. in the hand, this research addresses the FSP f AA-7020 aluminum and variation f ration of rotation and translational speeds.

Keywords: friction stir processing, AA-7020, thermo-mechanical, microstructure, temperature

Procedia PDF Downloads 280
3610 New Insights Into Fog Role In Atmospheric Deposition Using Satellite Images

Authors: Suruchi

Abstract:

This study aims to examine the spatial and temporal patterns of fog occurrences across Czech Republic. It utilizes satellite imagery and other data sources to achieve this goal. The main objective is to understand the role of fog in atmospheric deposition processes and its potential impact on the environment and ecosystems. Through satellite image analysis, the study will identify and categorize different types of fog, including radiation fog, orographic fog, and mountain fog. Fog detection algorithms and cloud type products will be evaluated to assess the frequency and distribution of fog events throughout the Czech Republic. Furthermore, the regions covered by fog will be classified based on their fog type and associated pollution levels. This will provide insights into the variability in fog characteristics and its implications for atmospheric deposition. Spatial analysis techniques will be used to pinpoint areas prone to frequent fog events and evaluate their pollution levels. Statistical methods will be employed to analyze patterns in fog occurrence over time and its connection with environmental factors. The ultimate goal of this research is to offer fresh perspectives on fog's role in atmospheric deposition processes, enhancing our understanding of its environmental significance and informing future research and environmental management initiatives.

Keywords: pollution, GIS, FOG, satellie, atmospheric deposition

Procedia PDF Downloads 23
3609 Carbon Accounting for Sustainable Design and Manufacturing in the Signage Industry

Authors: Prudvi Paresi, Fatemeh Javidan

Abstract:

In recent years, greenhouse gas, or in particular, carbon emissions, have received special attention from environmentalists and designers due to the fact that they significantly contribute to the temperature rise. The building industry is one of the top seven major industries contributing to embodied carbon emission. Signage systems are an integral part of the building industry and bring completeness to the space-building by providing the required information and guidance. A significant amount of building materials, such as steel, aluminium, acrylic, LED, etc., are utilized in these systems, but very limited information is available on their sustainability and carbon footprint. Therefore, there is an urgent need to assess the emissions associated with the signage industry and for controlling these by adopting different mitigation techniques without sacrificing the efficiency of the project. The present paper investigates the embodied carbon of two case studies in the Australian signage industry within the cradle – gate (A1-A3) and gate–site (A4-A5) stages. A material source-based database is considered to achieve more accuracy. The study identified that aluminium is the major contributor to embodied carbon in the signage industry compared to other constituents. Finally, an attempt is made to suggest strategies for mitigating embodied carbon in this industry.

Keywords: carbon accounting, small-scale construction, signage industry, construction materials

Procedia PDF Downloads 117
3608 A Literature Review on Development of a Forecast Supported Approach for the Continuous Pre-Planning of Required Transport Capacity for the Design of Sustainable Transport Chains

Authors: Georg Brunnthaller, Sandra Stein, Wilfried Sihn

Abstract:

Logistics service providers are facing increasing volatility concerning future transport demand. Short-term planning horizons and planning uncertainties lead to reduced capacity utilisation and increasing empty mileage. To overcome these challenges, a model is proposed to continuously pre-plan future transport capacity in order to redesign and adjust the intermodal fleet accordingly. It is expected that the model will enable logistics service providers to organise more economically and ecologically sustainable transport chains in a more flexible way. To further describe such planning aspects, this paper gives a structured literature review on transport planning problems. The focus is on strategic and tactical planning levels, comprising relevant fleet-sizing-, network-design- and choice-of-carriers-problems. Models and their developed solution techniques are presented and the literature review is concluded with an outlook to our future research objectives

Keywords: choice of transport mode, fleet-sizing, freight transport planning, multimodal, review, service network design

Procedia PDF Downloads 364
3607 Childhood Trauma and Identity in Adulthood

Authors: Aakriti Lohiya

Abstract:

This study examines the commonly recognised childhood trauma that can have a significant and enduring effect on a person's cognitive and psychological health. The purpose of this study was to look at the intricate interactions that exist between negative self-identity, cognitive distortions, and early trauma. For the study, a sample of (200 women were taken, who were socially active) was gathered. Standardised measures were utilised to evaluate the participants' experiences of childhood trauma, and validated psychological tools were employed to assess negative self-identity and cognitive distortions. The links and predicting correlations between childhood trauma, negative self-identity, and cognitive distortions were investigated using statistical techniques, such as correlation analysis and multiple regression modelling. The results demonstrated that there is no correlation between the degree of early trauma and the emergence of a negative self-identity and cognitive distortions. It examines whether cognitive distortion and events in childhood have any relationship with negative self-identity using various scales. Participants completed the Childhood Trauma Questionnaire, which assessed retrospective accounts of childhood trauma; the Cognitive Distortions Scale, which measured internal attributions and perceptions of controllability; and the attachment style questionnaire, which assessed the attachment attribute of their daily life, which will lead negative. The implications for therapy were also considered.

Keywords: cognitive distortion, therapy, childhood trauma, attachment

Procedia PDF Downloads 82
3606 Comparison of the Boundary Element Method and the Method of Fundamental Solutions for Analysis of Potential and Elasticity

Authors: S. Zenhari, M. R. Hematiyan, A. Khosravifard, M. R. Feizi

Abstract:

The boundary element method (BEM) and the method of fundamental solutions (MFS) are well-known fundamental solution-based methods for solving a variety of problems. Both methods are boundary-type techniques and can provide accurate results. In comparison to the finite element method (FEM), which is a domain-type method, the BEM and the MFS need less manual effort to solve a problem. The aim of this study is to compare the accuracy and reliability of the BEM and the MFS. This comparison is made for 2D potential and elasticity problems with different boundary and loading conditions. In the comparisons, both convex and concave domains are considered. Both linear and quadratic elements are employed for boundary element analysis of the examples. The discretization of the problem domain in the BEM, i.e., converting the boundary of the problem into boundary elements, is relatively simple; however, in the MFS, obtaining appropriate locations of collocation and source points needs more attention to obtain reliable solutions. The results obtained from the presented examples show that both methods lead to accurate solutions for convex domains, whereas the BEM is more suitable than the MFS for concave domains.

Keywords: boundary element method, method of fundamental solutions, elasticity, potential problem, convex domain, concave domain

Procedia PDF Downloads 91
3605 Study of Bolt Inclination in a Composite Single Bolted Joint

Authors: Faci Youcef, Ahmed Mebtouche, Djillali Allou, Maalem Badredine

Abstract:

The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during the load. Digital image correlation techniques permit the obtaining of the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure.

Keywords: damage, inclination, analyzed, carbon

Procedia PDF Downloads 58
3604 Numerical Modeling of Wave Run-Up in Shallow Water Flows Using Moving Wet/Dry Interfaces

Authors: Alia Alghosoun, Michael Herty, Mohammed Seaid

Abstract:

We present a new class of numerical techniques to solve shallow water flows over dry areas including run-up. Many recent investigations on wave run-up in coastal areas are based on the well-known shallow water equations. Numerical simulations have also performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of coastal areas. In all these simulations the shallow water equations are solved in entire domain including dry areas and special treatments are used for numerical solution of singularities at these dry regions. In the present study we propose a new method to deal with these difficulties by reformulating the shallow water equations into a new system to be solved only in the wetted domain. The system is obtained by a change in the coordinates leading to a set of equations in a moving domain for which the wet/dry interface is the reconstructed using the wave speed. To solve the new system we present a finite volume method of Lax-Friedrich type along with a modified method of characteristics. The method is well-balanced and accurately resolves dam-break problems over dry areas.

Keywords: dam-break problems, finite volume method, run-up waves, shallow water flows, wet/dry interfaces

Procedia PDF Downloads 145
3603 Improving Machine Learning Translation of Hausa Using Named Entity Recognition

Authors: Aishatu Ibrahim Birma, Aminu Tukur, Abdulkarim Abbass Gora

Abstract:

Machine translation plays a vital role in the Field of Natural Language Processing (NLP), breaking down language barriers and enabling communication across diverse communities. In the context of Hausa, a widely spoken language in West Africa, mainly in Nigeria, effective translation systems are essential for enabling seamless communication and promoting cultural exchange. However, due to the unique linguistic characteristics of Hausa, accurate translation remains a challenging task. The research proposes an approach to improving the machine learning translation of Hausa by integrating Named Entity Recognition (NER) techniques. Named entities, such as person names, locations, organizations, and dates, are critical components of a language's structure and meaning. Incorporating NER into the translation process can enhance the quality and accuracy of translations by preserving the integrity of named entities and also maintaining consistency in translating entities (e.g., proper names), and addressing the cultural references specific to Hausa. The NER will be incorporated into Neural Machine Translation (NMT) for the Hausa to English Translation.

Keywords: machine translation, natural language processing (NLP), named entity recognition (NER), neural machine translation (NMT)

Procedia PDF Downloads 45
3602 Performance Analysis of Permanent Magnet Synchronous Motor Using Direct Torque Control Based ANFIS Controller for Electric Vehicle

Authors: Marulasiddappa H. B., Pushparajesh Viswanathan

Abstract:

Day by day, the uses of internal combustion engines (ICE) are deteriorating because of pollution and less fuel availability. In the present scenario, the electric vehicle (EV) plays a major role in the place of an ICE vehicle. The performance of EVs can be improved by the proper selection of electric motors. Initially, EV preferred induction motors for traction purposes, but due to complexity in controlling induction motor, permanent magnet synchronous motor (PMSM) is replacing induction motor in EV due to its advantages. Direct torque control (DTC) is one of the known techniques for PMSM drive in EV to control the torque and speed. However, the presence of torque ripple is the main drawback of this technique. Many control strategies are followed to reduce the torque ripples in PMSM. In this paper, the adaptive neuro-fuzzy inference system (ANFIS) controller technique is proposed to reduce torque ripples and settling time. Here the performance parameters like torque, speed and settling time are compared between conventional proportional-integral (PI) controller with ANFIS controller.

Keywords: direct torque control, electric vehicle, torque ripple, PMSM

Procedia PDF Downloads 164
3601 Shuffled Structure for 4.225 GHz Antireflective Plates: A Proposal Proven by Numerical Simulation

Authors: Shin-Ku Lee, Ming-Tsu Ho

Abstract:

A newly proposed antireflective selector with shuffled structure is reported in this paper. The proposed idea is made of two different quarter wavelength (QW) slabs and numerically supported by the one-dimensional simulation results provided by the method of characteristics (MOC) to function as an antireflective selector. These two QW slabs are characterized by dielectric constants εᵣA and εᵣB, uniformly divided into N and N+1 pieces respectively which are then shuffled to form an antireflective plate with B(AB)N structure such that there is always one εᵣA piece between two εᵣB pieces. Another is A(BA)N structure where every εᵣB piece is sandwiched by two εᵣA pieces. Both proposed structures are numerically proved to function as QW plates. In order to allow maximum transmission through the proposed structures, the two dielectric constants are chosen to have the relation of (εᵣA)² = εᵣB > 1. The advantages of the proposed structures over the traditional anti-reflection coating techniques are two components with two thicknesses and to shuffle to form new QW structures. The design wavelength used to validate the proposed idea is 71 mm corresponding to a frequency about 4.225 GHz. The computational results are shown in both time and frequency domains revealing that the proposed structures produce minimum reflections around the frequency of interest.

Keywords: method of characteristics, quarter wavelength, anti-reflective plate, propagation of electromagnetic fields

Procedia PDF Downloads 146
3600 Quantitative Analysis of Presence, Consciousness, Subconsciousness, and Unconsciousness

Authors: Hooshmand Kalayeh

Abstract:

The human brain consists of reptilian, mammalian, and thinking brain. And mind consists of conscious, subconscious, and unconscious parallel neural-net programs. The primary objective of this paper is to propose a methodology for quantitative analysis of neural-nets associated with these mental activities in the neocortex. The secondary objective of this paper is to suggest a methodology for quantitative analysis of presence; the proposed methodologies can be used as a first-step to measure, monitor, and understand consciousness and presence. This methodology is based on Neural-Networks (NN), number of neuron in each NN associated with consciousness, subconsciouness, and unconsciousness, and number of neurons in neocortex. It is assumed that the number of neurons in each NN is correlated with the associated area and volume. Therefore, online and offline visualization techniques can be used to identify these neural-networks, and online and offline measurement methods can be used to measure areas and volumes associated with these NNs. So, instead of the number of neurons in each NN, the associated area or volume also can be used in the proposed methodology. This quantitative analysis and associated online and offline measurements and visualizations of different Neural-Networks enable us to rewire the connections in our brain for a more balanced living.

Keywords: brain, mind, consciousness, presence, sub-consciousness, unconsciousness, skills, concentrations, attention

Procedia PDF Downloads 314
3599 Iron Oxide Nanoparticles: Synthesis, Properties, and Environmental Application

Authors: Shalini Rajput, Dinesh Mohan

Abstract:

Water is the most important and essential resources for existing of life on the earth. Water quality is gradually decreasing due to increasing urbanization and industrialization and various other developmental activities. It can pose a threat to the environment and public health therefore it is necessary to remove hazardous contaminants from wastewater prior to its discharge to the environment. Recently, magnetic iron oxide nanoparticles have been arise as significant materials due to its distinct properties. This article focuses on the synthesis method with a possible mechanism, structure and application of magnetic iron oxide nanoparticles. The various characterization techniques including X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray, Fourier transform infrared spectroscopy and vibrating sample magnetometer are useful to describe the physico-chemical properties of nanoparticles. Nanosized iron oxide particles utilized for remediation of contaminants from aqueous medium through adsorption process. Due to magnetic properties, nanoparticles can be easily separate from aqueous media. Considering the importance and emerging trend of nanotechnology, iron oxide nanoparticles as nano-adsorbent can be of great importance in the field of wastewater treatment.

Keywords: nanoparticles, adsorption, iron oxide, nanotechnology

Procedia PDF Downloads 559
3598 Facilitating Primary Care Practitioners to Improve Outcomes for People With Oropharyngeal Dysphagia Living in the Community: An Ongoing Realist Review

Authors: Caroline Smith, Professor Debi Bhattacharya, Sion Scott

Abstract:

Introduction: Oropharyngeal Dysphagia (OD) effects around 15% of older people, however it is often unrecognised and under diagnosed until they are hospitalised. There is a need for primary care healthcare practitioners (HCPs) to assume a proactive role in identifying and managing OD to prevent adverse outcomes such as aspiration pneumonia. Understanding the determinants of primary care HCPs undertaking this new behaviour provides the intervention targets for addressing. This realist review, underpinned by the Theoretical Domains Framework (TDF), aims to synthesise relevant literature and develop programme theories to understand what interventions work, how they work and under what circumstances to facilitate HCPs to prevent harm from OD. Combining realist methodology with behavioural science will permit conceptualisation of intervention components as theoretical behavioural constructs, thus informing the design of a future behaviour change intervention. Furthermore, through the TDF’s linkage to a taxonomy of behaviour change techniques, we will identify corresponding behaviour change techniques to include in this intervention. Methods & analysis: We are following the five steps for undertaking a realist review: 1) clarify the scope 2) Literature search 3) appraise and extract data 4) evidence synthesis 5) evaluation. We have searched Medline, Google scholar, PubMed, EMBASE, CINAHL, AMED, Scopus and PsycINFO databases. We are obtaining additional evidence through grey literature, snowball sampling, lateral searching and consulting the stakeholder group. Literature is being screened, evaluated and synthesised in Excel and Nvivo. We will appraise evidence in relation to its relevance and rigour. Data will be extracted and synthesised according to its relation to Initial programme theories (IPTs). IPTs were constructed after the preliminary literature search, informed by the TDF and with input from a stakeholder group of patient and public involvement advisors, general practitioners, speech and language therapists, geriatricians and pharmacists. We will follow the Realist and Meta-narrative Evidence Syntheses: Evolving Standards (RAMESES) quality and publication standards to report study results. Results: In this ongoing review our search has identified 1417 manuscripts with approximately 20% progressing to full text screening. We inductively generated 10 IPTs that hypothesise practitioners require: the knowledge to spot the signs and symptoms of OD; the skills to provide initial advice and support; and access to resources in their working environment to support them conducting these new behaviours. We mapped the 10 IPTs to 8 TDF domains and then generated a further 12 IPTs deductively using domain definitions to fulfil the remaining 6 TDF domains. Deductively generated IPTs broadened our thinking to consider domains such as ‘Emotion,’ ‘Optimism’ and ‘Social Influence’, e.g. If practitioners perceive that patients, carers and relatives expect initial advice and support, then they will be more likely to provide this, because they will feel obligated to do so. After prioritisation with stakeholders using a modified nominal group technique approach, a maximum of 10 IPTs will progress to test against the literature.

Keywords: behaviour change, deglutition disorders, primary healthcare, realist review

Procedia PDF Downloads 85
3597 Evaluating Factors Influencing Information Quality in Large Firms

Authors: B. E. Narkhede, S. K. Mahajan, B. T. Patil, R. D. Raut

Abstract:

Information quality is a major performance measure for an Enterprise Resource Planning (ERP) system of any firm. This study identifies various critical success factors of information quality. The effect of various critical success factors like project management, reengineering efforts and interdepartmental communications on information quality is analyzed using a multiple regression model. Here quantitative data are collected from respondents from various firms through structured questionnaire for assessment of the information quality, project management, reengineering efforts and interdepartmental communications. The validity and reliability of the data are ensured using techniques like factor analysis, computing of Cronbach’s alpha. This study gives relative importance of each of the critical success factors. The findings suggest that among the various factors influencing information quality careful reengineering efforts are the most influencing factor. This paper gives clear insight to managers and practitioners regarding the relative importance of critical success factors influencing information quality so that they can formulate a strategy at the beginning of ERP system implementation.

Keywords: Enterprise Resource Planning (ERP), information systems (IS), multiple regression, information quality

Procedia PDF Downloads 333
3596 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models

Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand

Abstract:

Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.

Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias

Procedia PDF Downloads 85
3595 Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network

Authors: Asmau Mukhtar Ahmed, Olga Duran

Abstract:

Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy.

Keywords: hydrocarbon, Deep Neural Network, short wave infrared region, near-infrared region, hyperspectral image

Procedia PDF Downloads 114
3594 Cyber Bullying Victimization of Elementary School Students and Their Reflections on the Victimization

Authors: Merve Sadetas Sezer, Ismail Sahin, Ahmet Oguz Akturk

Abstract:

With the use of developing technology, mostly in communication and entertainment, students spend considerable time on the internet. In addition to the advantages provided by the internet, social isolation brings problems such as addiction. This is one of the problems of the virtual violence. Cyber-bullying is the common name of the intensities which students are exposed on the internet. The purpose of this study designed as a qualitative research is to find out the cyber bullying varieties and its effects on elementary school students. The participants of this research are 6th, 7th and 8th grade students of a primary school and 24 students agreed to participate in the study. The students were asked to fill an interview with semi-structured open-ended questions. According to the results obtained in the research, the most important statements determined by the participants are breaking passwords on social networking sites, slang insult to blasphemy and taking friendship offers from unfamiliar people. According to participants from the research, the most used techniques to prevent themselves from cyber bullying are to complain to the site administrator, closing accounts on social networking sites and countercharging. Also, suggestions were presented according to the findings.

Keywords: bullying, cyber-bullying, elementary, peer-relationship, virtual victimization

Procedia PDF Downloads 349
3593 The Role of Named Entity Recognition for Information Extraction

Authors: Girma Yohannis Bade, Olga Kolesnikova, Grigori Sidorov

Abstract:

Named entity recognition (NER) is a building block for information extraction. Though the information extraction process has been automated using a variety of techniques to find and extract a piece of relevant information from unstructured documents, the discovery of targeted knowledge still poses a number of research difficulties because of the variability and lack of structure in Web data. NER, a subtask of information extraction (IE), came to exist to smooth such difficulty. It deals with finding the proper names (named entities), such as the name of the person, country, location, organization, dates, and event in a document, and categorizing them as predetermined labels, which is an initial step in IE tasks. This survey paper presents the roles and importance of NER to IE from the perspective of different algorithms and application area domains. Thus, this paper well summarizes how researchers implemented NER in particular application areas like finance, medicine, defense, business, food science, archeology, and so on. It also outlines the three types of sequence labeling algorithms for NER such as feature-based, neural network-based, and rule-based. Finally, the state-of-the-art and evaluation metrics of NER were presented.

Keywords: the role of NER, named entity recognition, information extraction, sequence labeling algorithms, named entity application area

Procedia PDF Downloads 81
3592 A Multi-Objective Methodology for Selecting Lean Initiatives in Modular Construction Companies

Authors: Saba Shams Bidhendi, Steven Goh, Andrew Wandel

Abstract:

The implementation of lean manufacturing initiatives has produced significant impacts in improving operational performance and reducing manufacturing wastes in the production process. However, selecting an appropriate set of lean strategies is critical to avoid misapplication of the lean manufacturing techniques and consequential increase in non-value-adding activities. To the author’s best knowledge, there is currently no methodology to select lean strategies that considers their impacts on manufacturing wastes and performance metrics simultaneously. In this research, a multi-objective methodology is proposed that suggests an appropriate set of lean initiatives based on their impacts on performance metrics and manufacturing wastes and within manufacturers’ resource limitation. The proposed methodology in this research suggests the best set of lean initiatives for implementation that have highest impacts on identified critical performance metrics and manufacturing wastes. Therefore, manufacturers can assure that implementing suggested lean tools improves their production performance and reduces manufacturing wastes at the same time. A case study was conducted to show the effectiveness and validate the proposed model and methodologies.

Keywords: lean manufacturing, lean strategies, manufacturing wastes, manufacturing performance, optimisation, decision making

Procedia PDF Downloads 194
3591 Uncertainty Reduction and Dyadic Interaction through Social Media

Authors: Masrur Alam Khan

Abstract:

The purpose of this study was to examine the dyadic interaction techniques that social media users utilize to reduce uncertainty in their day to day business engagements in the absence of their physical interaction. The study empirically tested assumptions of uncertainty reduction theory while addressing self-disclosure, seeking questions to develop consensus, and subsequently to achieve intimacy in very conducive environment. Moreover, this study examined the effect of dyadic interaction through social media among business community while identifying the strength of their reciprocity in relationships and compares it with those having no dyadic relations due to absence of social media. Using socio-metric survey, the study revealed a better understanding of their partners for upholding their professional relations more credible. A sample of unacquainted, both male and female, was randomly asked questions regarding their nature of dyadic interaction within their office while using social media (face-to-face, visual CMC (webcam) or text-only). Primary results explored that the social media users develop their better know-how about their professional obligations to reduce ambiguity and align with one to one interact.

Keywords: dyadic-interaction, social media, uncertainty reduction, socio-metric survey, self-disclosure, intimacy, reciprocity in relationship

Procedia PDF Downloads 137
3590 Corrosion Inhibition of AA2024 Alloy with Graphene Oxide Derivative: Electrochemical and Surface Analysis

Authors: Nisrine Benzbiria, Abderrahmane Thoume, Mustapha Zertoubi

Abstract:

The goal of this research is to investigate the corrosion inhibition potential of functionalized graphene oxide (GO) with oxime derivative on AA2024-T3 surface in synthetic seawater. The utilization of functionalized graphene oxide is creating a category of corrosion inhibitors known as organically modified nanomaterials. In our work, the functionalization of GO by chalcone oxime enables graphene oxide to have enhanced water solubility and a good corrosion mitigation capacity. Fourier-transform infrared (FT-IR) spectroscopy was utilized to evaluate the main functional groups of the inhibitor. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves (PDP) showed that the inhibitor acts as a mixed-type inhibitor. The inhibitory efficiency (IE) improved as the concentration increased to a value of 96% after one hour of exposure to a medium containing 60 mg/L ppm of the inhibitor. According to thermodynamic calculations, the adsorption of the inhibitor on the AA2024-T3 surface in 3% NaCl followed the Langmuir isotherm. The formation of a barrier layer was further confirmed by surface analysis. The protective film prevented the alloy dissolution and limited the accessibility of attacking ions, as evinced by solution analysis techniques.

Keywords: AA2024-T3, NaCl, electrochemical methods, FT-IR, SEM/AFM, DFT, MC simulation

Procedia PDF Downloads 60
3589 Solid-State Luminescence of Fluorenone Grafted onto Cellulose Aldehyde Backbone Using Different Organic Amine Spacers

Authors: Isam M. Arafa, Mazin Y. Shatnawi, Yaser A. Yousef, Batool Zaid Al-Momani

Abstract:

The present work describes the preparation, characterization, and luminescence of a series of fluorenone (FL) based luminophores grafted onto modified cellulose microfibers. The FL is condensed onto cellulose aldehyde using three diamine spacers (H₂N-NH₂, H₂N(CH₂)₂NH₂ and H₂N(CH₂)₃NH₂) to afford Cell=Spacer=FL. The obtained products were characterized by spectroscopic (FT-IR, UV–Vis), thermal gravimetric analysis (TGA), and microscopic (Optical, SEM) techniques. The UV-Vis spectra of the FL=N(CH₂)ₓNH₂ (x = 0, 2, 3) moieties show that they are transparent in the 375- 800 nm region while they exhibit intense absorption band below 350 nm attributed to n-π* and π-π* transitions. The solid-state photoluminescence (PLs-s) of the cold-pressed pellets of the FL=N(CH₂)ₓNH₂ and Cell=Spacer=FL placed in a quartz cuvette show strong emission in the 500-550 nm region upon irradiation with Xe lamp light (λex = 320 nm). The PLs-s green emission of the grafted Cell=Spacer=FL was evaluated relative to that of the FL-based precursor. These grafted conjugated products have the potential to be used as analyte sensors for typical nitroaromatics/aromatic amines and be further extended to immunoassay studies for aromatic amino acids such as phenylalanine and histidine.

Keywords: luminescence, cellulose, fluorenone, grafting, solid state

Procedia PDF Downloads 73
3588 Emotion Recognition Using Artificial Intelligence

Authors: Rahul Mohite, Lahcen Ouarbya

Abstract:

This paper focuses on the interplay between humans and computer systems and the ability of these systems to understand and respond to human emotions, including non-verbal communication. Current emotion recognition systems are based solely on either facial or verbal expressions. The limitation of these systems is that it requires large training data sets. The paper proposes a system for recognizing human emotions that combines both speech and emotion recognition. The system utilizes advanced techniques such as deep learning and image recognition to identify facial expressions and comprehend emotions. The results show that the proposed system, based on the combination of facial expression and speech, outperforms existing ones, which are based solely either on facial or verbal expressions. The proposed system detects human emotion with an accuracy of 86%, whereas the existing systems have an accuracy of 70% using verbal expression only and 76% using facial expression only. In this paper, the increasing significance and demand for facial recognition technology in emotion recognition are also discussed.

Keywords: facial reputation, expression reputation, deep gaining knowledge of, photo reputation, facial technology, sign processing, photo type

Procedia PDF Downloads 122
3587 Analysis of the Accuracy of Earth Movement with Drone Surveys

Authors: Raúl Pereda García, Julio Manuel de Luis Ruiz, Elena Castillo López, Rubén Pérez Álvarez, Felipe Piña García

Abstract:

New technologies for the capture of point clouds have experienced a great advance in recent years. In this way, its use has been extended in geomatics, providing measurement solutions that have been popularized without there being, many times, a detailed study of its accuracy. This research focuses on the study of the viability of topographic works with drones incorporating different sensors sensitive to the visible spectrum. The fundamentals have been applied to a road, located in Cantabria (Spain), where a platform extension and the reform of a riprap were being constructed. A total of six flights were made during two months, all of them with GPS as part of the photogrammetric process, and the results were contrasted with those measured with total station. The obtained results show that the choice of the camera and the planning of the flight have an important impact on the accuracy. In fact, the representations with a level of detail corresponding to 1/1000 scale are admissible, depending on the existing vegetation, and obtaining better results in the area of the riprap. This set of techniques is, therefore, suitable for the control of earthworks in road works but with certain limitations which are exposed in this paper.

Keywords: drone, earth movement control, global position system, surveying technology.

Procedia PDF Downloads 184
3586 The Effect of Acute Creatine Supplementation on Physiological Variables of Continuous and Intermittent Soccer Activities of Men Soccer Players

Authors: Abdolrasoul Daneshjoo

Abstract:

The aim of this study was studying the effect of acute creatine supplementation on physiological variables of continuous and intermittent soccer activities of men soccer players. 32 soccer players from Tarbiat Moalem University aged (22/3+-1/6) volunteered for this research and were divided into two groups randomly. Both experimental and control groups after 6 days taking supplementation were tested. For measuring height and weight meter and balance were used. Questionnaire for health background, lactate electro, heart beat measuring polar electro, continuous and intermittent training program and time recorder were used for data collection. For data analysis descriptive statistical techniques, two-way ANOVA and F test were used. The result of this study showed increased significantly in heart rate in control group. For control group heart beat was (71/6 +- 3/5) and for experimental group it was (75/3 +- 4/9). No significant differences were observed in players weight after taking creatine.

Keywords: heartbeat, lactate Blood, creatine, soccer players of Tarbiat Moalem University

Procedia PDF Downloads 382
3585 Management Competency in Logistical Function: The Skills That Will Master a Logistical Manager

Authors: Fatima Ibnchahid

Abstract:

Competence approach is considered, since the early 80's as one of the major development of HR policies. Many approaches to manage the professional skills were declined. Some processes are mature whereas the others have been abandoned. Competence can be defined as the set of knowledge (theoretical and practical), know-how (experience) and life skills (personality traits) mobilized by a person in the company. The skills must master a logistics manager are divided into two main categories: depending on whether technical skills, or managerial skills and human. The firsts are broken down into skills on logistical techniques and on general skills in business, seconds in social skills (self with others) and personal (with oneself). Logisticians are faced with new challenges and new constraints that are revolutionizing the way to treat the physical movement of goods and operations related to information flows that trigger, they control and guide the physical movements of these major changes, we can mention the development of information technology and communication, the emergence of strong environmental and security constraints. These changes have important effects on the skills needs of the members of the logistical function and sensitive development for training requested by logistical managers to perform better in their job changes. In this article, we will address two main points, first, a brief overview of the management skills and secondly answer the question asked in the title of the article to know what are the skills that will master a logistical manager.

Keywords: skills, competence, management, logistical function

Procedia PDF Downloads 283
3584 Utilization of a Composite of Oil Ash, Scoria, and Expanded Perlite with Polyethylene Glycol for Energy Storage Systems

Authors: Khaled Own Mohaisen, Md. Hasan Zahir, Salah U. Al-Dulaijan, Shamsad Ahmad, Mohammed Maslehuddin

Abstract:

Shape-stabilized phase change materials (ss-PCMs) for energy storage systems were developed using perlite, scoria, and oil ash as a carrier, with polyethylene glycol (PEG) with a molecular weight of 6000 as phase change material (PCM). Physical mixing using simple impregnation of ethanol evaporation technique method was carried out to fabricate the form stabilized PCM. The fabricated PCMs prevent leakage, reduce the supercooling effect and minimize recalescence problems of the PCM. The differential scanning calorimetry (DSC) results show that perlite composite (ExPP) has the highest latent heat of melting and freezing values of (141.6 J/g and 143.7 J/g) respectively, compared with oil ash (OAP) and scoria (SCP) composites. Moreover, ExPP has the highest impregnation ratio, energy storage efficiency, and energy storage capacity compared with OAP and SCP. However, OAP and SCP have higher thermal conductivity values compared to ExPP composites which accelerate the thermal storage response in the composite. These results were confirmed with DSC, and the characteristic of the PCMs was investigated by using XRD and FE-SEM techniques.

Keywords: expanded perlite, oil ash, scoria, energy storage material

Procedia PDF Downloads 91