Search results for: adaptive and non-adaptive spectral estimation
385 Prediction of Formation Pressure Using Artificial Intelligence Techniques
Authors: Abdulmalek Ahmed
Abstract:
Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)
Procedia PDF Downloads 149384 International Entrepreneurial Orientation and Institutionalism: The Effect on International Performance for Latin American SMEs
Authors: William Castillo, Hugo Viza, Arturo Vargas
Abstract:
The Pacific Alliance is a trade bloc that is composed of four emerging economies: Chile, Colombia, Peru, and Mexico. These economies have gained macroeconomic stability in the past decade and as a consequence present future economic progress. Under this positive scenario, international business firms have flourished. However, the literature in this region has been widely unexamined. Therefore, it is critical to fill this theoretical gap, especially considering that Latin America is starting to become a global player and it possesses a different institutional context than developed markets. This paper analyzes the effect of international entrepreneurial orientation and institutionalism on international performance, for the Pacific Alliance small-to-medium enterprises (SMEs). The literature considers international entrepreneurial orientation to be a powerful managerial capability – along the resource based view- that firms can leverage to obtain a satisfactory international performance. Thereby, obtaining a competitive advantage through the correct allocation of key resources to exploit the capabilities here involved. Entrepreneurial Orientation is defined around five factors: innovation, proactiveness, risk-taking, competitive aggressiveness, and autonomy. Nevertheless, the institutional environment – both local and foreign, adversely affects International Performance; this is especially the case for emerging markets with uncertain scenarios. In this way, the study analyzes an Entrepreneurial Orientation, key endogenous variable of international performance, and Institutionalism, an exogenous variable. The survey data consists of Pacific Alliance SMEs that have foreign operations in at least another country in the trade bloc. Findings are still in an ongoing research process. Later, the study will undertake a structural equation modeling (SEM) using the variance-based partial least square estimation procedure. The software that is going to be used is the SmartPLS. This research contributes to the theoretical discussion of a largely postponed topic: SMEs in Latin America, that has had limited academic research. Also, it has practical implication for decision-makers and policy-makers, providing insights into what is behind international performance.Keywords: institutional theory, international entrepreneurial orientation, international performance, SMEs, Pacific Alliance
Procedia PDF Downloads 248383 Carrying Capacity Estimation for Small Hydro Plant Located in Torrential Rivers
Authors: Elena Carcano, James Ball, Betty Tiko
Abstract:
Carrying capacity refers to the maximum population that a given level of resources can sustain over a specific period. In undisturbed environments, the maximum population is determined by the availability and distribution of resources, as well as the competition for their utilization. This information is typically obtained through long-term data collection. In regulated environments, where resources are artificially modified, populations must adapt to changing conditions, which can lead to additional challenges due to fluctuations in resource availability over time and throughout development. An example of this is observed in hydropower plants, which alter water flow and impact fish migration patterns and behaviors. To assess how fish species can adapt to these changes, specialized surveys are conducted, which provide valuable information on fish populations, sample sizes, and density before and after flow modifications. In such situations, it is highly recommended to conduct hydrological and biological monitoring to gain insight into how flow reductions affect species adaptability and to prevent unfavorable exploitation conditions. This analysis involves several planned steps that help design appropriate hydropower production while simultaneously addressing environmental needs. Consequently, the study aims to strike a balance between technical assessment, biological requirements, and societal expectations. Beginning with a small hydro project that requires restoration, this analysis focuses on the lower tail of the Flow Duration Curve (FDC), where both hydrological and environmental goals can be met. The proposed approach involves determining the threshold condition that is tolerable for the most vulnerable species sampled (Telestes Muticellus) by identifying a low flow value from the long-term FDC. The results establish a practical connection between hydrological and environmental information and simplify the process by establishing a single reference flow value that represents the minimum environmental flow that should be maintained.Keywords: carrying capacity, fish bypass ladder, long-term streamflow duration curve, eta-beta method, environmental flow
Procedia PDF Downloads 40382 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models
Authors: V. Mantey, N. Findlay, I. Maddox
Abstract:
The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.Keywords: building detection, disaster relief, mask-RCNN, satellite mapping
Procedia PDF Downloads 169381 Conflict Resolution in Fuzzy Rule Base Systems Using Temporal Modalities Inference
Authors: Nasser S. Shebka
Abstract:
Fuzzy logic is used in complex adaptive systems where classical tools of representing knowledge are unproductive. Nevertheless, the incorporation of fuzzy logic, as it’s the case with all artificial intelligence tools, raised some inconsistencies and limitations in dealing with increased complexity systems and rules that apply to real-life situations and hinders the ability of the inference process of such systems, but it also faces some inconsistencies between inferences generated fuzzy rules of complex or imprecise knowledge-based systems. The use of fuzzy logic enhanced the capability of knowledge representation in such applications that requires fuzzy representation of truth values or similar multi-value constant parameters derived from multi-valued logic, which set the basis for the three t-norms and their based connectives which are actually continuous functions and any other continuous t-norm can be described as an ordinal sum of these three basic ones. However, some of the attempts to solve this dilemma were an alteration to fuzzy logic by means of non-monotonic logic, which is used to deal with the defeasible inference of expert systems reasoning, for example, to allow for inference retraction upon additional data. However, even the introduction of non-monotonic fuzzy reasoning faces a major issue of conflict resolution for which many principles were introduced, such as; the specificity principle and the weakest link principle. The aim of our work is to improve the logical representation and functional modelling of AI systems by presenting a method of resolving existing and potential rule conflicts by representing temporal modalities within defeasible inference rule-based systems. Our paper investigates the possibility of resolving fuzzy rules conflict in a non-monotonic fuzzy reasoning-based system by introducing temporal modalities and Kripke's general weak modal logic operators in order to expand its knowledge representation capabilities by means of flexibility in classifying newly generated rules, and hence, resolving potential conflicts between these fuzzy rules. We were able to address the aforementioned problem of our investigation by restructuring the inference process of the fuzzy rule-based system. This is achieved by using time-branching temporal logic in combination with restricted first-order logic quantifiers, as well as propositional logic to represent classical temporal modality operators. The resulting findings not only enhance the flexibility of complex rule-base systems inference process but contributes to the fundamental methods of building rule bases in such a manner that will allow for a wider range of applicable real-life situations derived from a quantitative and qualitative knowledge representational perspective.Keywords: fuzzy rule-based systems, fuzzy tense inference, intelligent systems, temporal modalities
Procedia PDF Downloads 92380 The Impact of Informal Care on Health Behavior among Older People with Chronic Diseases: A Study in China Using Propensity Score Matching
Abstract:
Improvement of health behavior among people with chronic diseases is vital for increasing longevity and enhancing quality of life. This paper researched the causal effects of informal care on the compliance with doctor’s health advices – smoking control, dietetic regulation, weight control and keep exercising – among older people with chronic diseases in China, which is facing the challenge of aging. We addressed the selection bias by using propensity score matching in the estimation process. We used the 2011-2012 national baseline data of the China Health and Retirement Longitudinal Study. Our results showed informal care can help improve health behavior of older people. First, informal care improved the compliance of smoking controls: whether smoke, frequency of smoking, and the time lag between wake up and the first cigarette was all lower for these older people with informal care; Second, for dietetic regulation, older people with informal care had more meals every day than older people without informal care; Third, three variables: BMI, whether gain weight and whether lose weight were used to measure the outcome of weight control. There were no significant difference between group with informal care and that without for BMI and the possibility of losing weight. Older people with informal care had lower possibility of gain weight than that without; Last, for the advice of keeping exercising, informal care increased the probability of walking exercise, however, the difference between groups for moderate and vigorous exercise were not significant. Our results indicate policy makers who aim to decrease accidents should take informal care to elders into account and provide an appropriate policy to meet the demand of informal care. Our birth policy and postponed retirement policy may decrease the informal caregiving hours, so adjustments of these policies are important and urgent to meet the current situation of aged tendency of population. In addition, government could give more support to develop organizations to provide formal care, such as nursing home. We infer that formal care is also useful for health behavior improvements.Keywords: chronic diseases, compliance, CHARLS, health advice, informal care, older people, propensity score matching
Procedia PDF Downloads 405379 Serum Vitamin D and Carboxy-Terminal TelopeptideType I Collagen Levels: As Markers for Bone Health Affection in Patients Treated with Different Antiepileptic Drugs
Authors: Moetazza M. Al-Shafei, Hala Abdel Karim, Eitedal M. Daoud, Hassan Zaki Hassuna
Abstract:
Epilepsy is a common neurological disorder affecting all age groups. It is one of the world's most prevalent non-communicable diseases. Increased evidence suggesting that long term usage of anti-epileptic drugs can have adverse effects on bone mineralization and bone molding .Aiming to study these effects and to give guide lines to support bone health through early intervention. From Neurology Out-Patient Clinic kaser Elaini University Hospital, 60 Patients were enrolled, 40 patients on antiepileptic drugs for at least two years and 20 controls matched with age and sex, epileptic but before starting treatment both chosen under specific criteria. Patients were divided into four groups, three groups with monotherapy treated with either Phynetoin, Valporic acid or Carbamazipine and fourth group treated with both Valporic acid and Carbamazipine. Estimation of serum Carboxy-Terminal Telopeptide of Type I- Collagen(ICTP) bone resorption marker, serum 25(OH )vit D3, calcium ,magnesium and phosphorus were done .Results showed that all patients on AED had significant low levels of 25(OH) vit D3 (p<0.001) ,with significant elevation of ICTP (P<0.05) versus controls. In group treated with Phynotoin highly significant elevation of (ICTP) marker and decrease of both serum 25(OH) vit D3 (P<0, 0001) and serum calcium(P<0.05)versus control. Double drug group showed significant decrease of serum 25(OH) vit D3 (P<0.0001) and decrease in Phosphorus (P<0.05) versus controls. Serum magnesium showed no significant differences between studied groups. We concluded that Anti- epileptic drugs appears to be an aggravating factor on bone mineralization ,so therapeutically it can be worth wile to supplement calcium and vitamin D even before initiation of antiepileptic therapy. ICTP marker can be used to evaluate change in bone resorption before and during AED therapy.Keywords: antiepileptic drugs, bone minerals, carboxy teminal telopeptidetype-1-collagen bone resorption marker, vitamin D
Procedia PDF Downloads 493378 The Classification Performance in Parametric and Nonparametric Discriminant Analysis for a Class- Unbalanced Data of Diabetes Risk Groups
Authors: Lily Ingsrisawang, Tasanee Nacharoen
Abstract:
Introduction: The problems of unbalanced data sets generally appear in real world applications. Due to unequal class distribution, many research papers found that the performance of existing classifier tends to be biased towards the majority class. The k -nearest neighbors’ nonparametric discriminant analysis is one method that was proposed for classifying unbalanced classes with good performance. Hence, the methods of discriminant analysis are of interest to us in investigating misclassification error rates for class-imbalanced data of three diabetes risk groups. Objective: The purpose of this study was to compare the classification performance between parametric discriminant analysis and nonparametric discriminant analysis in a three-class classification application of class-imbalanced data of diabetes risk groups. Methods: Data from a healthy project for 599 staffs in a government hospital in Bangkok were obtained for the classification problem. The staffs were diagnosed into one of three diabetes risk groups: non-risk (90%), risk (5%), and diabetic (5%). The original data along with the variables; diabetes risk group, age, gender, cholesterol, and BMI was analyzed and bootstrapped up to 50 and 100 samples, 599 observations per sample, for additional estimation of misclassification error rate. Each data set was explored for the departure of multivariate normality and the equality of covariance matrices of the three risk groups. Both the original data and the bootstrap samples show non-normality and unequal covariance matrices. The parametric linear discriminant function, quadratic discriminant function, and the nonparametric k-nearest neighbors’ discriminant function were performed over 50 and 100 bootstrap samples and applied to the original data. In finding the optimal classification rule, the choices of prior probabilities were set up for both equal proportions (0.33: 0.33: 0.33) and unequal proportions with three choices of (0.90:0.05:0.05), (0.80: 0.10: 0.10) or (0.70, 0.15, 0.15). Results: The results from 50 and 100 bootstrap samples indicated that the k-nearest neighbors approach when k = 3 or k = 4 and the prior probabilities of {non-risk:risk:diabetic} as {0.90:0.05:0.05} or {0.80:0.10:0.10} gave the smallest error rate of misclassification. Conclusion: The k-nearest neighbors approach would be suggested for classifying a three-class-imbalanced data of diabetes risk groups.Keywords: error rate, bootstrap, diabetes risk groups, k-nearest neighbors
Procedia PDF Downloads 434377 Safety Validation of Black-Box Autonomous Systems: A Multi-Fidelity Reinforcement Learning Approach
Authors: Jared Beard, Ali Baheri
Abstract:
As autonomous systems become more prominent in society, ensuring their safe application becomes increasingly important. This is clearly demonstrated with autonomous cars traveling through a crowded city or robots traversing a warehouse with heavy equipment. Human environments can be complex, having high dimensional state and action spaces. This gives rise to two problems. One being that analytic solutions may not be possible. The other is that in simulation based approaches, searching the entirety of the problem space could be computationally intractable, ruling out formal methods. To overcome this, approximate solutions may seek to find failures or estimate their likelihood of occurrence. One such approach is adaptive stress testing (AST) which uses reinforcement learning to induce failures in the system. The premise of which is that a learned model can be used to help find new failure scenarios, making better use of simulations. In spite of these failures AST fails to find particularly sparse failures and can be inclined to find similar solutions to those found previously. To help overcome this, multi-fidelity learning can be used to alleviate this overuse of information. That is, information in lower fidelity can simulations can be used to build up samples less expensively, and more effectively cover the solution space to find a broader set of failures. Recent work in multi-fidelity learning has passed information bidirectionally using “knows what it knows” (KWIK) reinforcement learners to minimize the number of samples in high fidelity simulators (thereby reducing computation time and load). The contribution of this work, then, is development of the bidirectional multi-fidelity AST framework. Such an algorithm, uses multi-fidelity KWIK learners in an adversarial context to find failure modes. Thus far, a KWIK learner has been used to train an adversary in a grid world to prevent an agent from reaching its goal; thus demonstrating the utility of KWIK learners in an AST framework. The next step is implementation of the bidirectional multi-fidelity AST framework described. Testing will be conducted in a grid world containing an agent attempting to reach a goal position and adversary tasked with intercepting the agent as demonstrated previously. Fidelities will be modified by adjusting the size of a time-step, with higher-fidelity effectively allowing for more responsive closed loop feedback. Results will compare the single KWIK AST learner with the multi-fidelity algorithm with respect to number of samples, distinct failure modes found, and relative effect of learning after a number of trials.Keywords: multi-fidelity reinforcement learning, multi-fidelity simulation, safety validation, falsification
Procedia PDF Downloads 157376 Monte Carlo Simulation of Thyroid Phantom Imaging Using Geant4-GATE
Authors: Parimalah Velo, Ahmad Zakaria
Abstract:
Introduction: Monte Carlo simulations of preclinical imaging systems allow opportunity to enable new research that could range from designing hardware up to discovery of new imaging application. The simulation system which could accurately model an imaging modality provides a platform for imaging developments that might be inconvenient in physical experiment systems due to the expense, unnecessary radiation exposures and technological difficulties. The aim of present study is to validate the Monte Carlo simulation of thyroid phantom imaging using Geant4-GATE for Siemen’s e-cam single head gamma camera. Upon the validation of the gamma camera simulation model by comparing physical characteristic such as energy resolution, spatial resolution, sensitivity, and dead time, the GATE simulation of thyroid phantom imaging is carried out. Methods: A thyroid phantom is defined geometrically which comprises of 2 lobes with 80mm in diameter, 1 hot spot, and 3 cold spots. This geometry accurately resembling the actual dimensions of thyroid phantom. A planar image of 500k counts with 128x128 matrix size was acquired using simulation model and in actual experimental setup. Upon image acquisition, quantitative image analysis was performed by investigating the total number of counts in image, the contrast of the image, radioactivity distributions on image and the dimension of hot spot. Algorithm for each quantification is described in detail. The difference in estimated and actual values for both simulation and experimental setup is analyzed for radioactivity distribution and dimension of hot spot. Results: The results show that the difference between contrast level of simulation image and experimental image is within 2%. The difference in the total count between simulation and actual study is 0.4%. The results of activity estimation show that the relative difference between estimated and actual activity for experimental and simulation is 4.62% and 3.03% respectively. The deviation in estimated diameter of hot spot for both simulation and experimental study are similar which is 0.5 pixel. In conclusion, the comparisons show good agreement between the simulation and experimental data.Keywords: gamma camera, Geant4 application of tomographic emission (GATE), Monte Carlo, thyroid imaging
Procedia PDF Downloads 271375 The Use of a Novel Visual Kinetic Demonstration Technique in Student Skill Acquisition of the Sellick Cricoid Force Manoeuvre
Authors: L. Nathaniel-Wurie
Abstract:
The Sellick manoeuvre a.k.a the application of cricoid force (CF), was first described by Brian Sellick in 1961. CF is the application of digital pressure against the cricoid cartilage with the intention of posterior force causing oesophageal compression against the vertebrae. This is designed to prevent passive regurgitation of gastric contents, which is a major cause of morbidity and mortality during emergency airway management inside and outside of the hospital. To the authors knowledge, there is no universally standardised training modality and, therefore, no reliable way to examine if there are appropriate outcomes. If force is not measured during training, how can one surmise that appropriate, accurate, or precise amounts of force are being used routinely. Poor homogeneity in teaching and untested outcomes will correlate with reduced efficacy and increased adverse effects. For this study, the accuracy of force delivery in trained professionals was tested, and outcomes contrasted against a novice control and a novice study group. In this study, 20 operating department practitioners were tested (with a mean experience of 5.3years of performing CF). Subsequent contrast with 40 novice students who were randomised into one of two arms. ‘Arm A’ were explained the procedure, then shown the procedure then asked to perform CF with the corresponding force measurement being taken three times. Arm B had the same process as arm A then before being tested, they had 10, and 30 Newtons applied to their hands to increase intuitive understanding of what the required force equated to, then were asked to apply the equivalent amount of force against a visible force metre and asked to hold that force for 20 seconds which allowed direct visualisation and correction of any over or under estimation. Following this, Arm B were then asked to perform the manoeuvre, and the force generated measured three times. This study shows that there is a wide distribution of force produced by trained professionals and novices performing the procedure for the first time. Our methodology for teaching the manoeuvre shows an improved accuracy, precision, and homogeneity within the group when compared to novices and even outperforms trained practitioners. In conclusion, if this methodology is adopted, it may correlate with higher clinical outcomes, less adverse events, and more successful airway management in critical medical scenarios.Keywords: airway, cricoid, medical education, sellick
Procedia PDF Downloads 79374 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein
Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel
Abstract:
Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome
Procedia PDF Downloads 199373 An Analytical Formulation of Pure Shear Boundary Condition for Assessing the Response of Some Typical Sites in Mumbai
Authors: Raj Banerjee, Aniruddha Sengupta
Abstract:
An earthquake event, associated with a typical fault rupture, initiates at the source, propagates through a rock or soil medium and finally daylights at a surface which might be a populous city. The detrimental effects of an earthquake are often quantified in terms of the responses of superstructures resting on the soil. Hence, there is a need for the estimation of amplification of the bedrock motions due to the influence of local site conditions. In the present study, field borehole log data of Mangalwadi and Walkeswar sites in Mumbai city are considered. The data consists of variation of SPT N-value with the depth of soil. A correlation between shear wave velocity (Vₛ) and SPT N value for various soil profiles of Mumbai city has been developed using various existing correlations which is used further for site response analysis. MATLAB program is developed for studying the ground response analysis by performing two dimensional linear and equivalent linear analysis for some of the typical Mumbai soil sites using pure shear (Multi Point Constraint) boundary condition. The model is validated in linear elastic and equivalent linear domain using the popular commercial program, DEEPSOIL. Three actual earthquake motions are selected based on their frequency contents and durations and scaled to a PGA of 0.16g for the present ground response analyses. The results are presented in terms of peak acceleration time history with depth, peak shear strain time history with depth, Fourier amplitude versus frequency, response spectrum at the surface etc. The peak ground acceleration amplification factors are found to be about 2.374, 3.239 and 2.4245 for Mangalwadi site and 3.42, 3.39, 3.83 for Walkeswar site using 1979 Imperial Valley Earthquake, 1989 Loma Gilroy Earthquake and 1987 Whitter Narrows Earthquake, respectively. In the absence of any site-specific response spectrum for the chosen sites in Mumbai, the generated spectrum at the surface may be utilized for the design of any superstructure at these locations.Keywords: deepsoil, ground response analysis, multi point constraint, response spectrum
Procedia PDF Downloads 180372 A Prospective Study of a Clinically Significant Anatomical Change in Head and Neck Intensity-Modulated Radiation Therapy Using Transit Electronic Portal Imaging Device Images
Authors: Wilai Masanga, Chirapha Tannanonta, Sangutid Thongsawad, Sasikarn Chamchod, Todsaporn Fuangrod
Abstract:
The major factors of radiotherapy for head and neck (HN) cancers include patient’s anatomical changes and tumour shrinkage. These changes can significantly affect the planned dose distribution that causes the treatment plan deterioration. A measured transit EPID images compared to a predicted EPID images using gamma analysis has been clinically implemented to verify the dose accuracy as part of adaptive radiotherapy protocol. However, a global gamma analysis dose not sensitive to some critical organ changes as the entire treatment field is compared. The objective of this feasibility study is to evaluate the dosimetric response to patient anatomical changes during the treatment course in HN IMRT (Head and Neck Intensity-Modulated Radiation Therapy) using a novel comparison method; organ-of-interest gamma analysis. This method provides more sensitive to specific organ change detection. Random replanned 5 HN IMRT patients with causes of tumour shrinkage and patient weight loss that critically affect to the parotid size changes were selected and evaluated its transit dosimetry. A comprehensive physics-based model was used to generate a series of predicted transit EPID images for each gantry angle from original computed tomography (CT) and replan CT datasets. The patient structures; including left and right parotid, spinal cord, and planning target volume (PTV56) were projected to EPID level. The agreement between the transit images generated from original CT and replanned CT was quantified using gamma analysis with 3%, 3mm criteria. Moreover, only gamma pass-rate is calculated within each projected structure. The gamma pass-rate in right parotid and PTV56 between predicted transit of original CT and replan CT were 42.8%( ± 17.2%) and 54.7%( ± 21.5%). The gamma pass-rate for other projected organs were greater than 80%. Additionally, the results of organ-of-interest gamma analysis were compared with 3-dimensional cone-beam computed tomography (3D-CBCT) and the rational of replan by radiation oncologists. It showed that using only registration of 3D-CBCT to original CT does not provide the dosimetric impact of anatomical changes. Using transit EPID images with organ-of-interest gamma analysis can provide additional information for treatment plan suitability assessment.Keywords: re-plan, anatomical change, transit electronic portal imaging device, EPID, head, and neck
Procedia PDF Downloads 216371 Tea and Its Working Methodology in the Biomass Estimation of Poplar Species
Authors: Pratima Poudel, Austin Himes, Heidi Renninger, Eric McConnel
Abstract:
Populus spp. (poplar) are the fastest-growing trees in North America, making them ideal for a range of applications as they can achieve high yields on short rotations and regenerate by coppice. Furthermore, poplar undergoes biochemical conversion to fuels without complexity, making it one of the most promising, purpose-grown, woody perennial energy sources. Employing wood-based biomass for bioenergy offers numerous benefits, including reducing greenhouse gas (GHG) emissions compared to non-renewable traditional fuels, the preservation of robust forest ecosystems, and creating economic prospects for rural communities.In order to gain a better understanding of the potential use of poplar as a biomass feedstock for biofuel in the southeastern US, the conducted a techno-economic assessment (TEA). This assessment is an analytical approach that integrates technical and economic factors of a production system to evaluate its economic viability. the TEA specifically focused on a short rotation coppice system employing a single-pass cut-and-chip harvesting method for poplar. It encompassed all the costs associated with establishing dedicated poplar plantations, including land rent, site preparation, planting, fertilizers, and herbicides. Additionally, we performed a sensitivity analysis to evaluate how different costs can affect the economic performance of the poplar cropping system. This analysis aimed to determine the minimum average delivered selling price for one metric ton of biomass necessary to achieve a desired rate of return over the cropping period. To inform the TEA, data on the establishment, crop care activities, and crop yields were derived from a field study conducted at the Mississippi Agricultural and Forestry Experiment Station's Bearden Dairy Research Center in Oktibbeha County and Pontotoc Ridge-Flatwood Branch Experiment Station in Pontotoc County.Keywords: biomass, populus species, sensitivity analysis, technoeconomic analysis
Procedia PDF Downloads 83370 Strategic Interventions to Combat Socio-economic Impacts of Drought in Thar - A Case Study of Nagarparkar
Authors: Anila Hayat
Abstract:
Pakistan is one of those developing countries that are least involved in emissions but has the most vulnerable environmental conditions. Pakistan is ranked 8th in most affected countries by climate change on the climate risk index 1992-2011. Pakistan is facing severe water shortages and flooding as a result of changes in rainfall patterns, specifically in the least developed areas such as Tharparkar. Nagarparkar, once an attractive tourist spot located in Tharparkar because of its tropical desert climate, is now facing severe drought conditions for the last few decades. This study investigates the present socio-economic situation of local communities, major impacts of droughts and their underlying causes and current mitigation strategies adopted by local communities. The study uses both secondary (quantitative in nature) and primary (qualitative in nature) methods to understand the impacts and explore causes on the socio-economic life of local communities of the study area. The relevant data has been collected through household surveys using structured questionnaires, focus groups and in-depth interviews of key personnel from local and international NGOs to explore the sensitivity of impacts and adaptation to droughts in the study area. This investigation is limited to four rural communities of union council Pilu of Nagarparkar district, including Bheel, BhojaBhoon, Mohd Rahan Ji Dhani and Yaqub Ji Dhani villages. The results indicate that drought has caused significant economic and social hardships for the local communities as more than 60% of the overall population is dependent on rainfall which has been disturbed by irregular rainfall patterns. The decline in Crop yields has forced the local community to migrate to nearby areas in search of livelihood opportunities. Communities have not undertaken any appropriate adaptive actions to counteract the adverse effect of drought; they are completely dependent on support from the government and external aid for survival. Respondents also reported that poverty is a major cause of their vulnerability to drought. An increase in population, limited livelihood opportunities, caste system, lack of interest from the government sector, unawareness shaped their vulnerability to drought and other social issues. Based on the findings of this study, it is recommended that the local authorities shall create awareness about drought hazards and improve the resilience of communities against drought. It is further suggested to develop, introduce and implement water harvesting practices at the community level to promote drought-resistant crops.Keywords: migration, vulnerability, awareness, Drought
Procedia PDF Downloads 132369 Dataset Quality Index:Development of Composite Indicator Based on Standard Data Quality Indicators
Authors: Sakda Loetpiparwanich, Preecha Vichitthamaros
Abstract:
Nowadays, poor data quality is considered one of the majority costs for a data project. The data project with data quality awareness almost as much time to data quality processes while data project without data quality awareness negatively impacts financial resources, efficiency, productivity, and credibility. One of the processes that take a long time is defining the expectations and measurements of data quality because the expectation is different up to the purpose of each data project. Especially, big data project that maybe involves with many datasets and stakeholders, that take a long time to discuss and define quality expectations and measurements. Therefore, this study aimed at developing meaningful indicators to describe overall data quality for each dataset to quick comparison and priority. The objectives of this study were to: (1) Develop a practical data quality indicators and measurements, (2) Develop data quality dimensions based on statistical characteristics and (3) Develop Composite Indicator that can describe overall data quality for each dataset. The sample consisted of more than 500 datasets from public sources obtained by random sampling. After datasets were collected, there are five steps to develop the Dataset Quality Index (SDQI). First, we define standard data quality expectations. Second, we find any indicators that can measure directly to data within datasets. Thirdly, each indicator aggregates to dimension using factor analysis. Next, the indicators and dimensions were weighted by an effort for data preparing process and usability. Finally, the dimensions aggregate to Composite Indicator. The results of these analyses showed that: (1) The developed useful indicators and measurements contained ten indicators. (2) the developed data quality dimension based on statistical characteristics, we found that ten indicators can be reduced to 4 dimensions. (3) The developed Composite Indicator, we found that the SDQI can describe overall datasets quality of each dataset and can separate into 3 Level as Good Quality, Acceptable Quality, and Poor Quality. The conclusion, the SDQI provide an overall description of data quality within datasets and meaningful composition. We can use SQDI to assess for all data in the data project, effort estimation, and priority. The SDQI also work well with Agile Method by using SDQI to assessment in the first sprint. After passing the initial evaluation, we can add more specific data quality indicators into the next sprint.Keywords: data quality, dataset quality, data quality management, composite indicator, factor analysis, principal component analysis
Procedia PDF Downloads 139368 Ectopic Osteoinduction of Porous Composite Scaffolds Reinforced with Graphene Oxide and Hydroxyapatite Gradient Density
Authors: G. M. Vlasceanu, H. Iovu, E. Vasile, M. Ionita
Abstract:
Herein, the synthesis and characterization of chitosan-gelatin highly porous scaffold reinforced with graphene oxide, and hydroxyapatite (HAp), crosslinked with genipin was targeted. In tissue engineering, chitosan and gelatin are two of the most robust biopolymers with wide applicability due to intrinsic biocompatibility, biodegradability, low antigenicity properties, affordability, and ease of processing. HAp, per its exceptional activity in tuning cell-matrix interactions, is acknowledged for its capability of sustaining cellular proliferation by promoting bone-like native micro-media for cell adjustment. Genipin is regarded as a top class cross-linker, while graphene oxide (GO) is viewed as one of the most performant and versatile fillers. The composites with natural bone HAp/biopolymer ratio were obtained by cascading sonochemical treatments, followed by uncomplicated casting methods and by freeze-drying. Their structure was characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction, while overall morphology was investigated by Scanning Electron Microscopy (SEM) and micro-Computer Tomography (µ-CT). Ensuing that, in vitro enzyme degradation was performed to detect the most promising compositions for the development of in vivo assays. Suitable GO dispersion was ascertained within the biopolymer mix as nanolayers specific signals lack in both FTIR and XRD spectra, and the specific spectral features of the polymers persisted with GO load enhancement. Overall, correlations between the GO induced material structuration, crystallinity variations, and chemical interaction of the compounds can be correlated with the physical features and bioactivity of each composite formulation. Moreover, the HAp distribution within follows an auspicious density gradient tuned for hybrid osseous/cartilage matter architectures, which were mirrored in the mice model tests. Hence, the synthesis route of a natural polymer blend/hydroxyapatite-graphene oxide composite material is anticipated to emerge as influential formulation in bone tissue engineering. Acknowledgement: This work was supported by the project 'Work-based learning systems using entrepreneurship grants for doctoral and post-doctoral students' (Sisteme de invatare bazate pe munca prin burse antreprenor pentru doctoranzi si postdoctoranzi) - SIMBA, SMIS code 124705 and by a grant of the National Authority for Scientific Research and Innovation, Operational Program Competitiveness Axis 1 - Section E, Program co-financed from European Regional Development Fund 'Investments for your future' under the project number 154/25.11.2016, P_37_221/2015. The nano-CT experiments were possible due to European Regional Development Fund through Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED.Keywords: biopolymer blend, ectopic osteoinduction, graphene oxide composite, hydroxyapatite
Procedia PDF Downloads 104367 Relationships Between the Petrophysical and Mechanical Properties of Rocks and Shear Wave Velocity
Authors: Anamika Sahu
Abstract:
The Himalayas, like many mountainous regions, is susceptible to multiple hazards. In recent times, the frequency of such disasters is continuously increasing due to extreme weather phenomena. These natural hazards are responsible for irreparable human and economic loss. The Indian Himalayas has repeatedly been ruptured by great earthquakes in the past and has the potential for a future large seismic event as it falls under the seismic gap. Damages caused by earthquakes are different in different localities. It is well known that, during earthquakes, damage to the structure is associated with the subsurface conditions and the quality of construction materials. So, for sustainable mountain development, prior estimation of site characterization will be valuable for designing and constructing the space area and for efficient mitigation of the seismic risk. Both geotechnical and geophysical investigation of the subsurface is required to describe the subsurface complexity. In mountainous regions, geophysical methods are gaining popularity as areas can be studied without disturbing the ground surface, and also these methods are time and cost-effective. The MASW method is used to calculate the Vs30. Vs30 is the average shear wave velocity for the top 30m of soil. Shear wave velocity is considered the best stiffness indicator, and the average of shear wave velocity up to 30 m is used in National Earthquake Hazards Reduction Program (NEHRP) provisions (BSSC,1994) and Uniform Building Code (UBC), 1997 classification. Parameters obtained through geotechnical investigation have been integrated with findings obtained through the subsurface geophysical survey. Joint interpretation has been used to establish inter-relationships among mineral constituents, various textural parameters, and unconfined compressive strength (UCS) with shear wave velocity. It is found that results obtained through the MASW method fitted well with the laboratory test. In both conditions, mineral constituents and textural parameters (grain size, grain shape, grain orientation, and degree of interlocking) control the petrophysical and mechanical properties of rocks and the behavior of shear wave velocity.Keywords: MASW, mechanical, petrophysical, site characterization
Procedia PDF Downloads 86366 An Economic Study for Fish Production in Egypt
Authors: Manal Elsayed Elkheshin, Rasha Saleh Mansour, Mohamed Fawzy Mohamed Eldnasury, Mamdouh Elbadry Mohamed
Abstract:
This research Aims to identify the main factors affecting the production and the fish consumption in Egypt, through the econometric estimation for various forms functions of fish production and fish consumption during the period (1991-2014), as the aim of this research to forecast the production and the fish consumption in Egypt until 2020, through determine the best standard methods using (ARIMA).This research also aims to the economic feasibility of the production of fish in aquaculture farms study; investment cost and represents the value of land, buildings, equipment and irrigation. Aquaculture requires three types of fish (Tilapia, carp fish, and mullet fish), and the total area of the farm, about an acre. The annual Fish production from this project about 3.5 tons. The annual investment costs of about 50500 pounds, Find conclude that the project can repay the cost of their investments after about 4 years and 5 months, and therefore recommend the implementation of the project, and internal rate of return reached (IRR) of about 22.1%, where it is clear that the rate of large internal rate of return, and achieves pound invested in this project annual return is estimated at 22.1 pounds, more than the opportunity cost, so we recommend the need to implement the project.Recommendations:1. Increasing the fish agriculture to decrease the gap of animal protein. 2.Increasing the number of mechanism fishing boats, and the provision of transport equipped to maintain the quality of fish production. 3.Encourage and attract the local and foreign investments, providing advice to the investor on the aquaculture field. 4. Action newsletters awareness of the importance of these projects where these projects resulted in a net profit after recovery in less than five years, IRR amounted to about 23%, which is much more than the opportunity cost of a bank interest rate is about 7%, helping to create work and graduates opportunities, and contribute to the reduction of imports of the fish, and improve the performance of the food trade balance.Keywords: equation model, individual share, red meat, consumption, production, endogenous variable, exogenous variable, financial performance evaluates fish culture, feasibility study, fish production, aquaculture
Procedia PDF Downloads 369365 Preliminary Evaluation of Echinacea Species by UV-VIS Spectroscopy Fingerprinting of Phenolic Compounds
Authors: Elena Ionescu, Elena Iacob, Marie-Louise Ionescu, Carmen Elena Tebrencu, Oana Teodora Ciuperca
Abstract:
Echinacea species (Asteraceae) has received a global attention because it is widely used for treatment of cold, flu and upper respiratory tract infections. Echinacea species contain a great variety of chemical components that contribute to their activity. The most important components responsible for the biological activity are those with high molecular-weight such as polysaccharides, polyacetylenes, highly unsaturated alkamides and caffeic acid derivatives. The principal factors that may influence the chemical composition of Echinacea include the species and the part of plant used (aerial parts or roots ). In recent years the market for Echinacea has grown rapidly and also the cases of adultery/replacement especially for Echinacea root. The identification of presence or absence of same biomarkers provide information for safe use of Echinacea species in food supplements industry. The aim of the study was the preliminary evaluation and fingerprinting by UV-VISIBLE spectroscopy of biomarkers in terms of content in phenolic derivatives of some Echinacea species (E. purpurea, E. angustifolia and E. pallida) for identification and authentication of the species. The steps of the study were: (1) samples (extracts) preparation from Echinacea species (non-hydrolyzed and hydrolyzed ethanol extracts); (2) samples preparation of reference substances (polyphenol acids: caftaric acid, caffeic acid, chlorogenic acid, ferulic acid; flavonoids: rutoside, hyperoside, isoquercitrin and their aglycones: quercitri, quercetol, luteolin, kaempferol and apigenin); (3) identification of specific absorption at wavelengths between 700-200 nm; (4) identify the phenolic compounds from Echinacea species based on spectral characteristics and the specific absorption; each class of compounds corresponds to a maximum absorption in the UV spectrum. The phytochemical compounds were identified at specific wavelengths between 700-200 nm. The absorption intensities were measured. The obtained results proved that ethanolic extract showed absorption peaks attributed to: phenolic compounds (free phenolic acids and phenolic acids derivatives) registrated between 220-280 nm, unsymmetrical chemical structure compounds (caffeic acid, chlorogenic acid, ferulic acid) with maximum absorption peak and absorption "shoulder" that may be due to substitution of hydroxyl or methoxy group, flavonoid compounds (in free form or glycosides) between 330-360 nm, due to the double bond in position 2,3 and carbonyl group in position 4 flavonols. UV spectra showed two major peaks of absorption (quercetin glycoside, rutin, etc.). The results obtained by UV-VIS spectroscopy has revealed the presence of phenolic derivatives such as cicoric acid (240 nm), caftaric acid (329 nm), caffeic acid (240 nm), rutoside (205 nm), quercetin (255 nm), luteolin (235 nm) in all three species of Echinacea. The echinacoside is absent. This profile mentioned above and the absence of phenolic compound echinacoside leads to the conclusion that species harvested as Echinacea angustifolia and Echinacea pallida are Echinacea purpurea also; It can be said that preliminary fingerprinting of Echinacea species through correspondence with the phenolic derivatives profile can be achieved by UV-VIS spectroscopic investigation, which is an adequate technique for preliminary identification and authentication of Echinacea in medicinal herbs.Keywords: Echinacea species, Fingerprinting, Phenolic compounds, UV-VIS spectroscopy
Procedia PDF Downloads 261364 An Adaptive Oversampling Technique for Imbalanced Datasets
Authors: Shaukat Ali Shahee, Usha Ananthakumar
Abstract:
A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling
Procedia PDF Downloads 418363 Household Climate-Resilience Index Development for the Health Sector in Tanzania: Use of Demographic and Health Surveys Data Linked with Remote Sensing
Authors: Heribert R. Kaijage, Samuel N. A. Codjoe, Simon H. D. Mamuya, Mangi J. Ezekiel
Abstract:
There is strong evidence that climate has changed significantly affecting various sectors including public health. The recommended feasible solution is adopting development trajectories which combine both mitigation and adaptation measures for improving resilience pathways. This approach demands a consideration for complex interactions between climate and social-ecological systems. While other sectors such as agriculture and water have developed climate resilience indices, the public health sector in Tanzania is still lagging behind. The aim of this study was to find out how can we use Demographic and Health Surveys (DHS) linked with Remote Sensing (RS) technology and metrological information as tools to inform climate change resilient development and evaluation for the health sector. Methodological review was conducted whereby a number of studies were content analyzed to find appropriate indicators and indices for climate resilience household and their integration approach. These indicators were critically reviewed, listed, filtered and their sources determined. Preliminary identification and ranking of indicators were conducted using participatory approach of pairwise weighting by selected national stakeholders from meeting/conferences on human health and climate change sciences in Tanzania. DHS datasets were retrieved from Measure Evaluation project, processed and critically analyzed for possible climate change indicators. Other sources for indicators of climate change exposure were also identified. For the purpose of preliminary reporting, operationalization of selected indicators was discussed to produce methodological approach to be used in resilience comparative analysis study. It was found that household climate resilient index depends on the combination of three indices namely Household Adaptive and Mitigation Capacity (HC), Household Health Sensitivity (HHS) and Household Exposure Status (HES). It was also found that, DHS alone cannot complement resilient evaluation unless integrated with other data sources notably flooding data as a measure of vulnerability, remote sensing image of Normalized Vegetation Index (NDVI) and Metrological data (deviation from rainfall pattern). It can be concluded that if these indices retrieved from DHS data sets are computed and scientifically integrated can produce single climate resilience index and resilience maps could be generated at different spatial and time scales to enhance targeted interventions for climate resilient development and evaluations. However, further studies are need to test for the sensitivity of index in resilience comparative analysis among selected regions.Keywords: climate change, resilience, remote sensing, demographic and health surveys
Procedia PDF Downloads 165362 The Effect of Acute Muscular Exercise and Training Status on Haematological Indices in Adult Males
Authors: Ibrahim Musa, Mohammed Abdul-Aziz Mabrouk, Yusuf Tanko
Abstract:
Introduction: Long term physical training affect the performance of athletes especially the females. Soccer which is a team sport, played in an outdoor field, require adequate oxygen transport system for the maximal aerobic power during exercise in order to complete 90 minutes of competitive play. Suboptimal haematological status has often been recorded in athletes with intensive physical activity. It may be due to the iron depletion caused by hemolysis or haemodilution results from plasma volume expansion. There is lack of data regarding the dynamics of red blood cell variables, in male football players. We hypothesized that, a long competitive season involving frequent matches and intense training could influence red blood cell variables, as a consequence of applying repeated physical loads when compared with sedentary. Methods: This cross sectional study was carried on 40 adult males (20 athletes and 20 non athletes) between 18-25 years of age. The 20 apparently healthy male non athletes were taken as sedentary and 20 male footballers comprise the study group. The university institutional review board (ABUTH/HREC/TRG/36) gave approval for all procedures in accordance with the Declaration of Helsinki. Red blood cell (RBC) concentration, packed cell volume (PCV), and plasma volume were measured in fasting state and immediately after exercise. Statistical analysis was done by using SPSS/ win.20.0 for comparison within and between the groups, using student’s paired and unpaired “t” test respectively. Results: The finding from our study shows that, immediately after termination of exercise, the mean RBC counts and PCV significantly (p<0.005) decreased with significant increased (p<0.005) in plasma volume when compared with pre-exercised values in both group. In addition the post exercise RBC was significantly higher in untrained (261.10±8.5) when compared with trained (255.20±4.5). However, there was no significant differences in the post exercise hematocrit and plasma volume parameters between the sedentary and the footballers. Moreover, beside changes in pre-exercise values among the sedentary and the football players, the resting red blood cell counts and Plasma volume (PV %) was significantly (p < 0.05) higher in the sedentary group (306.30±10.05 x 104 /mm3; 58.40±0.54%) when compared with football players (293.70±4.65 x 104 /mm3; 55.60±1.18%). On the other hand, the sedentary group exhibited significant (p < 0.05) decrease in PCV (41.60±0.54%) when compared with the football players (44.40±1.18%). Conclusions: It is therefore proposed that the acute football exercise induced reduction in RBC and PCV is entirely due to plasma volume expansion, and not of red blood cell hemolysis. In addition, the training status also influenced haematological indices of male football players differently from the sedentary at rest due to adaptive response. This is novel.Keywords: Haematological Indices, Performance Status, Sedentary, Male Football Players
Procedia PDF Downloads 257361 The Grade Six Pupils' Learning Styles and Their Achievements and Difficulties on Fractions Based on Kolb's Model
Authors: Faiza Abdul Latip
Abstract:
One of the ultimate goals of any nation is to produce competitive manpower and this includes Philippines. Inclination in the field of Mathematics has a significant role in achieving this goal. However, Mathematics, as considered by most people, is the most difficult subject matter along with its topics to learn. This could be manifested from the low performance of students in national and international assessments. Educators have been widely using learning style models in identifying the way students learn. Moreover, it could be the frontline in knowing the difficulties held by each learner in a particular topic specifically concepts pertaining to fractions. However, as what many educators observed, students show difficulties in doing mathematical tasks and in great degree in dealing with fractions most specifically in the district of Datu Odin Sinsuat, Maguindanao. This study focused on the Datu Odin Sinsuat district grade six pupils’ learning styles along with their achievements and difficulties in learning concepts on fractions. Five hundred thirty-two pupils from ten different public elementary schools of the Datu Odin Sinsuat districts were purposively used as the respondents of the study. A descriptive research using the survey method was employed in this study. Quantitative analysis on the pupils’ learning styles on the Kolb’s Learning Style Inventory (KLSI) and scores on the mathematics diagnostic test on fraction concepts were made using this method. The simple frequency and percentage counts were used to analyze the pupils’ learning styles and their achievements on fractions. To determine the pupils’ difficulties in fractions, the index of difficulty on every item was determined. Lastly, the Kruskal-Wallis Test was used in determining the significant difference in the pupils’ achievements on fractions classified by their learning styles. This test was set at 0.05 level of significance. The minimum H-Value of 7.82 was used to determine the significance of the test. The results revealed that the pupils of Datu Odin Sinsuat districts learn fractions in varied ways as they are of different learning styles. However, their achievements in fractions are low regardless of their learning styles. Difficulties in learning fractions were found most in the area of Estimation, Comparing/Ordering, and Division Interpretation of Fractions. Most of the pupils find it very difficult to use fraction as a measure, compare or arrange series of fractions and use the concept of fraction as a quotient.Keywords: difficulties in fraction, fraction, Kolb's model, learning styles
Procedia PDF Downloads 215360 Climate Change and Migration in the Semi-arid Tropic and Eastern Regions of India: Exploring Alternative Adaptation Strategies
Authors: Gauri Sreekumar, Sabuj Kumar Mandal
Abstract:
Contributing about 18% to India’s Gross Domestic Product, the agricultural sector plays a significant role in the Indian rural economy. Despite being the primary source of livelihood for more than half of India’s population, most of them are marginal and small farmers facing several challenges due to agro-climatic shocks. Climate change is expected to increase the risk in the regions that are highly agriculture dependent. With systematic and scientific evidence of changes in rainfall, temperature and other extreme climate events, migration started to emerge as a survival strategy for the farm households. In this backdrop, our present study aims to combine the two strands of literature and attempts to explore whether migration is the only adaptation strategy for the farmers once they experience crop failures due adverse climatic condition. Combining the temperature and rainfall information from the weather data provided by the Indian Meteorological Department with the household level panel data on Indian states belonging to the Eastern and Semi-Arid Tropics regions from the Village Dynamics in South Asia (VDSA) collected by the International Crop Research Institute for the Semi-arid Tropics, we form a rich panel data for the years 2010-2014. A Recursive Econometric Model is used to establish the three-way nexus between climate change-yield-migration while addressing the role of irrigation and local non-farm income diversification. Using Three Stage Least Squares Estimation method, we find that climate change induced yield loss is a major driver of farmers’ migration. However, irrigation and local level non-farm income diversification are found to mitigate the adverse impact of climate change on migration. Based on our empirical results, we suggest for enhancing irrigation facilities and making local non-farm income diversification opportunities available to increase farm productivity and thereby reduce farmers’ migration.Keywords: climate change, migration, adaptation, mitigation
Procedia PDF Downloads 64359 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics
Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima
Abstract:
This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks
Procedia PDF Downloads 164358 Flexible Design Solutions for Complex Free form Geometries Aimed to Optimize Performances and Resources Consumption
Authors: Vlad Andrei Raducanu, Mariana Lucia Angelescu, Ion Cinca, Vasile Danut Cojocaru, Doina Raducanu
Abstract:
By using smart digital tools, such as generative design (GD) and digital fabrication (DF), problems of high actuality concerning resources optimization (materials, energy, time) can be solved and applications or products of free-form type can be created. In the new digital technology materials are active, designed in response to a set of performance requirements, which impose a total rethinking of old material practices. The article presents the design procedure key steps of a free-form architectural object - a column type one with connections to get an adaptive 3D surface, by using the parametric design methodology and by exploiting the properties of conventional metallic materials. In parametric design the form of the created object or space is shaped by varying the parameters values and relationships between the forms are described by mathematical equations. Digital parametric design is based on specific procedures, as shape grammars, Lindenmayer - systems, cellular automata, genetic algorithms or swarm intelligence, each of these procedures having limitations which make them applicable only in certain cases. In the paper the design process stages and the shape grammar type algorithm are presented. The generative design process relies on two basic principles: the modeling principle and the generative principle. The generative method is based on a form finding process, by creating many 3D spatial forms, using an algorithm conceived in order to apply its generating logic onto different input geometry. Once the algorithm is realized, it can be applied repeatedly to generate the geometry for a number of different input surfaces. The generated configurations are then analyzed through a technical or aesthetic selection criterion and finally the optimal solution is selected. Endless range of generative capacity of codes and algorithms used in digital design offers various conceptual possibilities and optimal solutions for both technical and environmental increasing demands of building industry and architecture. Constructions or spaces generated by parametric design can be specifically tuned, in order to meet certain technical or aesthetical requirements. The proposed approach has direct applicability in sustainable architecture, offering important potential economic advantages, a flexible design (which can be changed until the end of the design process) and unique geometric models of high performance.Keywords: parametric design, algorithmic procedures, free-form architectural object, sustainable architecture
Procedia PDF Downloads 377357 Genetic Diversity of Sugar Beet Pollinators
Authors: Ksenija Taški-Ajdukovic, Nevena Nagl, Živko Ćurčić, Dario Danojević
Abstract:
Information about genetic diversity of sugar beet parental populations is of a great importance for hybrid breeding programs. The aim of this research was to evaluate genetic diversity among and within populations and lines of diploid sugar beet pollinators, by using SSR markers. As plant material were used eight pollinators originating from three USDA-ARS breeding programs and four pollinators from Institute of Field and Vegetable Crops, Novi Sad. Depending on the presence of self-fertility gene, the pollinators were divided into three groups: autofertile (inbred lines), autosterile (open-pollinating populations), and group with partial presence of autofertility gene. A total of 40 SSR primers were screened, out of which 34 were selected for the analysis of genetic diversity. A total of 129 different alleles were obtained with mean value 3.2 alleles per SSR primer. According to the results of genetic variability assessment the number and percentage of polymorphic loci was the maximal in pollinators NS1 and tester cms2 while effective number of alleles, expected heterozygosis and Shannon’s index was highest in pollinator EL0204. Analysis of molecular variance (AMOVA) showed that 77.34% of the total genetic variation was attributed to intra-varietal variance. Correspondence analysis results were very similar to grouping by neighbor-joining algorithm. Number of groups was smaller by one, because correspondence analysis merged IFVCNS pollinators with CZ25 into one group. Pollinators FC220, FC221 and C 51 were in the next group, while self-fertile pollinators CR10 and C930-35 from USDA-Salinas were separated. On another branch were self-sterile pollinators ЕL0204 and ЕL53 from USDA-East Lansing. Sterile testers cms1 and cms2 formed separate group. The presented results confirmed that SSR analysis can be successfully used in estimation of genetic diversity within and among sugar beet populations. Since the tested pollinator differed considering the presence of self-fertility gene, their heterozygosity differed as well. It was lower in genotypes with fixed self-fertility genes. Since the most of tested populations were open-pollinated, which rarely self-pollinate, high variability within the populations was expected. Cluster analysis grouped populations according to their origin.Keywords: auto fertility, genetic diversity, pollinator, SSR, sugar beet
Procedia PDF Downloads 460356 Comparison of Rainfall Trends in the Western Ghats and Coastal Region of Karnataka, India
Authors: Vinay C. Doranalu, Amba Shetty
Abstract:
In recent days due to climate change, there is a large variation in spatial distribution of daily rainfall within a small region. Rainfall is one of the main end climatic variables which affect spatio-temporal patterns of water availability. The real task postured by the change in climate is identification, estimation and understanding the uncertainty of rainfall. This study intended to analyze the spatial variations and temporal trends of daily precipitation using high resolution (0.25º x 0.25º) gridded data of Indian Meteorological Department (IMD). For the study, 38 grid points were selected in the study area and analyzed for daily precipitation time series (113 years) over the period 1901-2013. Grid points were divided into two zones based on the elevation and situated location of grid points: Low Land (exposed to sea and low elevated area/ coastal region) and High Land (Interior from sea and high elevated area/western Ghats). Time series were applied to examine the spatial analysis and temporal trends in each grid points by non-parametric Mann-Kendall test and Theil-Sen estimator to perceive the nature of trend and magnitude of slope in trend of rainfall. Pettit-Mann-Whitney test is applied to detect the most probable change point in trends of the time period. Results have revealed remarkable monotonic trend in each grid for daily precipitation of the time series. In general, by the regional cluster analysis found that increasing precipitation trend in shoreline region and decreasing trend in Western Ghats from recent years. Spatial distribution of rainfall can be partly explained by heterogeneity in temporal trends of rainfall by change point analysis. The Mann-Kendall test shows significant variation as weaker rainfall towards the rainfall distribution over eastern parts of the Western Ghats region of Karnataka.Keywords: change point analysis, coastal region India, gridded rainfall data, non-parametric
Procedia PDF Downloads 294