Search results for: Todsaporn Fuangrod
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Todsaporn Fuangrod

2 Development of Multi-Leaf Collimator-Based Isocenter Verification Tool Using Electrical Portal Imaging Device for Stereotactic Radiosurgery

Authors: Panatda Intanin, Sangutid Thongsawad, Chirapha Tannanonta, Todsaporn Fuangrod

Abstract:

Stereotactic radiosurgery (SRS) is a highly precision delivery technique that requires comprehensive quality assurance (QA) tests prior to treatment delivery. An isocenter of delivery beam plays a critical role that affect the treatment accuracy. The uncertainty of isocenter is traditionally accessed using circular cone equipment, Winston-Lutz (WL) phantom and film. This technique is considered time consuming and highly dependent on the observer. In this work, the development of multileaf collimator (MLC)-based isocenter verification tool using electronic portal imaging device (EPID) was proposed and evaluated. A mechanical isocenter alignment with ball bearing diameter 5 mm and circular cone diameter 10 mm fixed to gantry head defines the radiation field was set as the conventional WL test method. The conventional setup was to compare to the proposed setup; using MLC (10 x 10 mm) to define the radiation filed instead of cone. This represents more realistic delivery field than using circular cone equipment. The acquisition from electronic portal imaging device (EPID) and radiographic film were performed in both experiments. The gantry angles were set as following: 0°, 90°, 180° and 270°. A software tool was in-house developed using MATLAB/SIMULINK programming to determine the centroid of radiation field and shadow of WL phantom automatically. This presents higher accuracy than manual measurement. The deviation between centroid of both cone-based and MLC-based WL tests were quantified. To compare between film and EPID image, the deviation for all gantry angle was 0.26±0.19mm and 0.43±0.30 for cone-based and MLC-based WL tests. For the absolute deviation calculation on EPID images between cone and MLC-based WL test was 0.59±0.28 mm and the absolute deviation on film images was 0.14±0.13 mm. Therefore, the MLC-based isocenter verification using EPID present high sensitivity tool for SRS QA.

Keywords: isocenter verification, quality assurance, EPID, SRS

Procedia PDF Downloads 114
1 A Prospective Study of a Clinically Significant Anatomical Change in Head and Neck Intensity-Modulated Radiation Therapy Using Transit Electronic Portal Imaging Device Images

Authors: Wilai Masanga, Chirapha Tannanonta, Sangutid Thongsawad, Sasikarn Chamchod, Todsaporn Fuangrod

Abstract:

The major factors of radiotherapy for head and neck (HN) cancers include patient’s anatomical changes and tumour shrinkage. These changes can significantly affect the planned dose distribution that causes the treatment plan deterioration. A measured transit EPID images compared to a predicted EPID images using gamma analysis has been clinically implemented to verify the dose accuracy as part of adaptive radiotherapy protocol. However, a global gamma analysis dose not sensitive to some critical organ changes as the entire treatment field is compared. The objective of this feasibility study is to evaluate the dosimetric response to patient anatomical changes during the treatment course in HN IMRT (Head and Neck Intensity-Modulated Radiation Therapy) using a novel comparison method; organ-of-interest gamma analysis. This method provides more sensitive to specific organ change detection. Random replanned 5 HN IMRT patients with causes of tumour shrinkage and patient weight loss that critically affect to the parotid size changes were selected and evaluated its transit dosimetry. A comprehensive physics-based model was used to generate a series of predicted transit EPID images for each gantry angle from original computed tomography (CT) and replan CT datasets. The patient structures; including left and right parotid, spinal cord, and planning target volume (PTV56) were projected to EPID level. The agreement between the transit images generated from original CT and replanned CT was quantified using gamma analysis with 3%, 3mm criteria. Moreover, only gamma pass-rate is calculated within each projected structure. The gamma pass-rate in right parotid and PTV56 between predicted transit of original CT and replan CT were 42.8%( ± 17.2%) and 54.7%( ± 21.5%). The gamma pass-rate for other projected organs were greater than 80%. Additionally, the results of organ-of-interest gamma analysis were compared with 3-dimensional cone-beam computed tomography (3D-CBCT) and the rational of replan by radiation oncologists. It showed that using only registration of 3D-CBCT to original CT does not provide the dosimetric impact of anatomical changes. Using transit EPID images with organ-of-interest gamma analysis can provide additional information for treatment plan suitability assessment.

Keywords: re-plan, anatomical change, transit electronic portal imaging device, EPID, head, and neck

Procedia PDF Downloads 191