Search results for: real excess portfolio returns
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6258

Search results for: real excess portfolio returns

3138 The Impact of Governance on Happiness: Evidence from Quantile Regressions

Authors: Chiung-Ju Huang

Abstract:

This study utilizes the quantile regression analysis to examine the impact of governance (including democratic quality and technical quality) on happiness in 101 countries worldwide, classified as “developed countries” and “developing countries”. The empirical results show that the impact of democratic quality and technical quality on happiness is significantly positive for “developed countries”, while is insignificant for “developing countries”. The results suggest that the authorities in developed countries can enhance the level of individual happiness by means of improving the democracy quality and technical quality. However, for developing countries, promoting the quality of governance in order to enhance the level of happiness may not be effective. Policy makers in developed countries may pay more attention on increasing real GDP per capita instead of promoting the quality of governance to enhance individual happiness.

Keywords: governance, happiness, multiple regression, quantile regression

Procedia PDF Downloads 286
3137 Dambreak Flood Analysis Using HEC-RAS and GIS Technologies

Authors: Oussama Derdous, Lakhdar Djemili, Hamza Bouchehed

Abstract:

The potential risks associated with dam break flooding could be considerable and result in major damage, including loss of life and property destruction. In the past, Algeria experienced such flood disasters; let’s recall the failure of Fergoug dam in 1881, this accident cost 200 lives, many houses and bridges were destroyed by the flooding. Recently the Algerian government have obligated to dam owners the development of detailed dam break Emergency Action Plans for its 64 major dams. The research presented here was conducted within this framework, Zardezas dam which is located in the city of Skikda in the North East of Algeria was the case of study. The model HEC-RAS was used for the hydrodynamic routing of the dam break flood wave. In addition, Geographic Information System (GIS) was used to create inundation maps and produce a visualization of the flood propagation in the Saf-Saf River.The simulation results that demonstrate the significance of Zardezas dam break flooding; constitute a real tool for developing emergency response plans and assisting territorial communities in land use planning.

Keywords: dam break, HEC-RAS, GIS, inundation maps, Emergency Action Plan

Procedia PDF Downloads 398
3136 Real-Time Compressive Strength Monitoring for NPP Concrete Construction Using an Embedded Piezoelectric Self-Sensing Technique

Authors: Junkyeong Kim, Seunghee Park, Ju-Won Kim, Myung-Sug Cho

Abstract:

Recently, demands for the construction of Nuclear Power Plants (NPP) using high strength concrete (HSC) has been increased. However, HSC might be susceptible to brittle fracture if the curing process is inadequate. To prevent unexpected collapse during and after the construction of HSC structures, it is essential to confirm the strength development of HSC during the curing process. However, several traditional strength-measuring methods are not effective and practical. In this study, a novel method to estimate the strength development of HSC based on electromechanical impedance (EMI) measurements using an embedded piezoelectric sensor is proposed. The EMI of NPP concrete specimen was tracked to monitor the strength development. In addition, cross-correlation coefficient was applied in sequence to examine the trend of the impedance variations more quantitatively. The results confirmed that the proposed technique can be applied successfully monitoring of the strength development during the curing process of HSC structures.

Keywords: concrete curing, embedded piezoelectric sensor, high strength concrete, nuclear power plant, self-sensing impedance

Procedia PDF Downloads 519
3135 Optimization of Hybrid off Grid Energy Station

Authors: Yehya Abdellatif, Iyad M. Muslih, Azzah Alkhalailah, Abdallah Muslih

Abstract:

Hybrid Optimization Model for Electric Renewable (HOMER) software was utilized to find the optimum design of a hybrid off-Grid system, by choosing the optimal solution depending on the cost analysis of energy based on different capacity shortage percentages. A complete study for the site conditions and load profile was done to optimize the design and implementation of a hybrid off-grid power station. In addition, the solution takes into consecration the ambient temperature effect on the efficiency of the power generation and the economical aspects of selection depending on real market price. From the analysis of the HOMER model results, the optimum hybrid power station was suggested, based on wind speed, and solar conditions. The optimization function objective is to minimize the Net Price Cost (NPC) and the Cost of Energy (COE) with zero and 10 percentage of capacity shortage.

Keywords: energy modeling, HOMER, off-grid system, optimization

Procedia PDF Downloads 565
3134 Mourning Motivations for Celebrities in Instagram: A Case Study of Mohammadreza Shajarian's Death

Authors: Zahra Afshordi

Abstract:

Instagram, as an everyday life social network, hosts from the ultrasound image of an unborn fetus to the pictures of newly placed gravestones and funerals. It is a platform that allows its users to create a second identity independently from and at the same time in relation to the real space identity. The motives behind this identification are what this article is about. This article studies the motivations of Instagram users mourning for celebrities with a focus on the death of MohammadReza Shajarian. The Shajarian’s death had a wide reflection on Instagram Persian-speaking users. The purpose of this qualitative survey is to comprehend and study the user’s motivations in posting mourning and memorializing content. The methodology of the essay is a hybrid methodology consisting of content analysis and open-ended interviews. The results highlight that users' motives are more than just simple sympathy and include political protest, gaining cultural capital, reaching social status, and escaping from solitude.

Keywords: case study, celebrity, identity, Instagram, mourning, qualitative survey

Procedia PDF Downloads 161
3133 Distributed Energy System - Microgrid Integration of Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Planning a hybrid power system (HPS) that integrates renewable generation sources, non-renewable generation sources and energy storage, involves determining the capacity and size of various components to be used in the system to be able to supply reliable electricity to the connected load as required. Nowadays it is very common to integrate solar photovoltaic (PV) power plants for renewable generation as part of HPS. The solar PV system is usually balanced via a second form of generation (renewable such as wind power or using fossil fuels such as a diesel generator) or an energy storage system (such as a battery bank). Hybrid power systems can also provide other forms of power such as heat for some applications. Modern hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, grid code compliance

Procedia PDF Downloads 150
3132 Geospatial Information for Smart City Development

Authors: Simangele Dlamini

Abstract:

Smart city development is seen as a way of facing the challenges brought about by the growing urban population the world over. Research indicates that cities have a role to play in combating urban challenges like crime, waste disposal, greenhouse gas emissions, and resource efficiency. These solutions should be such that they do not make city management less sustainable but should be solutions-driven, cost and resource-efficient, and smart. This study explores opportunities on how the City of Johannesburg, South Africa, can use Geographic Information Systems, Big Data and the Internet of Things (IoT) in identifying opportune areas to initiate smart city initiatives such as smart safety, smart utilities, smart mobility, and smart infrastructure in an integrated manner. The study will combine Big Data, using real-time data sources to identify hotspot areas that will benefit from ICT interventions. The GIS intervention will assist the city in avoiding a silo approach in its smart city development initiatives, an approach that has led to the failure of smart city development in other countries.

Keywords: smart cities, internet of things, geographic information systems, johannesburg

Procedia PDF Downloads 153
3131 Structural Analysis on the Composition of Video Game Virtual Spaces

Authors: Qin Luofeng, Shen Siqi

Abstract:

For the 58 years since the first video game came into being, the video game industry is getting through an explosive evolution from then on. Video games exert great influence on society and become a reflection of public life to some extent. Video game virtual spaces are where activities are taking place like real spaces. And that’s the reason why some architects pay attention to video games. However, compared to the researches on the appearance of games, we observe a lack of theoretical comprehensive on the construction of video game virtual spaces. The research method of this paper is to collect literature and conduct theoretical research about the virtual space in video games firstly. And then analogizing the opinions on the space phenomena from the theory of literature and films. Finally, this paper proposes a three-layer framework for the construction of video game virtual spaces: “algorithmic space-narrative space players space”, which correspond to the exterior, expressive, affective parts of the game space. Also, we illustrate each sub-space according to numerous instances of published video games. Hoping this writing could promote the interactive development of video games and architecture.

Keywords: video game, virtual space, narrativity, social space, emotional connection

Procedia PDF Downloads 272
3130 Uncertainty Estimation in Neural Networks through Transfer Learning

Authors: Ashish James, Anusha James

Abstract:

The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.

Keywords: uncertainty estimation, neural networks, transfer learning, regression

Procedia PDF Downloads 142
3129 Deployed Confidence: The Testing in Production

Authors: Shreya Asthana

Abstract:

Testers know that the feature they tested on stage is working perfectly in production only after release went live. Sometimes something breaks in production and testers get to know through the end user’s bug raised. The panic mode starts when your staging test results do not reflect current production behavior. And you started doubting your testing skills when finally the user reported a bug to you. Testers can deploy their confidence on release day by testing on production. Once you start doing testing in production, you will see test result accuracy because it will be running on real time data and execution will be a little faster as compared to staging one due to elimination of bad data. Feature flagging, canary releases, and data cleanup can help to achieve this technique of testing. By this paper it will be easier to understand the steps to achieve production testing before making your feature live, and to modify IT company’s testing procedure, so testers can provide the bug free experience to the end users. This study is beneficial because too many people think that testing should be done in staging but not in production and now this is high time to pull out people from their old mindset of testing into a new testing world. At the end of the day, it all just matters if the features are working in production or not.

Keywords: bug free production, new testing mindset, testing strategy, testing approach

Procedia PDF Downloads 80
3128 Network Connectivity Knowledge Graph Using Dwave Quantum Hybrid Solvers

Authors: Nivedha Rajaram

Abstract:

Hybrid Quantum solvers have been given prime focus in recent days by computation problem-solving domain industrial applications. D’Wave Quantum Computers are one such paragon of systems built using quantum annealing mechanism. Discrete Quadratic Models is a hybrid quantum computing model class supplied by D’Wave Ocean SDK - a real-time software platform for hybrid quantum solvers. These hybrid quantum computing modellers can be employed to solve classic problems. One such problem that we consider in this paper is finding a network connectivity knowledge hub in a huge network of systems. Using this quantum solver, we try to find out the prime system hub, which acts as a supreme connection point for the set of connected computers in a large network. This paper establishes an innovative problem approach to generate a connectivity system hub plot for a set of systems using DWave ocean SDK hybrid quantum solvers.

Keywords: quantum computing, hybrid quantum solver, DWave annealing, network knowledge graph

Procedia PDF Downloads 131
3127 The Solvent Extraction of Uranium, Plutonium and Thorium from Aqueous Solution by 1-Hydroxyhexadecylidene-1,1-Diphosphonic Acid

Authors: M. Bouhoun Ali, A. Y. Badjah Hadj Ahmed, M. Attou, A. Elias, M. A. Didi

Abstract:

In this paper, the solvent extraction of uranium(VI), plutonium(IV) and thorium(IV) from aqueous solutions using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) in treated kerosene has been investigated. The HHDPA was previously synthesized and characterized by FT-IR, 1H NMR, 31P NMR spectroscopy and elemental analysis. The effects contact time, initial pH, initial metal concentration, aqueous/organic phase ratio, extractant concentration and temperature on the extraction process have been studied. An empirical modelling was performed by using a 25 full factorial design, and regression equation for extraction metals was determined from the data. The conventional log-log analysis of the extraction data reveals that ratios of extractant to extracted U(VI), Pu(IV) and Th(IV) are 1:1, 1:2 and 1:2, respectively. Thermodynamic parameters showed that the extraction process was exothermic heat and spontaneous. The obtained optimal parameters were applied to real effluents containing uranium(VI), plutonium(IV) and thorium(IV) ions.

Keywords: solvent extraction, uranium, plutonium, thorium, 1-hydroxyhexadecylidene-1-1-diphosphonic acid, aqueous solution

Procedia PDF Downloads 289
3126 Barred from Each Other: Why Normative Husbands Remain Married to Incarcerated Wives

Authors: Tomer Einat, Sharon Rabinovitz, Inbal Harel-Aviram

Abstract:

This study explores men’s motivation and justification to remain married to their criminal, imprisoned wives. Using semi-structured interviews and content-analysis, data were collected and analyzed from eight men who maintain stable marriage relationships with their incarcerated wives. Participants are normative men who describe incarceration as a challenge that enhances mutual responsibility and commitment. They exaggerate the extent to which their partners resemble archetypal romantic ideals. They use motivational accounts to explain the woman’s criminal conduct, which is perceived as non-relevant to her real identity. Physical separation and lack of physical intimacy are perceived as the major difficulties in maintaining their marriage relations. Length of imprisonment and marriage was found to be related to the decision whether to continue or terminate the relationships. Women-inmates’ partners experience difficulties and use coping strategies very similar to those cited by other normative spouses facing lengthy separation.

Keywords: female inmates, marriage, normative spouses, romantic accounts

Procedia PDF Downloads 462
3125 Emerging Threats and Adaptive Defenses: Navigating the Future of Cybersecurity in a Hyperconnected World

Authors: Olasunkanmi Jame Ayodeji, Adebayo Adeyinka Victor

Abstract:

In a hyperconnected world, cybersecurity faces a continuous evolution of threats that challenge traditional defence mechanisms. This paper explores emerging cybersecurity threats like malware, ransomware, phishing, social engineering, and the Internet of Things (IoT) vulnerabilities. It delves into the inadequacies of existing cybersecurity defences in addressing these evolving risks and advocates for adaptive defence mechanisms that leverage AI, machine learning, and zero-trust architectures. The paper proposes collaborative approaches, including public-private partnerships and information sharing, as essential to building a robust defence strategy to address future cyber threats. The need for continuous monitoring, real-time incident response, and adaptive resilience strategies is highlighted to fortify digital infrastructures in the face of escalating global cyber risks.

Keywords: cybersecurity, hyperconnectivity, malware, adaptive defences, zero-trust architecture, internet of things vulnerabilities

Procedia PDF Downloads 29
3124 Breast Cancer Mortality and Comorbidities in Portugal: A Predictive Model Built with Real World Data

Authors: Cecília M. Antão, Paulo Jorge Nogueira

Abstract:

Breast cancer (BC) is the first cause of cancer mortality among Portuguese women. This retrospective observational study aimed at identifying comorbidities associated with BC female patients admitted to Portuguese public hospitals (2010-2018), investigating the effect of comorbidities on BC mortality rate, and building a predictive model using logistic regression. Results showed that the BC mortality in Portugal decreased in this period and reached 4.37% in 2018. Adjusted odds ratio indicated that secondary malignant neoplasms of liver, of bone and bone marrow, congestive heart failure, and diabetes were associated with an increased chance of dying from breast cancer. Although the Lisbon district (the most populated area) accounted for the largest percentage of BC patients, the logistic regression model showed that, besides patient’s age, being resident in Bragança, Castelo Branco, or Porto districts was directly associated with an increase of the mortality rate.

Keywords: breast cancer, comorbidities, logistic regression, adjusted odds ratio

Procedia PDF Downloads 91
3123 Evaluation of University Students of a Video Game to Sensitize Young People about Mental Health Problems

Authors: Adolfo Cangas, Noelia Navarro

Abstract:

The current study shows the assessment made by university students of a video game entitled Stigma-Stop where the characters present different mental disorders. The objective is that players have more real information about mental disorders and empathize with them and thus reduce stigma. The sample consisted of 169 university students studying degrees related to education, social care and welfare (i.e., Social Education, Psychology, Early Childhood Education, Special Education, and Social Work). The participants valued the video game positively, especially in relation to utility, being somewhat lower the score awarded to the degree of entertainment. They detect the disorders and point out that in many occasions they felt the same (particularly in the case of depression, being lower in agoraphobia and bipolar disorder, and even lower in the case of schizophrenia), most students recommend the use of the video game. They emphasize that Stigma-Stop offers intervention strategies, information regarding the symptomatology and sensitizes against stigma.

Keywords: schizophrenia, social stigma, students, mental health

Procedia PDF Downloads 286
3122 Strategic Tools for Entrepreneurship: Model Proposal for Manufacturing Companies

Authors: Chiara Mansanta, Daniela Sani

Abstract:

The present paper presents the further development of the application of a standard methodology to boost innovation inside real case studies of manufacturing companies. The proposed methodology provides a viable solution for manufacturing companies that have to evaluate new business ideas. The study underlined the concept of entrepreneurship and how a manager can use it to promote innovation inside their companies. Starting from a literature study on entrepreneurship, this paper examines the role of the manager in supporting a company’s development. The empirical part of the study is based on two manufacturing companies that used the proposed methodology to favour entrepreneurship through an alternative approach. The research demonstrated the need for companies to have a structured and well-defined methodology to achieve their goals. The purpose of this article is to understand the significance of business models inside companies and explore how they affect business strategy and innovation management. The idea is to use business models to support entrepreneurs in their decision-making processes, reducing risks and avoiding errors.

Keywords: entrepreneurship, manufacturing companies, solution validation, strategic management

Procedia PDF Downloads 98
3121 Large-Scale Electroencephalogram Biometrics through Contrastive Learning

Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes

Abstract:

EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.

Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification

Procedia PDF Downloads 160
3120 Interactive Solutions for the Multi-Objective Capacitated Transportation Problem with Mixed Constraints under Fuzziness

Authors: Aquil Ahmed, Srikant Gupta, Irfan Ali

Abstract:

In this paper, we study a multi-objective capacitated transportation problem (MOCTP) with mixed constraints. This paper is comprised of the modelling and optimisation of an MOCTP in a fuzzy environment in which some goals are fractional and some are linear. In real life application of the fuzzy goal programming (FGP) problem with multiple objectives, it is difficult for the decision maker(s) to determine the goal value of each objective precisely as the goal values are imprecise or uncertain. Also, we developed the concept of linearization of fractional goal for solving the MOCTP. In this paper, imprecision of the parameter is handled by the concept of fuzzy set theory by considering these parameters as a trapezoidal fuzzy number. α-cut approach is used to get the crisp value of the parameters. Numerical examples are used to illustrate the method for solving MOCTP.

Keywords: capacitated transportation problem, multi objective linear programming, multi-objective fractional programming, fuzzy goal programming, fuzzy sets, trapezoidal fuzzy number

Procedia PDF Downloads 438
3119 The Role of Artificial Intelligence in Concrete Constructions

Authors: Ardalan Tofighi Soleimandarabi

Abstract:

Artificial intelligence has revolutionized the concrete construction industry and improved processes by increasing efficiency, accuracy, and sustainability. This article examines the applications of artificial intelligence in predicting the compressive strength of concrete, optimizing mixing plans, and improving structural health monitoring systems. Artificial intelligence-based models, such as artificial neural networks (ANN) and combined machine learning techniques, have shown better performance than traditional methods in predicting concrete properties. In addition, artificial intelligence systems have made it possible to improve quality control and real-time monitoring of structures, which helps in preventive maintenance and increases the life of infrastructure. Also, the use of artificial intelligence plays an effective role in sustainable construction by optimizing material consumption and reducing waste. Although the implementation of artificial intelligence is associated with challenges such as high initial costs and the need for specialized training, it will create a smarter, more sustainable, and more affordable future for concrete structures.

Keywords: artificial intelligence, concrete construction, compressive strength prediction, structural health monitoring, stability

Procedia PDF Downloads 25
3118 Evaluation of Diagnosis Performance Based on Pairwise Model Construction and Filtered Data

Authors: Hyun-Woo Cho

Abstract:

It is quite important to utilize right time and intelligent production monitoring and diagnosis of industrial processes in terms of quality and safety issues. When compared with monitoring task, fault diagnosis represents the task of finding process variables responsible causing a specific fault in the process. It can be helpful to process operators who should investigate and eliminate root causes more effectively and efficiently. This work focused on the active use of combining a nonlinear statistical technique with a preprocessing method in order to implement practical real-time fault identification schemes for data-rich cases. To compare its performance to existing identification schemes, a case study on a benchmark process was performed in several scenarios. The results showed that the proposed fault identification scheme produced more reliable diagnosis results than linear methods. In addition, the use of the filtering step improved the identification results for the complicated processes with massive data sets.

Keywords: diagnosis, filtering, nonlinear statistical techniques, process monitoring

Procedia PDF Downloads 246
3117 Strategic Role of Fintechs in Evolving Financial Functions and Enhancing Corporate Resilience amid Economic Crises

Authors: Ghizlane Barzi, Zineb Bamousse

Abstract:

In an increasingly volatile global economic context characterized by recurring crises, the financial function of companies is called upon to play a strategic role not only in resource management but also in organizational resilience. The emergence of financial technologies (fintech) offers innovative tools capable of transforming this function by enhancing the efficiency of financial processes and increasing companies' ability to adapt and overcome economic shocks. However, despite the rapid rise of fintechs and their growing adoption by companies, there remain uncertainties regarding the real impact of these innovations on the financial resilience of organizations. Indeed, how do fintech-driven innovations transform the financial function, and to what extent does this transformation contribute to strengthening the financial resilience of companies in the face of contemporary crises? This research aims to explore these questions by examining the interrelationships between the financial function, fintech innovations, and corporate resilience, in order to identify optimization levers that could be adopted for better financial risk management.

Keywords: finance, financial function, fintech, resilience, innovation

Procedia PDF Downloads 34
3116 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally

Abstract:

The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning

Procedia PDF Downloads 429
3115 Exploring the Impact of AI Tools in Microsoft PowerPoint

Authors: Budoor Bujeir, Noor Alaidaros, Sultana Alsolami

Abstract:

This study investigates how AI tools in Microsoft PowerPoint, such as Designer and Translation, might improve the process of creating presentations. Thanks to its sophisticated AI features, PowerPoint has become a powerful tool for effectively creating high-quality presentations. Designed to maximize user experience, key features include multilingual translation, real-time collaboration, and design ideas. A mixed-method approach was used, combining hands-on demos of particular AI technologies with a questionnaire given to both inexperienced and seasoned users. The survey examined how often individuals used these features, how helpful they thought they were, and how much time they could save. The results show that although tools like Designer are not widely used, they are recognized for improving aesthetics and saving time. The accuracy and usefulness of translation technologies in multilingual environments received high ratings, emphasizing how they promote inclusive communication. The importance of incorporating AI into productivity software is highlighted by this study, opening the door to more approachable, effective, and captivating presentation workflows.

Keywords: Microsoft PowerPoint, AI features, designer, translation, presentation tools, NLP

Procedia PDF Downloads 16
3114 Against the Philosophical-Scientific Racial Project of Biologizing Race

Authors: Anthony F. Peressini

Abstract:

The concept of race has recently come prominently back into discussion in the context of medicine and medical science, along with renewed effort to biologize racial concepts. This paper argues that this renewed effort to biologize race by way of medicine and population genetics fail on their own terms, and more importantly, that the philosophical project of biologizing race ought to be recognized for what it is—a retrograde racial project—and abandoned. There is clear agreement that standard racial categories and concepts cannot be grounded in the old way of racial naturalism, which understand race as a real, interest-independent biological/metaphysical category in which its members share “physical, moral, intellectual, and cultural characteristics.” But equally clear is the very real and pervasive presence of racial concepts in individual and collective consciousness and behavior, and so it remains a pressing area in which to seek deeper understanding. Recent philosophical work has endeavored to reconcile these two observations by developing a “thin” conception of race, grounded in scientific concepts but without the moral and metaphysical content. Such “thin,” science-based analyses take the “commonsense” or “folk” sense of race as it functions in contemporary society as the starting point for their philosophic-scientific projects to biologize racial concepts. A “philosophic-scientific analysis” is a special case of the cornerstone of analytic philosophy: a conceptual analysis. That is, a rendering of a concept into the more perspicuous concepts that constitute it. Thus a philosophic-scientific account of a concept is an attempt to work out an analysis of a concept that makes use of empirical science's insights to ground, legitimate and explicate the target concept in terms of clearer concepts informed by empirical results. The focus in this paper is on three recent philosophic-scientific cases for retaining “race” that all share this general analytic schema, but that make use of “medical necessity,” population genetics, and human genetic clustering, respectively. After arguing that each of these three approaches suffers from internal difficulties, the paper considers the general analytic schema employed by such biologizations of race. While such endeavors are inevitably prefaced with the disclaimer that the theory to follow is non-essentialist and non-racialist, the case will be made that such efforts are not neutral scientific or philosophical projects but rather are what sociologists call a racial project, that is, one of many competing efforts that conjoin a representation of what race means to specific efforts to determine social and institutional arrangements of power, resources, authority, etc. Accordingly, philosophic-scientific biologizations of race, since they begin from and condition their analyses on “folk” conceptions, cannot pretend to be “prior to” other disciplinary insights, nor to transcend the social-political dynamics involved in formulating theories of race. As a result, such traditional philosophical efforts can be seen to be disciplinarily parochial and to address only a caricature of a large and important human problem—and thereby further contributing to the unfortunate isolation of philosophical thinking about race from other disciplines.

Keywords: population genetics, ontology of race, race-based medicine, racial formation theory, racial projects, racism, social construction

Procedia PDF Downloads 276
3113 Effect of the Ratio, Weight, Treatment of Loofah Fiber on the Mechanical Properties of the Composite: Loofah Fiber Resin

Authors: F. Siahmed, A. Lounis, L. Faghi

Abstract:

The aim of this work is to study mechanical properties of composites based on fiber natural. This material has attracted attention of the scientific community for its mechanical properties, its moderate cost and its specification as regards the protection of environment. In this study the loofah part of the family of the natural fiber has been used for these significant mechanical properties. The fiber has porous structure, which facilitates the impregnation of the resin through these pores. The matrix used in this study is the type of unsaturated polyester. This resin was chosen for its resistance to long term.The work involves: -The chemical treatment of the fibers of loofah by NaOH solution (5%) -The realization of the composite resin / fiber loofah; The preparation of samples for testing -The tensile tests and bending -The observation of facies rupture by scanning electron microscopy The results obtained allow us to observe that the values of Young's modulus and tensile strength in tension is high and open up real prospects. The improvement in mechanical properties has been obtained for the two-layer composite fiber with 7.5% (by weight).

Keywords: loofah fiber, mechanical properties, composite, loofah fiber resin

Procedia PDF Downloads 452
3112 Optimal Reactive Power Dispatch under Various Contingency Conditions Using Whale Optimization Algorithm

Authors: Khaled Ben Oualid Medani, Samir Sayah

Abstract:

The Optimal Reactive Power Dispatch (ORPD) problem has been solved and analysed usually in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages.

Keywords: optimal reactive power dispatch, power system analysis, real power loss minimization, contingency condition, metaheuristic technique, whale optimization algorithm

Procedia PDF Downloads 127
3111 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting Title

Authors: Gangmin Li, Fan Yang

Abstract:

Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behaviour data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.

Keywords: personalized recommendation, generative user modelling, user intention identification, large language models, chain-of-thought prompting

Procedia PDF Downloads 60
3110 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format

Authors: Maryam Fallahpoor, Biswajeet Pradhan

Abstract:

Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.

Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format

Procedia PDF Downloads 93
3109 Maternal Obesity in Nigeria: An Exploratory Study

Authors: Ojochenemi J. Onubi, Debbi Marais, Lorna Aucott, Friday Okonofua, Amudha Poobalan

Abstract:

Background: Obesity is a worldwide epidemic with major health and economic consequences. Pregnancy is a trigger point for the development of obesity, and maternal obesity is associated with significant adverse effects in the mother and child. Nigeria is experiencing a double burden of under- and over-nutrition with rising levels of obesity particularly in women. However, there is scarcity of data on maternal obesity in Nigeria and other African countries. Aims and Objectives: This project aimed at identifying crucial components of potential interventions for maternal obesity in Nigeria. The objectives were to assess the prevalence, effects, and distribution of maternal obesity; knowledge, attitude and practice (KAP) of pregnant women and maternal healthcare providers; and identify existing interventions for maternal obesity in Nigeria. Methodology: A systematic review and meta-analysis were initially conducted to appraise the existing literature on maternal obesity in Africa. Following this, a quantitative questionnaire survey of the KAP of pregnant women and a qualitative interview study of the KAP of Health Care Workers (HCW) were conducted in seven secondary and tertiary hospitals across Nigeria. Quantitative data was analysed using SPSS statistical software, while thematic analysis was conducted for qualitative data. Results: Twenty-nine studies included in the systematic review showed significant prevalence, socio-demographic associations, and adverse effects of maternal obesity on labour, maternal, and child outcomes in Africa. The questionnaire survey of 435 mothers revealed a maternal obesity prevalence of 17.9% among mothers who registered for antenatal care in the first trimester. The mothers received nutrition information from different sources and had insufficient knowledge of their own weight category or recommended Gestational Weight Gain (GWG), causes, complications, and safe ways to manage maternal obesity. However, majority of the mothers were of the opinion that excess GWG is avoided in pregnancy and some practiced weight management (diet and exercise) during pregnancy. For the qualitative study, four main themes were identified: ‘Concerns about obesity in pregnancy’, ‘Barriers to care for obese pregnant women’, ‘Practice of care for obese pregnant women’, and ‘Improving care for obese pregnant women’. HCW expressed concerns about rising levels of maternal obesity, lack of guidelines for the management of obese pregnant women and worries about unintended consequences of antenatal interventions. ‘Barriers’ included lack of contact with obese women before pregnancy, late registration for antenatal care, and perceived maternal barriers such as socio-cultural beliefs of mothers and poverty. ‘Practice’ included anticipatory care and screening for possible complications, general nutrition education during antenatal care and interdisciplinary care for mothers with complications. HCW offered suggestions on improving care for obese women including timing, type, and settings of interventions; and the need for involvement of other stake holders in caring for obese pregnant women. Conclusions: Culturally adaptable/sensitive interventions should be developed for the management of obese pregnant women in Africa. Education and training of mothers and health care workers, and provision of guidelines are some of the components of potential interventions in Nigeria.

Keywords: Africa, maternal, obesity, pregnancy

Procedia PDF Downloads 271