Search results for: network user rules
4618 Development of a Multi-User Country Specific Food Composition Table for Malawi
Authors: Averalda van Graan, Joelaine Chetty, Malory Links, Agness Mwangwela, Sitilitha Masangwi, Dalitso Chimwala, Shiban Ghosh, Elizabeth Marino-Costello
Abstract:
Food composition data is becoming increasingly important as dealing with food insecurity and malnutrition in its persistent form of under-nutrition is now coupled with increasing over-nutrition and its related ailments in the developing world, of which Malawi is not spared. In the absence of a food composition database (FCDB) inherent to our dietary patterns, efforts were made to develop a country-specific FCDB for nutrition practice, research, and programming. The main objective was to develop a multi-user, country-specific food composition database, and table from existing published and unpublished scientific literature. A multi-phased approach guided by the project framework was employed. Phase 1 comprised a scoping mission to assess the nutrition landscape for compilation activities. Phase 2 involved training of a compiler and data collection from various sources, primarily; institutional libraries, online databases, and food industry nutrient data. Phase 3 subsumed evaluation and compilation of data using FAO and IN FOODS standards and guidelines. Phase 4 concluded the process with quality assurance. 316 Malawian food items categorized into eight food groups for 42 components were captured. The majority were from the baby food group (27%), followed by a staple (22%) and animal (22%) food group. Fats and oils consisted the least number of food items (2%), followed by fruits (6%). Proximate values are well represented; however, the percent missing data is huge for some components, including Se 68%, I 75%, Vitamin A 42%, and lipid profile; saturated fat 53%, mono-saturated fat 59%, poly-saturated fat 59% and cholesterol 56%. A multi-phased approach following the project framework led to the development of the first Malawian FCDB and table. The table reflects inherent Malawian dietary patterns and nutritional concerns. The FCDB can be used by various professionals in nutrition and health. Rising over-nutrition, NCD, and changing diets challenge us for nutrient profiles of processed foods and complete lipid profiles.Keywords: analytical data, dietary pattern, food composition data, multi-phased approach
Procedia PDF Downloads 934617 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks
Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian
Abstract:
Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.Keywords: artificial neural network, clayey soil, imperialist competition algorithm, lateral bearing capacity, short pile
Procedia PDF Downloads 1524616 A Miniaturized Circular Patch Antenna Based on Metamaterial for WI-FI Applications
Authors: Fatima Zahra Moussa, Yamina Belhadef, Souheyla Ferouani
Abstract:
In this work, we present a new form of miniature circular patch antenna based on CSRR metamaterials with an extended bandwidth proposed for 5 GHz Wi-Fiapplications. A reflection coefficient of -35 dB and a radiation pattern of 7.47 dB are obtained when simulating the initial proposed antenna with the CST microwave studio simulation software. The notch insertion technique in the radiating element was used for matching the antenna to the desired frequency in the frequency band [5150-5875] MHz.An extension of the bandwidth from 332 MHz to 1423 MHz was done by the DGS (defected ground structure) technique to meet the user's requirement in the 5 GHz Wi-Fi frequency band.Keywords: patch antenna, miniaturisation, CSRR, notches, wifi, DGS
Procedia PDF Downloads 1224615 Condensation of Moist Air in Heat Exchanger Using CFD
Authors: Jan Barak, Karel Frana, Joerg Stiller
Abstract:
This work presents results of moist air condensation in heat exchanger. It describes theoretical knowledge and definition of moist air. Model with geometry of square canal was created for better understanding and post processing of condensation phenomena. Different approaches were examined on this model to find suitable software and model. Obtained knowledge was applied to geometry of real heat exchanger and results from experiment were compared with numerical results. One of the goals is to solve this issue without creating any user defined function in the applied code. It also contains summary of knowledge and outlook for future work.Keywords: condensation, exchanger, experiment, validation
Procedia PDF Downloads 4034614 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm
Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima
Abstract:
In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.Keywords: cloud space, AES, FTP, NetBeans IDE
Procedia PDF Downloads 2064613 Geometric Continuity in the Form of Iranian Domes, Study of Prominent Safavid and Sasanian Domes
Authors: Nima Valibeig, Haniyeh Mohammadi, Neda Sadat Abdelahi
Abstract:
Persian domes follow different forms depending on the materials used to construct and other factors. One of the factors that shape the form of a dome is the geometric proportion used in the drawing and construction of the dome. Some commonly used proportions are revealed by analysing the shapes and geometric ratio of the monuments’ domes. The proportions are achieved by the proficiency of the skilled architects of the buildings. These proportions can be used to reconstruct damaged parts of the historical monuments. Most of the research on domes is about the historical or stability features of domes, and less attention is made to the geometric system in domes. Therefore, in this study, we study the explicit and implicit geometric proportions in Iranian dome structures for the first time. The study is done based on a literature review and field survey. This research reveals that the permanent geometric rules are perfectly used in the design and construction of the prominent domes.Keywords: geometry in architecture, architectural proportions, prominent domes, iranian golden ratio, geometric proportion
Procedia PDF Downloads 2844612 UKIYO-E: User Knowledge Improvement Based on Youth Oriented Entertainment, Art Appreciation Support by Interacting with Picture
Authors: Haruya Tamaki, Tsugunosuke Sakai, Ryuichi Yoshida, Ryohei Egusa, Shigenori Inagaki, Etsuji Yamaguchi, Fusako Kusunoki, Miki Namatame, Masanori Sugimoto, Hiroshi Mizoguchi
Abstract:
Art appreciation is important as part of children education. Art appreciation can enrich sensibility and creativity. To enrich sensibility and creativity, the children have to learning knowledge of picture such as social and historical backgrounds and author intention. High learning effect can acquire by actively learning. In short, it is important that encourage learning of the knowledge about pictures actively. It is necessary that children feel like interest to encourage learning of the knowledge about pictures actively. In a general art museum, comments on pictures are done through writing. Thus, we expect that this method cannot arouse the interest of the children in pictures, because children feel like boring. In brief, learning about the picture information is difficult. Therefore, we are developing an art-appreciation support system that will encourage learning of the knowledge about pictures actively by children feel like interest. This system uses that Interacting with Pictures to learning of the knowledge about pictures. To Interacting with Pictures, children have to utterance by themselves. We expect that will encourage learning of the knowledge about pictures actively by Interacting with Pictures. To more actively learning, children can choose who talking with by information that location and movement of the children. This system must be able to acquire real-time knowledge of the location, movement, and voice of the children. We utilize the Microsoft’s Kinect v2 sensor and its library, namely, Kinect for Windows SDK and Speech Platform SDK v11 for this purpose. By using these sensor and library, we can determine the location, movement, and voice of the children. As the first step of this system, we developed ukiyo-e game that use ukiyo-e to appreciation object. Ukiyo-e is a traditional Japanese graphic art that has influenced the western society. Therefore, we believe that the ukiyo-e game will be appreciated. In this study, we applied talking to pictures to learn information about the pictures because we believe that learning information about the pictures by talking to the pictures is more interesting than commenting on the pictures using only texts. However, we cannot confirm if talking to the pictures is more interesting than commenting using texts only. Thus, we evaluated through EDA measurement whether the user develops an interest in the pictures while talking to them using voice recognition or by commenting on the pictures using texts only. Hence, we evaluated that children have interest to picture while talking to them using voice recognition through EDA measurement. In addition, we quantitatively evaluate that enjoyed this game or not and learning information about the pictures for primary schoolchildren. In this paper, we summarize these two evaluation results.Keywords: actively learning, art appreciation, EDA, Kinect V2
Procedia PDF Downloads 2854611 Information Extraction Based on Search Engine Results
Authors: Mohammed R. Elkobaisi, Abdelsalam Maatuk
Abstract:
The search engines are the large scale information retrieval tools from the Web that are currently freely available to all. This paper explains how to convert the raw resulted number of search engines into useful information. This represents a new method for data gathering comparing with traditional methods. When a query is submitted for a multiple numbers of keywords, this take a long time and effort, hence we develop a user interface program to automatic search by taking multi-keywords at the same time and leave this program to collect wanted data automatically. The collected raw data is processed using mathematical and statistical theories to eliminate unwanted data and converting it to usable data.Keywords: search engines, information extraction, agent system
Procedia PDF Downloads 4304610 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition
Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun
Abstract:
Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained
Procedia PDF Downloads 754609 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network
Procedia PDF Downloads 1364608 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks
Authors: Naghmeh Moradpoor Sheykhkanloo
Abstract:
Structured Query Language Injection (SQLI) attack is a code injection technique in which malicious SQL statements are inserted into a given SQL database by simply using a web browser. Losing data, disclosing confidential information or even changing the value of data are the severe damages that SQLI attack can cause on a given database. SQLI attack has also been rated as the number-one attack among top ten web application threats on Open Web Application Security Project (OWASP). OWASP is an open community dedicated to enabling organisations to consider, develop, obtain, function, and preserve applications that can be trusted. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLI attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLI attack categories, and an NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLI attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.Keywords: neural networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection
Procedia PDF Downloads 4694607 An Accelerated Stochastic Gradient Method with Momentum
Authors: Liang Liu, Xiaopeng Luo
Abstract:
In this paper, we propose an accelerated stochastic gradient method with momentum. The momentum term is the weighted average of generated gradients, and the weights decay inverse proportionally with the iteration times. Stochastic gradient descent with momentum (SGDM) uses weights that decay exponentially with the iteration times to generate the momentum term. Using exponential decay weights, variants of SGDM with inexplicable and complicated formats have been proposed to achieve better performance. However, the momentum update rules of our method are as simple as that of SGDM. We provide theoretical convergence analyses, which show both the exponential decay weights and our inverse proportional decay weights can limit the variance of the parameter moving directly to a region. Experimental results show that our method works well with many practical problems and outperforms SGDM.Keywords: exponential decay rate weight, gradient descent, inverse proportional decay rate weight, momentum
Procedia PDF Downloads 1624606 Elucidation of Dynamics of Murine Double Minute 2 Shed Light on the Anti-cancer Drug Development
Authors: Nigar Kantarci Carsibasi
Abstract:
Coarse-grained elastic network models, namely Gaussian network model (GNM) and Anisotropic network model (ANM), are utilized in order to investigate the fluctuation dynamics of Murine Double Minute 2 (MDM2), which is the native inhibitor of p53. Conformational dynamics of MDM2 are elucidated in unbound, p53 bound, and non-peptide small molecule inhibitor bound forms. With this, it is aimed to gain insights about the alterations brought to global dynamics of MDM2 by native peptide inhibitor p53, and two small molecule inhibitors (HDM201 and NVP-CGM097) that are undergoing clinical stages in cancer studies. MDM2 undergoes significant conformational changes upon inhibitor binding, carrying pieces of evidence of induced-fit mechanism. Small molecule inhibitors examined in this work exhibit similar fluctuation dynamics and characteristic mode shapes with p53 when complexed with MDM2, which would shed light on the design of novel small molecule inhibitors for cancer therapy. The results showed that residues Phe 19, Trp 23, Leu 26 reside in the minima of slowest modes of p53, pointing to the accepted three-finger binding model. Pro 27 displays the most significant hinge present in p53 and comes out to be another functionally important residue. Three distinct regions are identified in MDM2, for which significant conformational changes are observed upon binding. Regions I (residues 50-77) and III (residues 90-105) correspond to the binding interface of MDM2, including (α2, L2, and α4), which are stabilized during complex formation. Region II (residues 77-90) exhibits a large amplitude motion, being highly flexible, both in the absence and presence of p53 or other inhibitors. MDM2 exhibits a scattered profile in the fastest modes of motion, while binding of p53 and inhibitors puts restraints on MDM2 domains, clearly distinguishing the kinetically hot regions. Mode shape analysis revealed that the α4 domain controls the size of the cleft by keeping the cleft narrow in unbound MDM2; and open in the bound states for proper penetration and binding of p53 and inhibitors, which points to the induced-fit mechanism of p53 binding. P53 interacts with α2 and α4 in a synchronized manner. Collective modes are shifted upon inhibitor binding, i.e., second mode characteristic motion in MDM2-p53 complex is observed in the first mode of apo MDM2; however, apo and bound MDM2 exhibits similar features in the softest modes pointing to pre-existing modes facilitating the ligand binding. Although much higher amplitude motions are attained in the presence of non-peptide small molecule inhibitor molecules as compared to p53, they demonstrate close similarity. Hence, NVP-CGM097 and HDM201 succeed in mimicking the p53 behavior well. Elucidating how drug candidates alter the MDM2 global and conformational dynamics would shed light on the rational design of novel anticancer drugs.Keywords: cancer, drug design, elastic network model, MDM2
Procedia PDF Downloads 1304605 Biomorphic Ornaments in Islamic Architecture and Their Development
Authors: Esra Alhamal
Abstract:
Islamic architecture is known for the ornamental patterns that cover the architectural surfaces: floors, walls, and ceilings. This quality in Islamic buildings has long impressed other civilisation, and it is a visual language that exists across the Islamic lands. Ornamentation is divided into three types: geometry, biomorphs, and Arabic calligraphy. The focus of this study is the biomorphic ornaments. This paper will aim to define and characterise biomorphic patterns and trace their development from the 7th to the 18th centuries. Although the time period is seemingly long, the biomorphic patterns and their motifs have been consistent and supported by a geometric system underlying the free flowing, symmetrical motifs. The methodology of this paper consists of analysing and comparing biomorphic patterns from each Islamic period using rules of geometry and symmetry. The study is concluded with a table showcasing the main motifs and how they developed under each Islamic dynasty. This research is a documentation of the biomorphic language and having this record will help contemporary designers employ biomorphic ornaments thoughtfully.Keywords: architectural surface, biomorphic patterns, Islamic patterns, Islamic ornamentation
Procedia PDF Downloads 1514604 Enhancing Social Well-Being in Older Adults Through Tailored Technology Interventions: A Future Systematic Review
Authors: Rui Lin, Jimmy Xiangji Huang, Gary Spraakman
Abstract:
This forthcoming systematic review will underscore the imperative of leveraging technology to mitigate social isolation in older adults, particularly in the context of unprecedented global challenges such as the COVID-19 pandemic. With the continual evolution of technology, it becomes crucial to scrutinize the efficacy of interventions and discern how they can alleviate social isolation and augment social well-being among the elderly. This review will strive to clarify the best methods for older adults to utilize cost-effective and user-friendly technology and will investigate how the adaptation and execution of such interventions can be fine-tuned to maximize their positive outcomes. The study will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to filter pertinent studies. We foresee conducting an analysis of articles and executing a narrative analysis to discover themes and indicators related to quality of life and, technology use and well-being. The review will examine how involving older adults at the community level, applying top practices from community-based participatory research, can establish efficient strategies to implement technology-based interventions designed to diminish social isolation and boost digital use self-efficacy. Applications based on mobile technology and virtual platforms are set to assume a crucial role not only in enhancing connections within families but also in connecting older adults to vital healthcare resources, fostering both physical and mental well-being. The review will investigate how technological devices and platforms can address the cognitive, visual, and auditory requirements of older adults, thus strengthening their confidence and proficiency in digital use—a crucial factor during enforced social distancing or self-isolation periods during pandemics. This review will endeavor to provide insights into the multifaceted benefits of technology for older adults, focusing on how tailored technological interventions can be a beacon of social and mental wellness in times of social restrictions. It will contribute to the growing body of knowledge on the intersection of technology and elderly well-being, offering nuanced understandings and practical implications for developing user-centric, effective, and inclusive technological solutions for older populations.Keywords: older adults, health service delivery, digital health, social isolation, social well-being
Procedia PDF Downloads 614603 KPI and Tool for the Evaluation of Competency in Warehouse Management for Furniture Business
Authors: Kritchakhris Na-Wattanaprasert
Abstract:
The objective of this research is to design and develop a prototype of a key performance indicator system this is suitable for warehouse management in a case study and use requirement. In this study, we design a prototype of key performance indicator system (KPI) for warehouse case study of furniture business by methodology in step of identify scope of the research and study related papers, gather necessary data and users requirement, develop key performance indicator base on balance scorecard, design pro and database for key performance indicator, coding the program and set relationship of database and finally testing and debugging each module. This study use Balance Scorecard (BSC) for selecting and grouping key performance indicator. The system developed by using Microsoft SQL Server 2010 is used to create the system database. In regard to visual-programming language, Microsoft Visual C# 2010 is chosen as the graphic user interface development tool. This system consists of six main menus: menu login, menu main data, menu financial perspective, menu customer perspective, menu internal, and menu learning and growth perspective. Each menu consists of key performance indicator form. Each form contains a data import section, a data input section, a data searches – edit section, and a report section. The system generates outputs in 5 main reports, the KPI detail reports, KPI summary report, KPI graph report, benchmarking summary report and benchmarking graph report. The user will select the condition of the report and period time. As the system has been developed and tested, discovers that it is one of the ways to judging the extent to warehouse objectives had been achieved. Moreover, it encourages the warehouse functional proceed with more efficiency. In order to be useful propose for other industries, can adjust this system appropriately. To increase the usefulness of the key performance indicator system, the recommendations for further development are as follows: -The warehouse should review the target value and set the better suitable target periodically under the situation fluctuated in the future. -The warehouse should review the key performance indicators and set the better suitable key performance indicators periodically under the situation fluctuated in the future for increasing competitiveness and take advantage of new opportunities.Keywords: key performance indicator, warehouse management, warehouse operation, logistics management
Procedia PDF Downloads 4314602 K-12 Students’ Digital Life: Activities and Attitudes
Authors: Meital Amzalag, Sharon Hardof-Jaffe
Abstract:
In the last few decades, children and youth have been immersed in digital technologies. Indeed, recent studies explored the implication of technology use in their leisure and learning activities. Educators face an essential need to utilize technology and implement them into the curriculum. To do that, educators need to understand how young people use digital technology. This study aims to explore K12 students' digital lives from their point of view, to reveal their digital activities, age and gender differences with respect to digital activities, and to present the students' attitudes towards technologies in learning. The study approach is quantitative and includes354 students ages 6-16 from three schools in Israel. The online questionnaire was based on self-reports and consists of four parts: Digital activities: leisure time activities (such as social networks, gaming types), search activities (information types and platforms), and digital application use (e.g., calendar, notes); Digital skills (requisite digital platform skills such as evaluation and creativity); Social and emotional aspects of digital use (conducting digital activities alone and with friends, feelings, and emotions during digital use such as happiness, bullying); Digital attitudes towards digital integration in learning. An academic ethics board approved the study. The main findings reveal the most popular K12digital activities: Navigating social network sites, watching TV, playing mobile games, seeking information on the internet, and playing computer games. In addition, the findings reveal age differences in digital activities, such as significant differences in the use of social network sites. Moreover, the finding raises gender differences as girls use more social network sites and boys use more digital games, which are characterized by high complexity and challenges. Additionally, we found positive attitudes towards technology integration in school. Students perceive technology as enhancing creativity, promoting active learning, encouraging self-learning, and helping students with learning difficulties. The presentation will provide an up-to-date, accurate picture of the use of various digital technologies by k12 students. In addition, it will discuss the learning potentials of such use and how to implement digital technologies in the curriculum. Acknowledgments: This study is a part of a broader study about K-12 digital life in Israel and is supported by Mofet-the Israel Institute for Teachers'Development.Keywords: technology and learning, K-12, digital life, gender differences
Procedia PDF Downloads 1344601 Generating Real-Time Visual Summaries from Located Sensor-Based Data with Chorems
Authors: Z. Bouattou, R. Laurini, H. Belbachir
Abstract:
This paper describes a new approach for the automatic generation of the visual summaries dealing with cartographic visualization methods and sensors real time data modeling. Hence, the concept of chorems seems an interesting candidate to visualize real time geographic database summaries. Chorems have been defined by Roger Brunet (1980) as schematized visual representations of territories. However, the time information is not yet handled in existing chorematic map approaches, issue has been discussed in this paper. Our approach is based on spatial analysis by interpolating the values recorded at the same time, by sensors available, so we have a number of distributed observations on study areas and used spatial interpolation methods to find the concentration fields, from these fields and by using some spatial data mining procedures on the fly, it is possible to extract important patterns as geographic rules. Then, those patterns are visualized as chorems.Keywords: geovisualization, spatial analytics, real-time, geographic data streams, sensors, chorems
Procedia PDF Downloads 4014600 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN
Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm
Abstract:
In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control
Procedia PDF Downloads 4984599 The Preliminary Study of the Possible Relationship between Urban Open Space System and Residents' Health Outcome
Authors: Jia-Jin He, Tzu-Yuan Stessa Chao
Abstract:
It is generally accepted that community residents with abundant open space have better health status on average, and thus more and more cities around the world began their pursuit of the greatest possible amount of green space within urban areas through urban planning approach. Nevertheless, only a few studies managed to provide empirical evidence regarding the actual relationship between 'providing' green space and 'improving' human health at city level. There is also lack of evidence of direct positive improvement of health by increasing the amount of green space. For urban planning professional, it is important to understand citizens’ usage behaviour towards green space as a critical evidence for future planning and design strategies. There is a research need to further investigate the amount of green space, user behaviour of green spaces and the health outcome of urban dwellers. To this end, we would like to find out other important factors for urban dwellers’ usage behaviours of green spaces. 'Average green spaces per person' is one of the National well-being Indicators in Taiwan as in many other countries. Through our preliminary research, we collected and analyzed the official data of planned open space coverages, average life expectancy, exercise frequency and obesity ratio in all cities of Taiwan. The study result indicates an interesting finding that Kaohsiung city, the second largest city in Taiwan, tells a completely different story. Citizens in Kaosiung city have more open spaces than any other city through urban planning, yet have relatively unhealthy condition in contrary. Whether it pointed out that the amount of the open spaces per person has would not direct to the health outcome. Therefore, the pre-established view which states that open spaces must have positive effects on human health should be examined more prudently. Hence, this paper intends to explore the relationship between user behaviour of open spaces and citizens’ health conditions by critically analyzing past related literature and collecting selective data from government health database in 2015. We also take Kaohsiung city, as a case study area to conduct statistical analysis first followed by questionnaire survey to gain a better understanding. Finally, we aim to feedback our findings to the current planning system in Taiwan for better health promotion urbanized areas.Keywords: open spaces, urban planning systems, healthy cities, health outcomes
Procedia PDF Downloads 1654598 Crop Classification using Unmanned Aerial Vehicle Images
Authors: Iqra Yaseen
Abstract:
One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.Keywords: image processing, UAV, YOLO, CNN, deep learning, classification
Procedia PDF Downloads 1074597 Translation Quality Assessment: Proposing a Linguistic-Based Model for Translation Criticism with Considering Ideology and Power Relations
Authors: Mehrnoosh Pirhayati
Abstract:
In this study, the researcher tried to propose a model of Translation Criticism (TC) regarding the phenomenon of Translation Quality Assessment (TQA). With changing the general view on re/writing as an illegal act, the researcher defined a scale for the act of translation and determined the redline of translation with other products. This research attempts to show TC as a related phenomenon to TQA. This study shows that TQA with using the rules and factors of TC as depicted in both product-oriented analysis and process-oriented analysis, determines the orientation or the level of the quality of translation. This study also depicts that TC, regarding TQA’s perspective, reveals the aim of the translation of original text and the root of ideological manipulation and re/writing. On the other hand, this study stresses the existence of a direct relationship between the linguistic materials and semiotic codes of a text or book. This study can be fruitful for translators, scholars, translation criticizers, and translation quality assessors, and also it is applicable in the area of pedagogy.Keywords: a model of translation criticism, a model of translation quality assessment, critical discourse analysis (CDA), re/writing, translation criticism (TC), translation quality assessment (TQA)
Procedia PDF Downloads 3204596 Globalisation and Diplomacy: How Can Small States Improve the Practice of Diplomacy to Secure Their Foreign Policy Objectives?
Authors: H. M. Ross-McAlpine
Abstract:
Much of what is written on diplomacy, globalization and the global economy addresses the changing nature of relationships between major powers. While the most dramatic and influential changes have resulted from these developing relationships the world is not, on deeper inspection, governed neatly by major powers. Due to advances in technology, the shifting balance of power and a changing geopolitical order, small states have the ability to exercise a greater influence than ever before. Increasingly interdependent and ever complex, our world is too delicate to be handled by a mighty few. The pressure of global change requires small states to adapt their diplomatic practices and diversify their strategic alliances and relationships. The nature and practice of diplomacy must be re-evaluated in light of the pressures resulting from globalization. This research examines: how small states can best secure their foreign policy objectives? Small state theory is used as a foundation for exploring the case study of New Zealand. The research draws on secondary sources to evaluate the existing theory in relation to modern practices of diplomacy. As New Zealand lacks the required economic and military power to play an active, influential role in international affairs what strategies are used to exert influence? Furthermore, New Zealand lies in a remote corner of the Pacific and is geographically isolated from its nearest neighbors how does this affect security and trade priorities? The findings note a significant shift since the 1970’s in New Zealand’s diplomatic relations. This shift is arguably a direct result of globalization, regionalism and a growing independence from the traditional bi-lateral relationships. The need to source predictable trade, investment and technology are an essential driving force for New Zealand’s diplomatic relations. A lack of hard power aligns New Zealand’s prosperity with a secure, rules-based international system that increases the likelihood of a stable and secure global order. New Zealand’s diplomacy and prosperity has been intrinsically reliant on its reputation. A vital component of New Zealand’s diplomacy is preserving a reputation for integrity and global responsibility. It is the use of this soft power that facilitates the influence that New Zealand enjoys on the world stage. To weave a comprehensive network of successful diplomatic relationships, New Zealand must maintain a reputation of international credibility. Globalization has substantially influenced the practice of diplomacy for New Zealand. The current world order places economic and military might in the hands of a few, subsequently requiring smaller states to use other means for securing their interests. There are clear strategies evident in New Zealand’s diplomacy practice that draw attention to how other smaller states might best secure their foreign policy objectives. While these findings are limited, as with all case study research, there is value in applying the findings to other small states struggling to secure their interests in the wake of rapid globalization.Keywords: diplomacy, foreign policy, globalisation, small state
Procedia PDF Downloads 3964595 Design and Simulation of Unified Power Quality Conditioner based on Adaptive Fuzzy PI Controller
Authors: Brahim Ferdi, Samira Dib
Abstract:
The unified power quality conditioner (UPQC), a combination of shunt and series active power filter, is one of the best solutions towards the mitigation of voltage and current harmonics problems in distribution power system. PI controller is very common in the control of UPQC. However, one disadvantage of this conventional controller is the difficulty in tuning its gains (Kp and Ki). To overcome this problem, an adaptive fuzzy logic PI controller is proposed. The controller is composed of fuzzy controller and PI controller. According to the error and error rate of the control system and fuzzy control rules, the fuzzy controller can online adjust the two gains of the PI controller to get better performance of UPQC. Simulations using MATLAB/SIMULINK are carried out to verify the performance of the proposed controller. The results show that the proposed controller has fast dynamic response and high accuracy of tracking the current and voltage references.Keywords: adaptive fuzzy PI controller, current harmonics, PI controller, voltage harmonics, UPQC
Procedia PDF Downloads 5564594 Bacteriological Characterization of Drinking Water Distribution Network Biofilms by Gene Sequencing Using Different Pipe Materials
Authors: M. Zafar, S. Rasheed, Imran Hashmi
Abstract:
Very little is concerned about the bacterial contamination in drinking water biofilm which provide a potential source for bacteria to grow and increase rapidly. So as to understand the microbial density in DWDs, a three-month study was carried out. The aim of this study was to examine biofilm in three different pipe materials including PVC, PPR and GI. A set of all these pipe materials was installed in DWDs at nine different locations and assessed on monthly basis. Drinking water quality was evaluated by different parameters and characterization of biofilm. Among various parameters are Temperature, pH, turbidity, TDS, electrical conductivity, BOD, COD, total phosphates, total nitrates, total organic carbon (TOC) free chlorine and total chlorine, coliforms and spread plate counts (SPC) according to standard methods. Predominant species were Bacillus thuringiensis, Pseudomonas fluorescens , Staphylococcus haemolyticus, Bacillus safensis and significant increase in bacterial population was observed in PVC pipes while least in cement pipes. The quantity of DWDs bacteria was directly depended on biofilm bacteria and its increase was correlated with growth and detachment of bacteria from biofilms. Pipe material also affected the microbial community in drinking water distribution network biofilm while Similarity in bacterial species was observed between systems due to same disinfectant dose, time period and plumbing pipes.Keywords: biofilm, DWDs, pipe material, bacterial population
Procedia PDF Downloads 3474593 Prediction of Music Track Popularity: A Machine Learning Approach
Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan
Abstract:
Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.Keywords: classifier, machine learning, music tracks, popularity, prediction
Procedia PDF Downloads 6634592 Finding a Redefinition of the Relationship between Rural and Urban Knowledge
Authors: Bianca Maria Rulli, Lenny Valentino Schiaretti
Abstract:
The considerable recent urbanization has increasingly sharpened environmental and social problems all over the world. During the recent years, many answers to the alarming attitudes in modern cities have emerged: a drastic reduction in the rate of growth is becoming essential for future generations and small scale economies are considered more adaptive and sustainable. According to the concept of degrowth, cities should consider surpassing the centralization of urban living by redefining the relationship between rural and urban knowledge; growing food in cities fundamentally contributes to the increase of social and ecological resilience. Through an innovative approach, this research combines the benefits of urban agriculture (increase of biological diversity, shorter and thus more efficient supply chains, food security) and temporary land use. They stimulate collaborative practices to satisfy the changing needs of communities and stakeholders. The concept proposes a coherent strategy to create a sustainable development of urban spaces, introducing a productive green-network to link specific areas in the city. By shifting the current relationship between architecture and landscape, the former process of ground consumption is deeply revised. Temporary modules can be used as concrete tools to create temporal areas of innovation, transforming vacant or marginal spaces into potential laboratories for the development of the city. The only permanent ground traces, such as foundations, are minimized in order to allow future land re-use. The aim is to describe a new mindset regarding the quality of space in the metropolis which allows, in a completely flexible way, to bring back the green and the urban farming into the cities. The wide possibilities of the research are analyzed in two different case-studies. The first is a regeneration/connection project designated for social housing, the second concerns the use of temporary modules to answer to the potential needs of social structures. The intention of the productive green-network is to link the different vacant spaces to each other as well as to the entire urban fabric. This also generates a potential improvement of the current situation of underprivileged and disadvantaged persons.Keywords: degrowth, green network, land use, temporary building, urban farming
Procedia PDF Downloads 5034591 Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model
Authors: Bin Mu, Site Li, Shijin Yuan
Abstract:
Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.Keywords: AQI forecast, principal component analysis, genetic algorithm, back propagation neural network model
Procedia PDF Downloads 2294590 Media Effects in Metamodernity
Authors: D. van der Merwe
Abstract:
Despite unprecedented changes in the media formats, typologies, delivery channels, and content that can be seen between Walter Benjamin’s writings from the era of modernity and those observable in the contemporary era of metamodernity, parallels can be drawn between the media effects experienced by audiences across the temporal divide. This paper will explore alignments between these two eras as evidenced by various media effects. First, convergence in the historical paradigm of film will be compared with the same effect as seen within the digital domain. Second, the uses and gratifications theory will be explored to delineate parallels in terms of user behaviours across both eras, regardless of medium. Third, cultivation theory and its role in manipulation via the media in both modernity and metamodernity will be discussed. Lastly, similarities between the archetypal personae populating each era will be unpacked.Keywords: convergence, cultivation theory, media effects, metamodernity, uses and gratifications theory
Procedia PDF Downloads 114589 Improvement of Transient Voltage Response Using PSS-SVC Coordination Based on ANFIS-Algorithm in a Three-Bus Power System
Authors: I Made Ginarsa, Agung Budi Muljono, I Made Ari Nrartha
Abstract:
Transient voltage response appears in power system operation when an additional loading is forced to load bus of power systems. In this research, improvement of transient voltage response is done by using power system stabilizer-static var compensator (PSS-SVC) based on adaptive neuro-fuzzy inference system (ANFIS)-algorithm. The main function of the PSS is to add damping component to damp rotor oscillation through automatic voltage regulator (AVR) and excitation system. Learning process of the ANFIS is done by using off-line method where data learning that is used to train the ANFIS model are obtained by simulating the PSS-SVC conventional. The ANFIS model uses 7 Gaussian membership functions at two inputs and 49 rules at an output. Then, the ANFIS-PSS and ANFIS-SVC models are applied to power systems. Simulation result shows that the response of transient voltage is improved with settling time at the time of 4.25 s.Keywords: improvement, transient voltage, PSS-SVC, ANFIS, settling time
Procedia PDF Downloads 577