Search results for: maximum deflection (D0)
1273 Effect of Ultrasonic Assisted High Pressure Soaking of Soybean on Soymilk Properties
Authors: Rahul Kumar, Pavuluri Srinivasa Rao
Abstract:
This study investigates the effect of ultrasound-assisted high pressure (HP) treatment on the soaking characteristic of soybeans and extracted soy milk quality. The soybean (variety) was subjected to sonication (US) at ambient temperature for 15 and 30 min followed by HP treatment in the range of 200-400 MPa for dwell times 5-10 min. The bean samples were also compared with HPP samples (200-400 MPa; 5-10 mins), overnight soaked samples(12-15 h) and thermal treated samples (100°C/30 min) followed by overnight soaking for 12-15 h soaking. Rapid soaking within 40 min was achieved by the combined US-HPP treatment, and it reduced the soaking time by about 25 times in comparison to overnight soaking or thermal treatment followed by soaking. Reducing the soaking time of soybeans is expected to suppress the development of undesirable beany flavor of soy milk developed during normal soaking milk extraction. The optimum moisture uptake by the sonicated-pressure treated soybeans was 60-62% (w.b) similar to that obtained after overnight soaking for 12-15 h or thermal treatment followed by overnight soaking. pH of soy milk was not much affected by the different US-HPP treatments and overnight soaking which centered around the range of 6.6-6.7 much like the normal cow milk. For milk extracted from thermally treated soy samples, pH reduced to 6.2. Total soluble solids were found to be maximum for the normal overnight soaked soy samples, and it was in the range of 10.3-10.6. For the HPP treated soy milk, the TSS reduced to 7.4 while sonication further reduced it to 6.2. TSS was found to be getting reduced with increasing time of ultrasonication. Further reduction in TSS to 2.3 was observed in soy milk produced from thermally treated samples following overnight soaking. Our results conclude that thermally treated beans' milk is less stable and more acidic, soaking is very rapid compared to overnight soaking hence milk productivity can be enhanced with less development of undesirable beany flavor.Keywords: beany flavor, high pressure processing, high pressure, soybean, soaking, milk, ultrasound, wet basis
Procedia PDF Downloads 2571272 Validity and Reliability of a Questionaire for Measuring Behaviour Change of Low Performance Employee
Authors: Hazaila Binti Hassan, Abu Yazid Bin Abu Bakar, Salleh Amat
Abstract:
This study is to get the validity and reliability of the questionnaire for behaviour change on low-performing officers. This study aimed to develop and evaluate the behaviour of low performing officers. There are 75 items in this questionnaire which involves 5 subscales, which are the 5 dimensions intended to be studied: 1st emotional stability, 2nd psycho-spiritual enhancement, 3rd social skills development, 4th cognitive and rationality improvement and 5th behavioural alignment and adjustment. There are 2 processes in this research whereby to check the validity and reliability. Both use quantitative methods. Validity content testing has been conducted to validate the behavioural change questionnaire of the low performing officers. For the face validity, 4 people are involved, two are psychologists who carried out the program and the other two are officers of the same rank, i.e. supporting officers. They are involved in correction of sentences, languages, and grammar as well as the sentence structures so that it tallies with the purpose of studies. The questionnaire underwent content validity by the experts. Five experts are appointed to attend this session, 3 are directly involved in the construction of this questionnaire and 2 others are experts from the university with a background in questionnaire development. The result shows that the content validity obtained a high coefficient of 0.745 with a minimum and maximum value of more than 0.60 which satisfies the characteristic of Content Value Ratio. The Cronbach’s alpha result is 0.867. The highest scores are the behavioural alignment and adjustment sub-scale recorded the highest value, followed by social skills development sub-scale, cognitive and rational improvements sub-scale, psycho-spiritual enhancement sub-scale, and lastly emotional stability. Therefore, both of validity and reliability result were accepted that this questionnaire is valid and reliable can be used in the study of behaviour changes of low performing officers in the civil service.Keywords: content validity, reliability, five dimension, low-performing officers, questionnaire
Procedia PDF Downloads 2861271 Phenolic Compounds and Antioxidant Capacity of Nine Genotypes of Thai Rice (Oryza sativa L.)
Authors: Pitchaon Maisuthisakul, Ladawan Changchub
Abstract:
Rice (Oryza sativa L.) is a staple diet in Thailand. Rice cultivation is traditional occupation of Thailand which passed down through generations. The 1 Rai 1 san project is new agricultural theory according to sufficient economy using green technology without using chemical substances. This study was conducted to evaluate total phenolics using HPLC and colorimetric methods including total anthocyanin content of Thai rice extracting by simulated gastric and intestinal condition and to estimate antioxidant capacity using DPPH and thiocyanate methods. Color and visible spectrum of rice grains were also investigated. Rice grains were classified into three groups according to their color appearance. The light brown grain genotypes are Sin Lek, Jasmine 105, Lao Tek and Hawm Ubon. The red group is Sang Yod and Red Jasmine. Genotypes Kum, Hawm Kanya and Hawm Nil are black rice grains. Cyanidin-3-O-glucoside was found in only black rice genotypes, whereas chlorogenic acid was found in all rice grains. The black rice had higher phenolic content than red and light brown samples. Phenolic acids constitute a small portion of phenolic compounds after digestion in human and contribute to the antioxidant activity of Thai rice grains. Anthocyanin contents of all rice extracts ranged from 45.9 to 442.1 mg CGE/kg. All rice extracts showed the antioxidant efficiency lower than ferulic acid. Genotype Kum and Hawm nil exhibited the ability of antioxidant efficiency higher than α-tocopherol. Interestingly, the visible spectrum of only black rice genotypes showed the maximum peak at 530-540 nm. The results suggest that consumption of black rice gives more health benefits of grain to consumer.Keywords: rice, phenolic, antioxidant, anthocyanin
Procedia PDF Downloads 3611270 Multi-Criteria Optimal Management Strategy for in-situ Bioremediation of LNAPL Contaminated Aquifer Using Particle Swarm Optimization
Authors: Deepak Kumar, Jahangeer, Brijesh Kumar Yadav, Shashi Mathur
Abstract:
In-situ remediation is a technique which can remediate either surface or groundwater at the site of contamination. In the present study, simulation optimization approach has been used to develop management strategy for remediating LNAPL (Light Non-Aqueous Phase Liquid) contaminated aquifers. Benzene, toluene, ethyl benzene and xylene are the main component of LNAPL contaminant. Collectively, these contaminants are known as BTEX. In in-situ bioremediation process, a set of injection and extraction wells are installed. Injection wells supply oxygen and other nutrient which convert BTEX into carbon dioxide and water with the help of indigenous soil bacteria. On the other hand, extraction wells check the movement of plume along downstream. In this study, optimal design of the system has been done using PSO (Particle Swarm Optimization) algorithm. A comprehensive management strategy for pumping of injection and extraction wells has been done to attain a maximum allowable concentration of 5 ppm and 4.5 ppm. The management strategy comprises determination of pumping rates, the total pumping volume and the total running cost incurred for each potential injection and extraction well. The results indicate a high pumping rate for injection wells during the initial management period since it facilitates the availability of oxygen and other nutrients necessary for biodegradation, however it is low during the third year on account of sufficient oxygen availability. This is because the contaminant is assumed to have biodegraded by the end of the third year when the concentration drops to a permissible level.Keywords: groundwater, in-situ bioremediation, light non-aqueous phase liquid, BTEX, particle swarm optimization
Procedia PDF Downloads 4461269 Elevated Temperature Shot Peening for M50 Steel
Authors: Xinxin Ma, Guangze Tang, Shuxin Yang, Jinguang He, Fan Zhang, Peiling Sun, Ming Liu, Minyu Sun, Liqin Wang
Abstract:
As a traditional surface hardening technique, shot peening is widely used in industry. By using shot peening, a residual compressive stress is formed in the surface which is beneficial for improving the fatigue life of metal materials. At the same time, very fine grains and high density defects are generated in the surface layer which enhances the surface hardness, either. However, most of the processes are carried out at room temperature. For high strength steel, such as M50, the thickness of the strengthen layer is limited. In order to obtain a thick strengthen surface layer, elevated temperature shot peening was carried out in this work by using Φ1mm cast ion balls with a speed of 80m/s. Considering the tempering temperature of M50 steel is about 550 oC, the processing temperature was in the range from 300 to 500 oC. The effect of processing temperature and processing time of shot peening on distribution of residual stress and surface hardness was investigated. As we known, the working temperature of M50 steel can be as high as 315 oC. Because the defects formed by shot peening are unstable when the working temperature goes higher, it is worthy to understand what happens during the shot peening process, and what happens when the strengthen samples were kept at a certain temperature. In our work, the shot peening time was selected from 2 to 10 min. And after the strengthening process, the samples were annealed at various temperatures from 200 to 500 oC up to 60 h. The results show that the maximum residual compressive stress is near 900 MPa. Compared with room temperature shot peening, the strengthening depth of 500 oC shot peening sample is about 2 times deep. The surface hardness increased with the processing temperature, and the saturation peening time decreases. After annealing, the residual compressive stress decreases, however, for 500 oC peening sample, even annealing at 500 oC for 20 h, the residual compressive stress is still over 600 MPa. However, it is clean to see from SEM that the grain size of surface layers is still very small.Keywords: shot peening, M50 steel, residual compressive stress, elevated temperature
Procedia PDF Downloads 4571268 Comparison of Adsorbents for Ammonia Removal from Mining Wastewater
Authors: F. Al-Sheikh, C. Moralejo, M. Pritzker, W. A. Anderson, A. Elkamel
Abstract:
Ammonia in mining wastewater is a significant problem, and treatment can be especially difficult in cold climates where biological treatment is not feasible. An adsorption process is one of the alternative processes that can be used to reduce ammonia concentrations to acceptable limits, and therefore a LEWATIT resin strongly acidic H+ form ion exchange resin and a Bowie Chabazite Na form AZLB-Na zeolite were tested to assess their effectiveness. For these adsorption tests, two packed bed columns (a mini-column constructed from a 32-cm long x 1-cm diameter piece of glass tubing, and a 60-cm long x 2.5-cm diameter Ace Glass chromatography column) were used containing varying quantities of the adsorbents. A mining wastewater with ammonia concentrations of 22.7 mg/L was fed through the columns at controlled flowrates. In the experimental work, maximum capacities of the LEWATIT ion exchange resin were 0.438, 0.448, and 1.472 mg/g for 3, 6, and 9 g respectively in a mini column and 1.739 mg/g for 141.5 g in a larger Ace column while the capacities for the AZLB-Na zeolite were 0.424, and 0.784 mg/g for 3, and 6 g respectively in the mini column and 1.1636 mg/g for 38.5 g in the Ace column. In the theoretical work, Thomas, Adams-Bohart, and Yoon-Nelson models were constructed to describe a breakthrough curve of the adsorption process and find the constants of the above-mentioned models. In the regeneration tests, 5% hydrochloric acid, HCl (v/v) and 10% sodium hydroxide, NaOH (w/v) were used to regenerate the LEWATIT resin and AZLB-Na zeolite with 44 and 63.8% recovery, respectively. In conclusion, continuous flow adsorption using a LEWATIT ion exchange resin and an AZLB-Na zeolite is efficient when using a co-flow technique for removal of the ammonia from wastewater. Thomas, Adams-Bohart, and Yoon-Nelson models satisfactorily fit the data with R2 closer to 1 in all cases.Keywords: AZLB-Na zeolite, continuous adsorption, Lewatit resin, models, regeneration
Procedia PDF Downloads 3921267 Sea Protection: Using Marine Algae as a Natural Method of Absorbing Dye Textile Waste
Authors: Ariana Kilic, Serena Arapyan
Abstract:
Water pollution is a serious concern in all seas around the world and one major cause of it is dye textile wastes mixing with seawater. This common incident alters aquatic life, putting organisms’ lives in danger and deteriorating the water's nature. There is a significant need for a natural approach to reduce the amount of dye textile waste in seawater and ensure marine organisms' safety. Consequently, using marine algae is a viable solution since it can eliminate the excess waste by absorbing the dye. Also, marine algae are non-vascular that absorb water and nutrients, meaning that having them as absorbers is a natural process and no inorganic matters will be added to the seawater that could result in further pollution. To test the efficiency of this approach, the optical absorbance of the seawater samples was measured before and after the addition of marine algae by utilizing colorimetry. A colorimeter is used to find the concentration of a chemical compound in a solution by measuring the absorbance of the compound at a specific wavelength. Samples of seawater that have equal amounts of water were used and textile dye was added as the constant variables. The initial and final absorbances, the dependent variable, of the water were measured before and after the addition of marine algae, the independent variable, and observed. The lower the absorbance showed us that there is lower dye concentration and therefore, the marine algae had done its job by using and absorbing the dye. The same experiment was repeated with same amount of water but with different concentrations of dye in order to determine the maximum concentration of dye the marine algae can completely absorb. The diminished concentration of dye demonstrated that pollution caused by factories’ dye wastes could be prevented with the natural method of marine algae. The involvement of marine algae is an optimal strategy for having an organic solution to absorbing the dye wastes in seas and obstructing water pollution.Keywords: water pollution, dye textile waste, marine algae, absorbance, colorimetry
Procedia PDF Downloads 231266 Potential Application of Selected Halotolerant PSB Isolated from Rhizospheric Soil of Chenopodium quinoa in Plant Growth Promotion
Authors: Ismail Mahdi, Nidal Fahsi, Mohamed Hafidi, Abdelmounaim Allaoui, Latefa Biskri
Abstract:
To meet the worldwide demand for food, smart management of arable lands is needed. This could be achieved through sustainable approaches such as the use of plant growth-promoting microorganisms including bacteria. Phosphate (P) solubilization is one of the major mechanisms of plant growth promotion by associated bacteria. In the present study, we isolated and screened 14 strains from the rhizosphere of Chenopodium quinoa wild grown in the experimental farm of UM6P and assessed their plant growth promoting properties. Next, they were identified by using 16S rRNA and Cpn60 genes sequencing as Bacillus, Pseudomonas and Enterobacter. These strains showed dispersed capacities to solubilize P (up to 346 mg L−1) following five days of incubation in NBRIP broth. We also assessed their abilities for indole acetic acid (IAA) production (up to 795,3 µg ml−1) and in vitro salt tolerance. Three Bacillus strains QA1, QA2, and S8 tolerated high salt stress induced by NaCl with a maximum tolerable concentration of 8%. Three performant isolates, QA1, S6 and QF11, were further selected for seed germination assay because of their pronounced abilities in terms of P solubilization, IAA production and salt tolerance. The early plant growth potential of tested strains showed that inoculated quinoa seeds displayed greater germination rate and higher seedlings growth under bacterial treatments. The positive effect on seed germination traits strongly suggests that the tested strains are growth promoting, halotolerant and P solubilizing bacteria which could be exploited as biofertilizers.Keywords: phosphate solubilizing bacteria, IAA, Seed germination, salt tolerance, quinoa
Procedia PDF Downloads 1321265 Antimicrobial Activity of Biosynthesized Silver Nanoparticles Using Different Bacteria
Authors: Malalage Mudara Peiris
Abstract:
Objectives of the study are: the biosynthesis of silver nanoparticles (AgNPs) using Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus, characterization of silver nanoparticles and determination of antimicrobial activity against E. coli, P. aeruginosa, S. aureus, MRSA, and C. Albicans. Methods: E. coli (ATCC 25922), A. baumanii (clinical strain), S. aureus (clinical strain) cultured in nutrient broth medium were used for biosynthesis of AgNPs. Culture conditions (AgNO3 concentration, pH, incubation time and temperature) were optimized. Characterization of synthesized NPs was done by UV-Visible spectroscopy. The antimicrobial activity of the synthesized NPs was studied using the good diffusion assay against E. coli, S. aureus, MRSA (Methicillin-resistant Staphylococcus aureus), P. aeruginosa and C. Albicans. Results: All the selected bacteria produced silver nanoparticles at alkaline pH above 0.3 g/L AgNO3 concentration. The optimum reaction temperature was 60oC. According to the UV-Visible spectroscopy, the maximum absorbance was found to be around 420 - 430 nm indicating the presence of AgNPs. According to the good diffusion results, AgNPs produced by S. aureus resulted in the larger zone of inhibition (ZOI) against the selected pathogens, while AgNPs produced by E. coli showed comparatively smaller ZOI. In general, biosynthesized AgNPs were highly effective against gram-negative bacteria compared to gram-positive bacterial and fungal species. Conclusions: Green AgNPs produced by each bacterium show antimicrobial activity against the selected pathogens. AgNPs produced by S. aureus are the most effective NPs among tested AgNPs, while AgNPs produced by E. coli are the least effective. Further characterization of NPs is required to study the physical properties of silver NPs.Keywords: green nanotechnology, silver nanoparticles, bacteria, antimicrobial activity
Procedia PDF Downloads 2081264 Utilization of Logging Residue to Reduce Soil Disturbance of Timber Harvesting
Authors: Juang R. Matangaran, Qi Adlan
Abstract:
Industrial plantation forest in Indonesia was developed in 1983, and since then, several companies have been successfully planted a total area of concessionaire approximately 10 million hectares. Currently, these plantation forests have their annual harvesting period. In the timber harvesting process, amount part of the trees generally become logging residue. Tree parts such as branches, twigs, defected stem and leaves are unused section of tree on the ground after timber harvesting. The use of heavy machines in timber harvesting area has caused damage to the forest soil. The negative impact of such machines includes loss of topsoil, soil erosion, and soil compaction. Forest soil compaction caused reduction of forest water infiltration, increase runoff and causes difficulty for root penetration. In this study, we used logging residue as soil covers on the passages passed by skidding machines in order to observe the reduction soil compaction. Bulk density of soil was measured and analyzed after several times of skidding machines passage on skid trail. The objective of the research was to analyze the effect of logging residue on reducing soil compaction. The research was taken place at one of the industrial plantation forest area of South Sumatra Indonesia. The result of the study showed that percentage increase of soil compaction bare soil was larger than soil surface covered by logging residue. The maximum soil compaction occurred after 4 to 5 passes on soil without logging residue or bare soil and after 7 to 8 passes on soil cover by logging residue. The use of logging residue coverings could reduce soil compaction from 45% to 60%. The logging residue was effective in decreasing soil disturbance of timber harvesting at the plantation forest area.Keywords: bulk density, logging residue, plantation forest, soil compaction, timber harvesting
Procedia PDF Downloads 4081263 Diabetes Mellitus and Blood Glucose Variability Increases the 30-day Readmission Rate after Kidney Transplantation
Authors: Harini Chakkera
Abstract:
Background: Inpatient hyperglycemia is an established independent risk factor among several patient cohorts with hospital readmission. This has not been studied after kidney transplantation. Nearly one-third of patients who have undergone a kidney transplant reportedly experience 30-day readmission. Methods: Data on first-time solitary kidney transplantations were retrieved between September 2015 to December 2018. Information was linked to the electronic health record to determine a diagnosis of diabetes mellitus and extract glucometeric and insulin therapy data. Univariate logistic regression analysis and the XGBoost algorithm were used to predict 30-day readmission. We report the average performance of the models on the testing set on five bootstrapped partitions of the data to ensure statistical significance. Results: The cohort included 1036 patients who received kidney transplantation, and 224 (22%) experienced 30-day readmission. The machine learning algorithm was able to predict 30-day readmission with an average AUC of 77.3% (95% CI 75.30-79.3%). We observed statistically significant differences in the presence of pretransplant diabetes, inpatient-hyperglycemia, inpatient-hypoglycemia, and minimum and maximum glucose values among those with higher 30-day readmission rates. The XGBoost model identified the index admission length of stay, presence of hyper- and hypoglycemia and recipient and donor BMI values as the most predictive risk factors of 30-day readmission. Additionally, significant variations in the therapeutic management of blood glucose by providers were observed. Conclusions: Suboptimal glucose metrics during hospitalization after kidney transplantation is associated with an increased risk for 30-day hospital readmission. Optimizing the hospital blood glucose management, a modifiable factor, after kidney transplantation may reduce the risk of 30-day readmission.Keywords: kidney, transplant, diabetes, insulin
Procedia PDF Downloads 931262 Effect of Saffron Extract and Aerobic Exercises on Troponin T and Heart-Type Fatty Acid Binding Protein in Men with Type 2 Diabetes
Authors: Ahmad Abdi, M. Golzadeh Gangeraj, Alireza Barari, S. Shirali, S. Amini
Abstract:
Aims: Diabetes is one of the common metabolic diseases in the world that has the dire adverse effects such as nephropathy, retinopathy and cardiovascular problems. Pharmaceutical and non-pharmaceutical strategies for control and treatment of diabetes are provided. Exercise and nutrition as non-drug strategies for the prevention and control of diabetes are considered. Exercises may increase oxidative stress and myocardium injury, thus it is necessary to take nutrition strategies to help diabetic athletes. Methods: This study was a semi-experimental research. Therefore, 24 men with type 2 diabetes were selected and randomly divided in four groups (1. control, 2. saffron extract, 3. aerobic exercises, 4. compound aerobic exercises and saffron extract). Saffron extract with 100 mg/day was used. Aerobic exercises, three days a week, for eight weeks, with 55-70% of maximum heart rate were performed. At the end, levels of Heart-type fatty acid-binding protein (HFABP) and Troponin T were measured. Data were analyzed by Paired t, One-way ANOVA and Tukey tests. Results: The serum Troponin T increased significantly in saffron extract, aerobic exercises and compound saffron extract -aerobic exercises in type 2 diabetic men(P=0.024, P =0.013, P=0.005 respectively). Saffron extract consumption (100 mg/day) and aerobic exercises did not significantly influence the serum HFABP (P =0.365, P =0.188 respectively). But serum HFABP decreased significantly in compound saffron extract -aerobic exercises group (P =0.003). Conclusions: Raised cardiac Troponin T and HFABP concentration accepted as the standard biochemical markers for the diagnosis of cardiac injury. Saffron intake may beneficially protect the myocardium from injuries. Compound saffron extract -aerobic exercises can decrease levels of Troponin T and HFABP in men with type 2 diabetes.Keywords: Saffron, aerobic exercises, type 2 diabetes, HFABP, troponin T
Procedia PDF Downloads 2681261 The Security Trade-Offs in Resource Constrained Nodes for IoT Application
Authors: Sultan Alharby, Nick Harris, Alex Weddell, Jeff Reeve
Abstract:
The concept of the Internet of Things (IoT) has received much attention over the last five years. It is predicted that the IoT will influence every aspect of our lifestyles in the near future. Wireless Sensor Networks are one of the key enablers of the operation of IoTs, allowing data to be collected from the surrounding environment. However, due to limited resources, nature of deployment and unattended operation, a WSN is vulnerable to various types of attack. Security is paramount for reliable and safe communication between IoT embedded devices, but it does, however, come at a cost to resources. Nodes are usually equipped with small batteries, which makes energy conservation crucial to IoT devices. Nevertheless, security cost in terms of energy consumption has not been studied sufficiently. Previous research has used a security specification of 802.15.4 for IoT applications, but the energy cost of each security level and the impact on quality of services (QoS) parameters remain unknown. This research focuses on the cost of security at the IoT media access control (MAC) layer. It begins by studying the energy consumption of IEEE 802.15.4 security levels, which is followed by an evaluation for the impact of security on data latency and throughput, and then presents the impact of transmission power on security overhead, and finally shows the effects of security on memory footprint. The results show that security overhead in terms of energy consumption with a payload of 24 bytes fluctuates between 31.5% at minimum level over non-secure packets and 60.4% at the top security level of 802.15.4 security specification. Also, it shows that security cost has less impact at longer packet lengths, and more with smaller packet size. In addition, the results depicts a significant impact on data latency and throughput. Overall, maximum authentication length decreases throughput by almost 53%, and encryption and authentication together by almost 62%.Keywords: energy consumption, IEEE 802.15.4, IoT security, security cost evaluation
Procedia PDF Downloads 1701260 Integration of Hybrid PV-Wind in Three Phase Grid System Using Fuzzy MPPT without Battery Storage for Remote Area
Authors: Thohaku Abdul Hadi, Hadyan Perdana Putra, Nugroho Wicaksono, Adhika Prajna Nandiwardhana, Onang Surya Nugroho, Heri Suryoatmojo, Soedibjo
Abstract:
Access to electricity is now a basic requirement of mankind. Unfortunately, there are still many places around the world which have no access to electricity, such as small islands, where there could potentially be a factory, a plantation, a residential area, or resorts. Many of these places might have substantial potential for energy generation such us Photovoltaic (PV) and Wind turbine (WT), which can be used to generate electricity independently for themselves. Solar energy and wind power are renewable energy sources which are mostly found in nature and also kinds of alternative energy that are still developing in a rapid speed to help and meet the demand of electricity. PV and Wind has a characteristic of power depend on solar irradiation and wind speed based on geographical these areas. This paper presented a control methodology of hybrid small scale PV/Wind energy system that use a fuzzy logic controller (FLC) to extract the maximum power point tracking (MPPT) in different solar irradiation and wind speed. This paper discusses simulation and analysis of the generation process of hybrid resources in MPP and power conditioning unit (PCU) of Photovoltaic (PV) and Wind Turbine (WT) that is connected to the three-phase low voltage electricity grid system (380V) without battery storage. The capacity of the sources used is 2.2 kWp PV and 2.5 kW PMSG (Permanent Magnet Synchronous Generator) -WT power rating. The Modeling of hybrid PV/Wind, as well as integrated power electronics components in grid connected system, are simulated using MATLAB/Simulink.Keywords: fuzzy MPPT, grid connected inverter, photovoltaic (PV), PMSG wind turbine
Procedia PDF Downloads 3561259 Statistical Analysis and Optimization of a Process for CO2 Capture
Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi
Abstract:
CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.Keywords: CO2 capture, water desalination, Response Surface Methodology, bubble column reactor
Procedia PDF Downloads 2901258 CO2 Emission and Cost Optimization of Reinforced Concrete Frame Designed by Performance Based Design Approach
Authors: Jin Woo Hwang, Byung Kwan Oh, Yousok Kim, Hyo Seon Park
Abstract:
As greenhouse effect has been recognized as serious environmental problem of the world, interests in carbon dioxide (CO2) emission which comprises major part of greenhouse gas (GHG) emissions have been increased recently. Since construction industry takes a relatively large portion of total CO2 emissions of the world, extensive studies about reducing CO2 emissions in construction and operation of building have been carried out after the 2000s. Also, performance based design (PBD) methodology based on nonlinear analysis has been robustly developed after Northridge Earthquake in 1994 to assure and assess seismic performance of building more exactly because structural engineers recognized that prescriptive code based design approach cannot address inelastic earthquake responses directly and assure performance of building exactly. Although CO2 emissions and PBD approach are recent rising issues on construction industry and structural engineering, there were few or no researches considering these two issues simultaneously. Thus, the objective of this study is to minimize the CO2 emissions and cost of building designed by PBD approach in structural design stage considering structural materials. 4 story and 4 span reinforced concrete building optimally designed to minimize CO2 emissions and cost of building and to satisfy specific seismic performance (collapse prevention in maximum considered earthquake) of building satisfying prescriptive code regulations using non-dominated sorting genetic algorithm-II (NSGA-II). Optimized design result showed that minimized CO2 emissions and cost of building were acquired satisfying specific seismic performance. Therefore, the methodology proposed in this paper can be used to reduce both CO2 emissions and cost of building designed by PBD approach.Keywords: CO2 emissions, performance based design, optimization, sustainable design
Procedia PDF Downloads 4081257 Quantitative Analysis of Potential Rainwater Harvesting and Supply to a Rural Community at Northeast of Amazon Region, Brazil
Authors: N. Y. H. Konagano
Abstract:
Riverside population of Brazilian amazon suffers drinking water scarcity, seeking alternative water resources such as well and rivers, ordinary polluted. Although Amazon Region holds high annual river inflow and enough available of underground water, human activities have compromised the conservation of water resources. In addition, decentralized rural households make difficult to access of potable water. Main objective is to analyze quantitatively the potential of rainwater harvesting to human consumption at Marupaúba community, located in northeast of Amazon region, Brazil. Methods such as historical rainfall data series of municipality of Tomé-Açu at Pará state were obtained from Hydrological Information System of National Water Agency (ANA). Besides, Rippl method was used to calculate, mainly, volume of the reservoir based on difference of water demand and volume available through rainwater using as references two houses (CA I and CA II) as model of rainwater catchment and supply. Results presented that, from years 1984 to 2017, average annual precipitation was 2.607 mm, average maximum precipitation peak was 474 mm on March and average minimum peak on September was 44 mm. All months, of a year, surplus volume of water have presented in relation to demand, considering catchment area (CA) I = 134.4m² and demand volume =0.72 m³/month; and, CA II = 81.84 m² and demand volume = 0.48 m³/month. Based on results, it is concluded that it is feasible to use rainwater for the supply of the rural community Marupaúba, since the access of drinking water is a human right and the lack of this resource compromises health and daily life of human beings.Keywords: Amazon Region, rainwater harvesting, rainwater resource, rural community
Procedia PDF Downloads 1511256 Socio-economic Baselining of Selected Icrmp Sites in Southwestern Cebu, Central Philippines
Authors: Rachel Luz P. Vivas-rica, Gloria G. Delan, Christine M. Corrales, Alfonso S. Piquero, Irene A. Monte
Abstract:
ABSTRACT -Selected Integrated Coastal Resource Management Program (ICRMP) sites in Southwestern Cebu were studied employing a stratified proportional sampling method using semi-structured questionnaires. Four hundred sixteen (416) respondents from five barangays with Marine Protected Areas (MPAs) and four barangays without marine sanctuaries were considered in the study. Results showed similarity of socio-economic characteristics in terms of average age, majority were middle aged, and married. Households were male dominated, obtained low education for both MPA and Non-MPA areas. In terms of occupation, majority in both areas engaged in fulltime fishing however part time jobs as carpenter, construction worker, driver or farmer as another income source. Most of the households were nuclear families with average family size of five for both MPA and Non-MPA. Fishing experience ranged from less than 1 year to more than 50 years. Fishing grounds were within the 15 kilometer radius of each considered site. Even if the respondents were totally dependent on fishing as a major source of income, still their income is way below the poverty threshold both in the MPA and Non-MPA areas. This is further explained by the marginality of their fishing implements wherein majority uses gill nets, hook & line, spear and paddle boat in fishing. Their volume of catch from an average of 6 hours fishing expedition ranges from half a kilo to a maximum of 4 kilos. Majority are not members of fishing groups or organizations.Keywords: integrated coastal resource management program, marine protected areas, socio-economic, poverty threshold
Procedia PDF Downloads 5191255 Bioefficacy of Diclosulam for Controlling Weeds in Soybean [Glycine Max (L.) Merrill] and Its Carry Over Effect on Succeeding Wheat (Triticum Aestivum) Crop
Authors: Pratap Sing, Chaman. K. Jadon, H. P. Meena, D. L.yadav, S. L. Yadav, Uditi Dhakad
Abstract:
The experiment was conducted at Agricultural Research Station, Agriculture University, Kota, Rajasthan, India during kharif and rabi 2020-21 and 2021-22 to study the biofficacy of diclosulam and its residual effect on succeeding wheat crop. The treatments comprised of Diclosulam 84 % WDG viz. 6.25, 12.50, 25.00 and 37.50 g/ha as pre emergence (PE), Pendimethalin 30% EC 3.33 l/ha, Sulfentrazon 48% SC 750 g/ha, hand weeding at 30 and 45 DAS and weedy check, were evaluated in randomized block design in three replications. The experimental soil was clay in texture and non-calcareous. Experimental field was mainly dominated by grasses-Echinochloa colonum, E.crusgalli,Cynodon dactylon, Sedges-Cyperus rotundus and broad leaved weeds Celosia argentea and Digera arvensis.The result revealed that application of Diclosulam 84 % WDG 25 g/ha PE was found effective in controlling mostly weed species and registered higher weed control efficiency 81.2, 74.3, 69.6 per cent at 30, 45 days after sowing and at harvest. Diclosulam 84 % WDG (6.25-25.0 g/ha) was found selective to the soybean crop as no any phytotoxicity symptoms were observed. Among the herbicidal treatments, Diclosulam 84 % WDG 25 g/ha registered maximum and significantly higher soybean seed yield (1889 and 1431 kg/ha during kharif 2020 and 2021, respectively and was at par with Sulfentrazone 48% SC 750 g/ha and over weedy check( 1027 and 667 kg/ha).The wheat crop growth, yield attributes and seed yield were not influenced due to carry over effect of the Diclosulam 84 % WDG( 6.25-25.0 g/ha) and no any phytotoxicity symptoms were observed. Henceforth, the Diclosulam 84 % WDG 25.0 g/ha as pre emergence may be used in the soybean for effective weed control without carry over effect on succeeding wheat crop.Keywords: Diclosulam, soybean, carry over effect, succeeding wheat
Procedia PDF Downloads 1151254 Magnetized Cellulose Nanofiber Extracted from Natural Resources for the Application of Hexavalent Chromium Removal Using the Adsorption Method
Authors: Kebede Gamo Sebehanie, Olu Emmanuel Femi, Alberto Velázquez Del Rosario, Abubeker Yimam Ali, Gudeta Jafo Muleta
Abstract:
Water pollution is one of the most serious worldwide issues today. Among water pollution, heavy metals are becoming a concern to the environment and human health due to their non-biodegradability and bioaccumulation. In this study, a magnetite-cellulose nanocomposite derived from renewable resources is employed for hexavalent chromium elimination by adsorption. Magnetite nanoparticles were synthesized directly from iron ore using solvent extraction and co-precipitation technique. Cellulose nanofiber was extracted from sugarcane bagasse using the alkaline treatment and acid hydrolysis method. Before and after the adsorption process, the MNPs-CNF composites were evaluated using X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared (FTIR), and Vibrator sample magnetometer (VSM), and Thermogravimetric analysis (TGA). The impacts of several parameters such as pH, contact time, initial pollutant concentration, and adsorbent dose on adsorption efficiency and capacity were examined. The kinetic and isotherm adsorption of Cr (VI) was also studied. The highest removal was obtained at pH 3, and it took 80 minutes to establish adsorption equilibrium. The Langmuir and Freundlich isotherm models were used, and the experimental data fit well with the Langmuir model, which has a maximum adsorption capacity of 8.27 mg/g. The kinetic study of the adsorption process using pseudo-first-order and pseudo-second-order equations revealed that the pseudo-second-order equation was more suited for representing the adsorption kinetic data. Based on the findings, pure MNPs and MNPs-CNF nanocomposites could be used as effective adsorbents for the removal of Cr (VI) from wastewater.Keywords: magnetite-cellulose nanocomposite, hexavalent chromium, adsorption, sugarcane bagasse
Procedia PDF Downloads 1311253 Formulation and Ex Vivo Evaluation of Solid Lipid Nanoparticles Based Hydrogel for Intranasal Drug Delivery
Authors: Pramod Jagtap, Kisan Jadhav, Neha Dand
Abstract:
Risperidone (RISP) is an antipsychotic agent and has low water solubility and nontargeted delivery results in numerous side effects. Hence, an attempt was made to develop SLNs hydrogel for intranasal delivery of RISP to achieve maximum bioavailability and reduction of side effects. RISP loaded SLNs composed of 1.65% (w/v) lipid mass were produced by high shear homogenization (HSH) coupled ultrasound (US) method using glyceryl monostearate (GMS) or Imwitor 900K (solid lipid). The particles were loaded with 0.2% (w/v) of the RISP & surface-tailored with a 2.02% (w/v) non-ionic surfactant Tween® 80. Optimization was done using 32 factorial design using Design Expert® software. The prepared SLNs dispersion incorporated into Polycarbophil AA1 hydrogel (0.5% w/v). The final gel formulation was evaluated for entrapment efficiency, particle size, rheological properties, X ray diffraction, in vitro diffusion, ex vivo permeation using sheep nasal mucosa and histopathological studies for nasocilliary toxicity. The entrapment efficiency of optimized SLNs was found to be 76 ± 2 %, polydispersity index <0.3., particle size 278 ± 5 nm. This optimized batch was incorporated into hydrogel. The pH was found to be 6.4 ± 0.14. The rheological behaviour of hydrogel formulation revealed no thixotropic behaviour. In histopathology study, there was no nasocilliary toxicity observed in nasal mucosa after ex vivo permeation. X-ray diffraction data shows drug was in amorphous form. Ex vivo permeation study shows controlled release profile of drug.Keywords: ex vivo, particle size, risperidone, solid lipid nanoparticles
Procedia PDF Downloads 4221252 Investigations into the Efficiencies of Steam Conversion in Three Reactor Chemical Looping
Authors: Ratnakumar V. Kappagantula, Gordon D. Ingram, Hari B. Vuthaluru
Abstract:
This paper analyzes a three reactor chemical looping process for hydrogen production from natural gas, allowing for carbon dioxide capture through chemical looping technology. An oxygen carrier is circulated to separate carbon dioxide, to reduce steam for hydrogen production and to supply oxygen for combustion. In this study, the emphasis is placed on the steam conversion in the steam reactor by investigating the hydrogen efficiencies of the complete system at steam conversions of 15.8% and 50%. An Aspen Plus model was developed for a Three Reactor Chemical Looping process to study the effects of operational parameters on hydrogen production is investigated. Maximum hydrogen production was observed under stoichiometric conditions. Different conversions in the steam reactor, which was modelled as a Gibbs reactor, were found when Gibbs-identified products and user identified products were chosen. Simulations were performed for different oxygen carriers, which consist of an active metal oxide on an inert support material. For the same metal oxide mass flowrate, the fuel reactor temperature decreased for different support materials in the order: aluminum oxide (Al2O3) > magnesium aluminate (MgAl2O4) > zirconia (ZrO2). To achieve the same fuel reactor temperature for the same oxide mass flow rate, the inert mass fraction was found to be 0.825 for ZrO2, 0.7 for MgAl2O4 and 0.6 for Al2O3. The effect of poisoning of the oxygen carrier was also analyzed. With 3000 ppm sulfur-based impurities in the feed gas, the hydrogen product energy rate of the process were found to decrease by 0.4%.Keywords: aspen plus, chemical looping combustion, inert support balls, oxygen carrier
Procedia PDF Downloads 3301251 Influence of Different Rhizome Sizes and Operational Speed on the Field Capacity and Efficiency of a Three–Row Turmeric Rhizome Planter
Authors: Muogbo Chukwudi Peter, Gbabo Agidi
Abstract:
Influence of different turmeric rhizome sizes and machine operational speed on the field capacity and efficiency of a developed prototype tractor-drawn turmeric planter was studied. This was done with a view to ascertaining how the field capacity and field efficiency were affected by the turmeric rhizome lengths and tractor operational speed. The turmeric rhizome planter consists of trapezoidal hopper, grooved cylindrical metering devise, rectangular frame, ground wheels made of mild steel, furrow opener, chain/sprocket drive system, three linkage point seed delivery tube and press wheel. The experiment was randomized in a factorial design of three levels of rhizome lengths (30, 45 and 60 mm) and operational speeds of 8, 10, and 12 kmh-1. About 3 kg cleaned turmeric rhizomes were introduced into each hopper of the planter and were planted 30 m2 of experimental plot. During the field evaluation of the planter, the effective field capacity, field efficiency, missing index, multiple index and percentage rhizome bruise were evaluated. 30.08% was recorded for maximum percentage bruise on the rhizome. The mean effective field capacity ranged between 0.63 – 0.96hah-1 at operational speeds of 8 and 12kmh-1 respectively and 45 mm rhizome length. The result also shows that the mean efficiency was obtained to be 65.8%. The percentage rhizome bruise decreases with increase in operational speed. The highest and lowest percentage turmeric rhizome miss index of 35% were recorded for turmeric rhizome length of 30 mm at a speed of 10 kmhr-1 and 8 kmhr-1, respectively. The potential implications of the experimental result is to determine the optimal machine process conditions for higher field capacity and gross reduction in mechanical injury (bruise) of planted turmeric rhizomes.Keywords: rhizome sizes, operational speed, field capacity. field efficiency, turmeric rhizome, planter
Procedia PDF Downloads 631250 An Examination of Social Isolation and Loneliness in Adults with Hearing Loss
Authors: Christine Maleesha Withanachchi, Eithne Heffernan, Derek Hoare
Abstract:
Background: Social isolation (SI} is a major consequence of hearing loss (HL}. Isolation can lead to serious health problems (e.g., dementia and depression). Hearing Aids (HA) is the primary intervention for HL. However, these are less effective in social situations. Interventions are needed for SI in adults with hearing loss (AHL). Objectives: Investigated the relationship between HL and SI. Explored the views of AHL and hearing healthcare professionals (HHP) towards interventions for isolation. Methods: Individual and group semi-structured interviews were conducted. Interviews were conducted at the Nottingham Institute of Health Research (NIHR) Biomedical Research Centre (BRC). Six AHL and seven HHP were recruited via maximum variation sampling. The interview transcripts were analyzed using inductive thematic analysis. Results: Social impacts of HL: Most participants described that HL hurt them. This was in the form of social withdrawal, strain on relationships, and identity loss. Downstream effects of HL: Most audiologists acknowledged that isolation from HL could lead to depression. HL can also lead to exhaustion and unemployment. Impact of stigma: There are negative connotations around HL and HA (e.g. old age) and there is difficulty talking about isolation. The complexity of SI: There can be difficulty separating SI due to HL from SI due to other contributing factors (e.g. comorbidities). Potential intervention for isolation: Participants were unfamiliar with interventions for isolation and few, if any, were targeted for AHL specifically. Most participants thought an intervention should be patient-centered and run by an AHL in the community. Opinions differed regarding whether it should hear specific or generic. Implementation of intervention: Challenges to the implementation of an intervention for SI exist due to the sensitivity of the subject. Conclusions: This study demonstrated that SI is a major consequence of HL and uncovered novel findings related to its interventions. Uptake of interventions offered to AHL to reduce loneliness and social isolation is expected to be better if led by AHL in the community as opposed to HHP led interventions in the hospital or clinic settings.Keywords: adults with hearing loss, hearing aids, interventions, social isolation
Procedia PDF Downloads 1421249 VISSIM Modeling of Driver Behavior at Connecticut Roundabouts
Authors: F. Clara Fang, Hernan Castaneda
Abstract:
The Connecticut Department of Transportation (ConnDOT) has constructed four roundabouts in the State of Connecticut within the past ten years. VISSIM traffic simulation software was utilized to analyze these roundabouts during their design phase. The queue length and level of service observed in the field appear to be better than predicted by the VISSIM model. The objectives of this project are to: identify VISSIM input variables most critical to accurate modeling; recommend VISSIM calibration factors; and, provide other recommendations for roundabout traffic operations modeling. Traffic data were collected at these roundabouts using Miovision Technologies. Cameras were set up to capture vehicle circulating activity and entry behavior for two weekdays. A large sample size of filed data was analyzed to achieve accurate and statistically significant results. The data extracted from the videos include: vehicle circulating speed; critical gap estimated by Maximum Likelihood Method; peak hour volume; follow-up headway; travel time; and, vehicle queue length. A VISSIM simulation of existing roundabouts was built to compare both queue length and travel time predicted from simulation with measured in the field. The research investigated a variety of simulation parameters as calibration factors for describing driver behaviors at roundabouts. Among them, critical gap is the most effective calibration variable in roundabout simulation. It has a significant impact to queue length, particularly when the volume is higher. The results will improve the design of future roundabouts in Connecticut and provide decision makers with insights on the relationship between various choices and future performance.Keywords: driver critical gap, roundabout analysis, simulation, VISSIM modeling
Procedia PDF Downloads 2921248 Effect of Oral Clonidine Premedication on Subarachnoid Block Characteristics of 0.5 % Hyperbaric Bupivacaine for Laparoscopic Gynecological Procedures – A Randomized Control Study
Authors: Buchh Aqsa, Inayat Umar
Abstract:
Background- Clonidine, α 2 agonist, possesses several properties to make it valuable adjuvant for spinal anesthesia. The study was aimed to evaluate the clinical effects of oral clonidine premedication for laparoscopic gynecological procedures under subarachnoid block. Patients and method- Sixtyfour adult female patients of ASA physical status I and II, aged 25 to 45 years and scheduled for laparoscopic gynecological procedures under the subarachnoid block, were randomized into two comparable equal groups of 32 patients each to received either oral clonidine, 100 µg (Group I) or placebo (Group II), 90 minutes before the procedure. Subarachnoid block was established with of 3.5 ml of 0.5% hyperbaric bupivacaine in all patients. Onset and duration of sensory and motor block, maximum cephalad level, and the regression time to reach S1 sensory level were assessed as primary end points. Sedation, hemodynamic variability, and respiratory depression or any other side effects were evaluated as secondary outcomes. Results- The demographic profile was comparable. The intraoperative hemodynamic parameters showed significant differences between groups. Oral clonidine was accelerated the onset time of sensory and motor blockade and extended the duration of sensory block (216.4 ± 23.3 min versus 165 ± 37.2 min, P <0.05). The duration of motor block showed no significant difference. The sedation score was more than 2 in the clonidine group as compared to the control group. Conclusion- Oral clonidine premedication has extended the duration of sensory analgesia with arousable sedation. It also prevented the post spinal shivering of the subarachnoid block.Keywords: oral clonidine, subarachnoid block, sensory analgesia, laparoscopic gynaecological
Procedia PDF Downloads 841247 Exergy Analysis of a Green Dimethyl Ether Production Plant
Authors: Marcello De Falco, Gianluca Natrella, Mauro Capocelli
Abstract:
CO₂ capture and utilization (CCU) is a promising approach to reduce GHG(greenhouse gas) emissions. Many technologies in this field are recently attracting attention. However, since CO₂ is a very stable compound, its utilization as a reagent is energetic intensive. As a consequence, it is unclear whether CCU processes allow for a net reduction of environmental impacts from a life cycle perspective and whether these solutions are sustainable. Among the tools to apply for the quantification of the real environmental benefits of CCU technologies, exergy analysis is the most rigorous from a scientific point of view. The exergy of a system is the maximum obtainable work during a process that brings the system into equilibrium with its reference environment through a series of reversible processes in which the system can only interact with such an environment. In other words, exergy is an “opportunity for doing work” and, in real processes, it is destroyed by entropy generation. The exergy-based analysis is useful to evaluate the thermodynamic inefficiencies of processes, to understand and locate the main consumption of fuels or primary energy, to provide an instrument for comparison among different process configurations and to detect solutions to reduce the energy penalties of a process. In this work, the exergy analysis of a process for the production of Dimethyl Ether (DME) from green hydrogen generated through an electrolysis unit and pure CO₂ captured from flue gas is performed. The model simulates the behavior of all units composing the plant (electrolyzer, carbon capture section, DME synthesis reactor, purification step), with the scope to quantify the performance indices based on the II Law of Thermodynamics and to identify the entropy generation points. Then, a plant optimization strategy is proposed to maximize the exergy efficiency.Keywords: green DME production, exergy analysis, energy penalties, exergy efficiency
Procedia PDF Downloads 2621246 The Fundamental Research and Industrial Application on CO₂+O₂ in-situ Leaching Process in China
Authors: Lixin Zhao, Genmao Zhou
Abstract:
Traditional acid in-situ leaching (ISL) is not suitable for the sandstone uranium deposit with low permeability and high content of carbonate minerals, because of the blocking of calcium sulfate precipitates. Another factor influences the uranium acid in-situ leaching is that the pyrite in ore rocks will react with oxidation reagent and produce lots of sulfate ions which may speed up the precipitation process of calcium sulphate and consume lots of oxidation reagent. Due to the advantages such as less chemical reagent consumption and groundwater pollution, CO₂+O₂ in-situ leaching method has become one of the important research areas in uranium mining. China is the second country where CO₂+O₂ ISL has been adopted in industrial uranium production of the world. It is shown that the CO₂+O₂ ISL in China has been successfully developed. The reaction principle, technical process, well field design and drilling engineering, uranium-bearing solution processing, etc. have been fully studied. At current stage, several uranium mines use CO₂+O₂ ISL method to extract uranium from the ore-bearing aquifers. The industrial application and development potential of CO₂+O₂ ISL method in China are summarized. By using CO₂+O₂ neutral leaching technology, the problem of calcium carbonate and calcium sulfate precipitation have been solved during uranium mining. By reasonably regulating the amount of CO₂ and O₂, related ions and hydro-chemical conditions can be controlled within the limited extent for avoiding the occurrence of calcium sulfate and calcium carbonate precipitation. Based on this premise, the demand of CO₂+O₂ uranium leaching has been met to the maximum extent, which not only realizes the effective leaching of uranium, but also avoids the occurrence and precipitation of calcium carbonate and calcium sulfate, realizing the industrial development of the sandstone type uranium deposit.Keywords: CO₂+O₂ ISL, industrial production, well field layout, uranium processing
Procedia PDF Downloads 1781245 Modelling of a Biomechanical Vertebral System for Seat Ejection in Aircrafts Using Lumped Mass Approach
Authors: R. Unnikrishnan, K. Shankar
Abstract:
In the case of high-speed fighter aircrafts, seat ejection is designed mainly for the safety of the pilot in case of an emergency. Strong windblast due to the high velocity of flight is one main difficulty in clearing the tail of the aircraft. Excessive G-forces generated, immobilizes the pilot from escape. In most of the cases, seats are ejected out of the aircrafts by explosives or by rocket motors attached to the bottom of the seat. Ejection forces are primarily in the vertical direction with the objective of attaining the maximum possible velocity in a specified period of time. The safe ejection parameters are studied to estimate the critical time of ejection for various geometries and velocities of flight. An equivalent analytical 2-dimensional biomechanical model of the human spine has been modelled consisting of vertebrae and intervertebral discs with a lumped mass approach. The 24 vertebrae, which consists of the cervical, thoracic and lumbar regions, in addition to the head mass and the pelvis has been designed as 26 rigid structures and the intervertebral discs are assumed as 25 flexible joint structures. The rigid structures are modelled as mass elements and the flexible joints as spring and damper elements. Here, the motions are restricted only in the mid-sagittal plane to form a 26 degree of freedom system. The equations of motions are derived for translational movement of the spinal column. An ejection force with a linearly increasing acceleration profile is applied as vertical base excitation on to the pelvis. The dynamic vibrational response of each vertebra in time-domain is estimated.Keywords: biomechanical model, lumped mass, seat ejection, vibrational response
Procedia PDF Downloads 2311244 The Application of Enzymes on Pharmaceutical Products and Process Development
Authors: Reginald Anyanwu
Abstract:
Enzymes are biological molecules that significantly regulate the rate of almost all of the chemical reactions that take place within cells, and have been widely used for products’ innovations. They are vital for life and serve a wide range of important functions in the body, such as aiding in digestion and metabolism. The present study was aimed at finding out the extent to which biological molecules have been utilized by pharmaceutical, food and beverage, and biofuel industries in commercial and scale up applications. Taking into account the escalating business opportunities in this vertical, biotech firms have also been penetrating enzymes industry especially that of food. The aim of the study therefore was to find out how biocatalysis can be successfully deployed; how enzyme application can improve industrial processes. To achieve the purpose of the study, the researcher focused on the analytical tools that are critical for the scale up implementation of enzyme immobilization to ascertain the extent of increased product yield at minimum logistical burden and maximum market profitability on the environment and user. The researcher collected data from four pharmaceutical companies located at Anambra state and Imo state of Nigeria. Questionnaire items were distributed to these companies. The researcher equally made a personal observation on the applicability of these biological molecules on innovative Products since there is now shifting trends toward the consumption of healthy and quality food. In conclusion, it was discovered that enzymes have been widely used for products’ innovations but there are however variations on their applications. It was also found out that pivotal contenders of enzymes market have lately been making heavy investments in the development of innovative product solutions. It was recommended that the applications of enzymes on innovative products should be widely practiced.Keywords: enzymes, pharmaceuticals, process development, quality food consumption, scale-up applications
Procedia PDF Downloads 143