Search results for: cross-border insolvency provisions in the 2016 code
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3090

Search results for: cross-border insolvency provisions in the 2016 code

30 Photosynthesis Metabolism Affects Yield Potentials in Jatropha curcas L.: A Transcriptomic and Physiological Data Analysis

Authors: Nisha Govender, Siju Senan, Zeti-Azura Hussein, Wickneswari Ratnam

Abstract:

Jatropha curcas, a well-described bioenergy crop has been extensively accepted as future fuel need especially in tropical regions. Ideal planting material required for large-scale plantation is still lacking. Breeding programmes for improved J. curcas varieties are rendered difficult due to limitations in genetic diversity. Using a combined transcriptome and physiological data, we investigated the molecular and physiological differences in high and low yielding Jatropha curcas to address plausible heritable variations underpinning these differences, in regard to photosynthesis, a key metabolism affecting yield potentials. A total of 6 individual Jatropha plant from 4 accessions described as high and low yielding planting materials were selected from the Experimental Plot A, Universiti Kebangsaan Malaysia (UKM), Bangi. The inflorescence and shoots were collected for transcriptome study. For the physiological study, each individual plant (n=10) from the high and low yielding populations were screened for agronomic traits, chlorophyll content and stomatal patterning. The J. curcas transcriptomes are available under BioProject PRJNA338924 and BioSample SAMN05827448-65, respectively Each transcriptome was subjected to functional annotation analysis of sequence datasets using the BLAST2Go suite; BLASTing, mapping, annotation, statistical analysis and visualization Large-scale phenotyping of the number of fruits per plant (NFPP) and fruits per inflorescence (FPI) classified the high yielding Jatropha accessions with average NFPP =60 and FPI > 10, whereas the low yielding accessions yielded an average NFPP=10 and FPI < 5. Next generation sequencing revealed genes with differential expressions in the high yielding Jatropha relative to the low yielding plants. Distinct differences were observed in transcript level associated to photosynthesis metabolism. DEGs collection in the low yielding population showed comparable CAM photosynthetic metabolism and photorespiration, evident as followings: phosphoenolpyruvate phosphate translocator chloroplastic like isoform with 2.5 fold change (FC) and malate dehydrogenase (2.03 FC). Green leaves have the most pronounced photosynthetic activity in a plant body due to significant accumulation of chloroplast. In most plants, the leaf is always the dominant photosynthesizing heart of the plant body. Large number of the DEGS in the high-yielding population were found attributable to chloroplast and chloroplast associated events; STAY-GREEN chloroplastic, Chlorophyllase-1-like (5.08 FC), beta-amylase (3.66 FC), chlorophyllase-chloroplastic-like (3.1 FC), thiamine thiazole chloroplastic like (2.8 FC), 1-4, alpha glucan branching enzyme chloroplastic amyliplastic (2.6FC), photosynthetic NDH subunit (2.1 FC) and protochlorophyllide chloroplastic (2 FC). The results were parallel to a significant increase in chlorophyll a content in the high yielding population. In addition to the chloroplast associated transcript abundance, the TOO MANY MOUTHS (TMM) at 2.9 FC, which code for distant stomatal distribution and patterning in the high-yielding population may explain high concentration of CO2. The results were in agreement with the role of TMM. Clustered stomata causes back diffusion in the presence of gaps localized closely to one another. We conclude that high yielding Jatropha population corresponds to a collective function of C3 metabolism with a low degree of CAM photosynthetic fixation. From the physiological descriptions, high chlorophyll a content and even distribution of stomata in the leaf contribute to better photosynthetic efficiency in the high yielding Jatropha compared to the low yielding population.

Keywords: chlorophyll, gene expression, genetic variation, stomata

Procedia PDF Downloads 216
29 Large Scale Method to Assess the Seismic Vulnerability of Heritage Buidings: Modal Updating of Numerical Models and Vulnerability Curves

Authors: Claire Limoge Schraen, Philippe Gueguen, Cedric Giry, Cedric Desprez, Frédéric Ragueneau

Abstract:

Mediterranean area is characterized by numerous monumental or vernacular masonry structures illustrating old ways of build and live. Those precious buildings are often poorly documented, present complex shapes and loadings, and are protected by the States, leading to legal constraints. This area also presents a moderate to high seismic activity. Even moderate earthquakes can be magnified by local site effects and cause collapse or significant damage. Moreover the structural resistance of masonry buildings, especially when less famous or located in rural zones has been generally lowered by many factors: poor maintenance, unsuitable restoration, ambient pollution, previous earthquakes. Recent earthquakes prove that any damage to these architectural witnesses to our past is irreversible, leading to the necessity of acting preventively. This means providing preventive assessments for hundreds of structures with no or few documents. In this context we want to propose a general method, based on hierarchized numerical models, to provide preliminary structural diagnoses at a regional scale, indicating whether more precise investigations and models are necessary for each building. To this aim, we adapt different tools, being developed such as photogrammetry or to be created such as a preprocessor starting from pictures to build meshes for a FEM software, in order to allow dynamic studies of the buildings of the panel. We made an inventory of 198 baroque chapels and churches situated in the French Alps. Then their structural characteristics have been determined thanks field surveys and the MicMac photogrammetric software. Using structural criteria, we determined eight types of churches and seven types for chapels. We studied their dynamical behavior thanks to CAST3M, using EC8 spectrum and accelerogramms of the studied zone. This allowed us quantifying the effect of the needed simplifications in the most sensitive zones and choosing the most effective ones. We also proposed threshold criteria based on the observed damages visible in the in situ surveys, old pictures and Italian code. They are relevant in linear models. To validate the structural types, we made a vibratory measures campaign using vibratory ambient noise and velocimeters. It also allowed us validating this method on old masonry and identifying the modal characteristics of 20 churches. Then we proceeded to a dynamic identification between numerical and experimental modes. So we updated the linear models thanks to material and geometrical parameters, often unknown because of the complexity of the structures and materials. The numerically optimized values have been verified thanks to the measures we made on the masonry components in situ and in laboratory. We are now working on non-linear models redistributing the strains. So we validate the damage threshold criteria which we use to compute the vulnerability curves of each defined structural type. Our actual results show a good correlation between experimental and numerical data, validating the final modeling simplifications and the global method. We now plan to use non-linear analysis in the critical zones in order to test reinforcement solutions.

Keywords: heritage structures, masonry numerical modeling, seismic vulnerability assessment, vibratory measure

Procedia PDF Downloads 475
28 The Plight of the Rohingyas: Design Guidelines to Accommodate Displaced People in Bangladesh

Authors: Nazia Roushan, Maria Kipti

Abstract:

The sensitive issue of a large-scale entry of Rohingya refugees to Bangladesh has arisen again since August of 2017. Incited by ethnic and religious conflict, the Rohingyas—an ethnic group concentrated in the north-west state of Rakhine in Myanmar—have been fleeing to what is now Bangladesh from as early as the late 1700s in four main exoduses. This long-standing persecution has recently escalated, and accommodating the recent wave of exodus has been especially challenging due to the sheer volume of a million refugees concentrated in refugee camps in two small administrative units (upazilas) in the south-east of the country: the host area. This drastic change in the host area’s social fabric is putting a lot of strain on the country’s economic, demographic and environmental stability, and security. Although Bangladesh’s long-term experience with disaster management has enabled it to respond rapidly to the crisis, the government is failing to cope with this enormous problem and has taken insufficient steps towards improving the living conditions to inhibit the inflow of more refugees. On top of that, the absence of a comprehensive national refugee policy, and the density of the structures of the camps are constricting the upgrading of the shelters to international standards. As of December 2016, the combined number of internally displaced persons (IDPs) due to conflict and violence (stock), and new displacements due to disasters (flow) in Bangladesh had exceeded 1 million. These numbers have increased dramatically in the last few months. Moreover, by 2050, Bangladesh will have as much as 25 million climate refugees just from its coastal districts. To enhance the resilience of the vulnerable, it is crucial to methodically factorize further interventions between Disaster Risk Reduction for Resilience (DRR) and the concept of Building Back Better (BBB) in the rehabilitation-reconstruction period. Considering these points, this paper provides a palette of options for design guidelines related to the living spaces and infrastructures for refugees. This will encourage the development of national standards for refugee camps, and the national and local level rehabilitation-reconstruction practices. Unhygienic living conditions, vulnerability, and the general lack of control over life are pervasive throughout the camps. This paper, therefore, proposes site-specific strategic and physical planning and design for shelters for refugees in Bangladesh that will lead to sustainable living environments through the following: a) site survey of existing two registered and one makeshift unregistered refugee camps to document and study their physical conditions, b) questionnaires and semi-structured focus group discussions carried out among the refugees and stakeholders to understand what the lived experiences and needs are; and c) combining the findings with international minimum standards for shelter and settlement from International Federation of Red Cross and Red Crescent (IFRC), Médecins Sans Frontières (MSF), United Nations High Commissioner for Refugees (UNHCR). These proposals include temporary shelter solutions that balance between lived spaces and regimented, repetitive plans using readily available and cheap materials, erosion control and slope stabilization strategies, and most importantly, coping mechanisms for the refugees to be self-reliant and resilient.

Keywords: architecture, Bangladesh, refugee camp, resilience, Rohingya

Procedia PDF Downloads 214
27 Next-Generation Lunar and Martian Laser Retro-Reflectors

Authors: Simone Dell'Agnello

Abstract:

There are laser retroreflectors on the Moon and no laser retroreflectors on Mars. Here we describe the design, construction, qualification and imminent deployment of next-generation, optimized laser retroreflectors on the Moon and on Mars (where they will be the first ones). These instruments are positioned by time-of-flight measurements of short laser pulses, the so-called 'laser ranging' technique. Data analysis is carried out with PEP, the Planetary Ephemeris Program of CfA (Center for Astrophysics). Since 1969 Lunar Laser Ranging (LLR) to Apollo/Lunokhod laser retro-reflector (CCR) arrays supplied accurate tests of General Relativity (GR) and new gravitational physics: possible changes of the gravitational constant Gdot/G, weak and strong equivalence principle, gravitational self-energy (Parametrized Post Newtonian parameter beta), geodetic precession, inverse-square force-law; it can also constraint gravitomagnetism. Some of these measurements also allowed for testing extensions of GR, including spacetime torsion, non-minimally coupled gravity. LLR has also provides significant information on the composition of the deep interior of the Moon. In fact, LLR first provided evidence of the existence of a fluid component of the deep lunar interior. In 1969 CCR arrays contributed a negligible fraction of the LLR error budget. Since laser station range accuracy improved by more than a factor 100, now, because of lunar librations, current array dominate the error due to their multi-CCR geometry. We developed a next-generation, single, large CCR, MoonLIGHT (Moon Laser Instrumentation for General relativity high-accuracy test) unaffected by librations that supports an improvement of the space segment of the LLR accuracy up to a factor 100. INFN also developed INRRI (INstrument for landing-Roving laser Retro-reflector Investigations), a microreflector to be laser-ranged by orbiters. Their performance is characterized at the SCF_Lab (Satellite/lunar laser ranging Characterization Facilities Lab, INFN-LNF, Frascati, Italy) for their deployment on the lunar surface or the cislunar space. They will be used to accurately position landers, rovers, hoppers, orbiters of Google Lunar X Prize and space agency missions, thanks to LLR observations from station of the International Laser Ranging Service in the USA, in France and in Italy. INRRI was launched in 2016 with the ESA mission ExoMars (Exobiology on Mars) EDM (Entry, descent and landing Demonstration Module), deployed on the Schiaparelli lander and is proposed for the ExoMars 2020 Rover. Based on an agreement between NASA and ASI (Agenzia Spaziale Italiana), another microreflector, LaRRI (Laser Retro-Reflector for InSight), was delivered to JPL (Jet Propulsion Laboratory) and integrated on NASA’s InSight Mars Lander in August 2017 (launch scheduled in May 2018). Another microreflector, LaRA (Laser Retro-reflector Array) will be delivered to JPL for deployment on the NASA Mars 2020 Rover. The first lunar landing opportunities will be from early 2018 (with TeamIndus) to late 2018 with commercial missions, followed by opportunities with space agency missions, including the proposed deployment of MoonLIGHT and INRRI on NASA’s Resource Prospectors and its evolutions. In conclusion, we will extend significantly the CCR Lunar Geophysical Network and populate the Mars Geophysical Network. These networks will enable very significantly improved tests of GR.

Keywords: general relativity, laser retroreflectors, lunar laser ranging, Mars geodesy

Procedia PDF Downloads 248
26 Nonlinear Homogenized Continuum Approach for Determining Peak Horizontal Floor Acceleration of Old Masonry Buildings

Authors: Andreas Rudisch, Ralf Lampert, Andreas Kolbitsch

Abstract:

It is a well-known fact among the engineering community that earthquakes with comparatively low magnitudes can cause serious damage to nonstructural components (NSCs) of buildings, even when the supporting structure performs relatively well. Past research works focused mainly on NSCs of nuclear power plants and industrial plants. Particular attention should also be given to architectural façade elements of old masonry buildings (e.g. ornamental figures, balustrades, vases), which are very vulnerable under seismic excitation. Large numbers of these historical nonstructural components (HiNSCs) can be found in highly frequented historical city centers and in the event of failure, they pose a significant danger to persons. In order to estimate the vulnerability of acceleration sensitive HiNSCs, the peak horizontal floor acceleration (PHFA) is used. The PHFA depends on the dynamic characteristics of the building, the ground excitation, and induced nonlinearities. Consequently, the PHFA can not be generalized as a simple function of height. In the present research work, an extensive case study was conducted to investigate the influence of induced nonlinearity on the PHFA for old masonry buildings. Probabilistic nonlinear FE time-history analyses considering three different hazard levels were performed. A set of eighteen synthetically generated ground motions was used as input to the structure models. An elastoplastic macro-model (multiPlas) for nonlinear homogenized continuum FE-calculation was calibrated to multiple scales and applied, taking specific failure mechanisms of masonry into account. The macro-model was calibrated according to the results of specific laboratory and cyclic in situ shear tests. The nonlinear macro-model is based on the concept of multi-surface rate-independent plasticity. Material damage or crack formation are detected by reducing the initial strength after failure due to shear or tensile stress. As a result, shear forces can only be transmitted to a limited extent by friction when the cracking begins. The tensile strength is reduced to zero. The first goal of the calibration was the consistency of the load-displacement curves between experiment and simulation. The calibrated macro-model matches well with regard to the initial stiffness and the maximum horizontal load. Another goal was the correct reproduction of the observed crack image and the plastic strain activities. Again the macro-model proved to work well in this case and shows very good correlation. The results of the case study show that there is significant scatter in the absolute distribution of the PHFA between the applied ground excitations. An absolute distribution along the normalized building height was determined in the framework of probability theory. It can be observed that the extent of nonlinear behavior varies for the three hazard levels. Due to the detailed scope of the present research work, a robust comparison with code-recommendations and simplified PHFA distributions are possible. The chosen methodology offers a chance to determine the distribution of PHFA along the building height of old masonry structures. This permits a proper hazard assessment of HiNSCs under seismic loads.

Keywords: nonlinear macro-model, nonstructural components, time-history analysis, unreinforced masonry

Procedia PDF Downloads 148
25 Design, Control and Implementation of 3.5 kW Bi-Directional Energy Harvester for Intelligent Green Energy Management System

Authors: P. Ramesh, Aby Joseph, Arya G. Lal, U. S. Aji

Abstract:

Integration of distributed green renewable energy sources in addition with battery energy storage is an inevitable requirement in a smart grid environment. To achieve this, an Intelligent Green Energy Management System (i-GEMS) needs to be incorporated to ensure coordinated operation between supply and load demand based on the hierarchy of Renewable Energy Sources (RES), battery energy storage and distribution grid. A bi-directional energy harvester is an integral component facilitating Intelligent Green Energy Management System (i-GEMS) and it is required to meet the technical challenges mentioned as follows: (1) capability for bi-directional mode of operation (buck/boost) (2) reduction of circuit parasitic to suppress voltage spikes (3) converter startup problem (4) high frequency magnetics (5) higher power density (6) mode transition issues during battery charging and discharging. This paper is focused to address the above mentioned issues and targeted to design, develop and implement a bi-directional energy harvester with galvanic isolation. In this work, the hardware architecture for bi-directional energy harvester rated 3.5 kW is developed with Isolated Full Bridge Boost Converter (IFBBC) as well as Dual Active Bridge (DAB) Converter configuration using modular power electronics hardware which is identical for both solar PV array and battery energy storage. In IFBBC converter, the current fed full bridge circuit is enabled and voltage fed full bridge circuit is disabled through Pulse Width Modulation (PWM) pulses for boost mode of operation and vice-versa for buck mode of operation. In DAB converter, all the switches are in active state so as to adjust the phase shift angle between primary full bridge and secondary full bridge which in turn decides the power flow directions depending on modes (boost/buck) of operation. Here, the control algorithm is developed to ensure the regulation of the common DC link voltage and maximum power extraction from the renewable energy sources depending on the selected mode (buck/boost) of operation. The circuit analysis and simulation study are conducted using PSIM 9.0 in three scenarios which are - 1.IFBBC with passive clamp, 2. IFBBC with active clamp, 3. DAB converter. In this work, a common hardware prototype for bi-directional energy harvester with 3.5 kW rating is built for IFBBC and DAB converter configurations. The power circuit is equipped with right choice of MOSFETs, gate drivers with galvanic isolation, high frequency transformer, filter capacitors, and filter boost inductor. The experiment was conducted for IFBBC converter with passive clamp under boost mode and the prototype confirmed the simulation results showing the measured efficiency as 88% at 2.5 kW output power. The digital controller hardware platform is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the bi-directional energy harvester is written in C language and developed using code composer studio. The comprehensive analyses of the power circuit design, control strategy for battery charging/discharging under buck/boost modes and comparative performance evaluation using simulation and experimental results will be presented.

Keywords: bi-directional energy harvester, dual active bridge, isolated full bridge boost converter, intelligent green energy management system, maximum power point tracking, renewable energy sources

Procedia PDF Downloads 113
24 Using Health Literacy and Medico-Legal Guidance to Improve Restorative Dentistry Patient Information Leaflets

Authors: Hasneet K. Kalsi, Julie K. Kilgariff

Abstract:

Introduction: Within dentistry, the process for gaining informed consent has become more complex. To consent for treatment, patients must understand all reasonable treatment options and associated risks and benefits. Consenting is therefore deeply embedded in health literacy. Patients attending for dental consultation are often presented with an array of information and choices, yet studies show patients recall less than half of the information provided immediately after. Appropriate and comprehensible patient information leaflets (PILs) may be useful aid memories. In 2016 the World Health Organisation set improving health literacy as a global priority. Soon after, Scotland’s 2017-2025 Making it Easier: A Health Literacy Action Plan followed. This project involved the review of Restorative PILs used within Dundee Dental Hospital to assess the Content and Readability. Method: The current PIL on Root Canal Treatment (RCT) was created in 2011. This predates the Montgomery vs. NHS Lanarkshire case, a ruling which significantly impacted dental consenting processes, as well as General Dental Council’s (GDC’s) Standards for the Dental Team and Faculty of General Dental Practice’s Good Practice Guidance on Clinical Examination and Record-Keeping. Current evidence-based guidance, including that stipulated by the GDC, was reviewed. A 20-point Essential Content Checklist was designed to conform to best practice guidance for valid consenting processes. The RCT leaflet was scored against this to ascertain if the content was satisfactory. Having ensured the content satisfied medicolegal requirements, health literacy considerations were reviewed regarding readability. This was assessed using McLaughlin’s Simple Measure of Gobbledygook (SMOG) formula, which identifies school stages that would have to be achieved to comprehend the PIL. The sensitivity of the results to alternative readability methods were assessed. Results: The PIL was not sufficient for modern consenting processes and reflected a suboptimal level of health literacy. Evaluation of the leaflet revealed key content was missing, including information pertaining to risks and benefits. Only five points out of the 20-point checklist were present. The readability score was 16, equivalent to a level 2 in National Adult Literacy Standards/Scottish Credit and Qualification Framework Level 5; 62% of Scottish adults are able to read to this standard. Discussion: Assessment of the leaflet showed it was no longer fit for purpose. Reasons include a lack of pertinent information, a text-heavy leaflet lacking flow, and content errors. The SMOG score indicates a high level of comprehension is required to understand this PIL, which many patients may not possess. A new PIL, compliant with medicolegal and health literacy guidance, was designed with patient-driven checklists, notes spaces for annotations/ questions and areas for clinicians to highlight important case-specific information. It has been tested using the SMOG formula. Conclusion: PILs can be extremely useful. Studies show that interactive use can enhance their effectiveness. PILs should reflect best practice guidance and be understood by patients. The 2020 leaflet designed and implemented aims to fulfill the needs of a modern healthcare system and its service users. It embraces and embeds Scotland’s Health Literacy Action Plan within the consenting process. A review of further leaflets using this model is ongoing.

Keywords: consent, health literacy, patient information leaflet, restorative dentistry

Procedia PDF Downloads 126
23 Fabrication of Zeolite Modified Cu Doped ZnO Films and Their Response towards Nitrogen Monoxide

Authors: Irmak Karaduman, Tugba Corlu, Sezin Galioglu, Burcu Akata, M. Ali Yildirim, Aytunç Ateş, Selim Acar

Abstract:

Breath analysis represents a promising non-invasive, fast and cost-effective alternative to well-established diagnostic and monitoring techniques such as blood analysis, endoscopy, ultrasonic and tomographic monitoring. Portable, non-invasive, and low-cost breath analysis devices are becoming increasingly desirable for monitoring different diseases, especially asthma. Beacuse of this, NO gas sensing at low concentrations has attracted progressive attention for clinical analysis in asthma. Recently, nanomaterials based sensors are considered to be a promising clinical and laboratory diagnostic tool, because its large surface–to–volume ratio, controllable structure, easily tailored chemical and physical properties, which bring high sensitivity, fast dynamic processand even the increasing specificity. Among various nanomaterials, semiconducting metal oxides are extensively studied gas-sensing materials and are potential sensing elements for breathanalyzer due to their high sensitivity, simple design, low cost and good stability.The sensitivities of metal oxide semiconductor gas sensors can be enhanced by adding noble metals. Doping contents, distribution, and size of metallic or metal oxide catalysts are key parameters for enhancing gas selectivity as well as sensitivity. By manufacturing doping MOS structures, it is possible to develop more efficient sensor sensing layers. Zeolites are perhaps the most widely employed group of silicon-based nanoporous solids. Their well-defined pores of sub nanometric size have earned them the name of molecular sieves, meaning that operation in the size exclusion regime is possible by selecting, among over 170 structures available, the zeolite whose pores allow the pass of the desired molecule, while keeping larger molecules outside.In fact it is selective adsorption, rather than molecular sieving, the mechanism that explains most of the successful gas separations achieved with zeolite membranes. In view of their molecular sieving and selective adsorption properties, it is not surprising that zeolites have found use in a number of works dealing with gas sensing devices. In this study, the Cu doped ZnO nanostructure film was produced by SILAR method and investigated the NO gas sensing properties. To obtain the selectivity of the sample, the gases including CO,NH3,H2 and CH4 were detected to compare with NO. The maximum response is obtained at 85 C for 20 ppb NO gas. The sensor shows high response to NO gas. However, acceptable responses are calculated for CO and NH3 gases. Therefore, there are no responses obtain for H2 and CH4 gases. Enhanced to selectivity, Cu doped ZnO nanostructure film was coated with zeolite A thin film. It is found that the sample possess an acceptable response towards NO hardly respond to CO, NH3, H2 and CH4 at room temperature. This difference in the response can be expressed in terms of differences in the molecular structure, the dipole moment, strength of the electrostatic interaction and the dielectric constant. The as-synthesized thin film is considered to be one of the extremely promising candidate materials in electronic nose applications. This work is supported by The Scientific and Technological Research Council of Turkey (TUBİTAK) under Project No, 115M658 and Gazi University Scientific Research Fund under project no 05/2016-21.

Keywords: Cu doped ZnO, electrical characterization, gas sensing, zeolite

Procedia PDF Downloads 266
22 Force Sensing Resistor Testing of Hand Forces and Grasps during Daily Functional Activities in the Covid-19 Pandemic

Authors: Monique M. Keller, Roline Barnes, Corlia Brandt

Abstract:

Introduction Scientific evidence on the hand forces and the types of grasps measurement during daily tasks are lacking, leaving a gap in the field of hand rehabilitation and robotics. Measuring the grasp forces and types produced by the individual fingers during daily functional tasks is valuable to inform and grade rehabilitation practices for second to fifth metacarpal fractures with robust scientific evidence. Feix et al, 2016 identified the most extensive and complete grasp study that resulted in the GRASP taxonomy. Covid-19 virus changed data collection across the globe and safety precautions in research are essential to ensure the health of participants and researchers. Methodology A cross-sectional study investigated six healthy adults aged 20 to 59 years, pilot participants’ hand forces during 105 tasks. The tasks were categorized into five sections namely, personal care, transport and moving around, home environment and inside, gardening and outside, and office. The predominant grasp of each task was identified guided by the GRASP Taxonomy. Grasp forces were measured with 13mm force-sensing resistors glued onto a glove attached to each of the dominant and non-dominant hand’s individual fingers. Testing equipment included Flexiforce 13millimetres FSR .5" circle, calibrated prior to testing, 10k 1/4w resistors, Arduino pro mini 5.0v – compatible, Esp-01-kit, Arduino uno r3 – compatible board, USB ab cable - 1m, Ftdi ft232 mini USB to serial, Sil 40 inline connectors, ribbon cable combo male header pins, female to female, male to female, two gloves, glue to attach the FSR to glove, Arduino software programme downloaded on a laptop. Grip strength measurements with Jamar dynamometer prior to testing and after every 25 daily tasks were taken to will avoid fatigue and ensure reliability in testing. Covid-19 precautions included wearing face masks at all times, screening questionnaires, temperatures taken, wearing surgical gloves before putting on the testing gloves 1.5 metres long wires attaching the FSR to the Arduino to maintain social distance. Findings Predominant grasps observed during 105 tasks included, adducted thumb (17), lateral tripod (10), prismatic three fingers (12), small diameter (9), prismatic two fingers (9), medium wrap (7), fixed hook (5), sphere four fingers (4), palmar (4), parallel extension (4), index finger extension (3), distal (3), power sphere (2), tripod (2), quadpod (2), prismatic four fingers (2), lateral (2), large-diameter (2), ventral (2), precision sphere (1), palmar pinch (1), light tool (1), inferior pincher (1), and writing tripod (1). Range of forces applied per category, personal care (1-25N), transport and moving around (1-9 N), home environment and inside (1-41N), gardening and outside (1-26.5N), and office (1-20N). Conclusion Scientifically measurements of finger forces with careful consideration to types of grasps used in daily tasks should guide rehabilitation practices and robotic design to ensure a return to the full participation of the individual into the community.

Keywords: activities of daily living (ADL), Covid-19, force-sensing resistors, grasps, hand forces

Procedia PDF Downloads 175
21 Person-Centered Thinking as a Fundamental Approach to Improve Quality of Life

Authors: Christiane H. Kellner, Sarah Reker

Abstract:

The UN-Convention on the Rights of Persons with Disabilities, which Germany also ratified, postulates the necessity of user-centred design, especially when it comes to evaluating the individual needs and wishes of all citizens. Therefore, a multidimensional approach is required. Based on this insight, the structure of the town-like centre in Schönbrunn - a large residential complex and service provider for persons with disabilities in the outskirts of Munich - will be remodelled to open up the community to all people as well as transform social space. This strategy should lead to more equal opportunities and open the way for a much more diverse community. The research project “Index for participation development and quality of life for persons with disabilities” (TeLe-Index, 2014-2016), which is anchored at the Technische Universität München in Munich and at the Franziskuswerk Schönbrunn supports this transformation process called “Vision 2030”. In this context, we have provided academic supervision and support for three projects (the construction of a new school, inclusive housing for children and teenagers with disabilities and the professionalization of employees using person-centred planning). Since we cannot present all the issues of the umbrella-project within the conference framework, we will be focusing on one sub-project more in-depth, namely “The Person-Centred Think Tank” [Arbeitskreis Personenzentriertes Denken; PZD]. In the context of person-centred thinking (PCT), persons with disabilities are encouraged to (re)gain or retain control of their lives through the development of new choice options and the validation of individual lifestyles. PCT should thus foster and support both participation and quality of life. The project aims to establish PCT as a fundamental approach for both employees and persons with disabilities in the institution through in-house training for the staff and, subsequently, training for users. Hence, for the academic support and supervision team, the questions arising from this venture can be summed up as follows: (1) has PCT already gained a foothold at the Franziskuswerk Schönbrunn? And (2) how does it affect the interaction with persons with disabilities and how does it influence the latter’s everyday life? According to the holistic approach described above, the target groups for this study are both the staff and the users of the institution. Initially, we planned to implement the group discussion method for both target-groups. However, in the course of a pretest with persons with intellectual disabilities, it became clear that this type of interview, with hardly any external structuring, provided only limited feedback. In contrast, when the discussions were moderated, there was more interaction and dialogue between the interlocutors. Therefore, for this target-group, we introduced structured group interviews. The insights we have obtained until now will enable us to present the intermediary results of our evaluation. We analysed and evaluated the group interviews and discussions with the help of qualitative content analysis according to Mayring in order to obtain information about users’ quality of life. We sorted out the statements relating to quality of life obtained during the group interviews into three dimensions: subjective wellbeing, self-determination and participation. Nevertheless, the majority of statements were related to subjective wellbeing and self-determination. Thus, especially the limited feedback on participation clearly demonstrates that the lives of most users do not take place beyond the confines of the institution. A number of statements highlighted the fact that PCT is anchored in the everyday interactions within the groups. However, the implementation and fostering of PCT on a broader level could not be detected and thus remain further aims of the project. The additional interviews we have planned should validate the results obtained until now and open up new perspectives.

Keywords: person-centered thinking, research with persons with disabilities, residential complex and service provider, participation, self-determination.

Procedia PDF Downloads 302
20 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles

Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis

Abstract:

E-maintenance is a relatively new concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification by means of a global navigation satellite system (GNSS), cellular connectivity by means of 3G/long-term evolution (LTE) modem, connectivity to on-board diagnostics (OBD), and connectivity to analog and digital sensors by means of a novel design of expansion board. Specifically, the later provides eight analog plus three digital sensor channels, as well as one on-board temperature / relative humidity sensor. The specific device offers a number of adaptability features based on appropriate zero-ohm resistor placement and appropriate value selection for limited number of passive components. For example, although in the standard configuration four voltage analog channels with constant voltage sources for the power supply of the corresponding sensors are available, up to two of these voltage channels can be converted to provide power to the connected sensors by means of corresponding constant current source circuits, whereas all parameters of analog sensor power supply and matching circuits are fully configurable offering the advantage of covering a wide variety of industrial sensors. Note that a key feature of the proposed sensor node, ensuring the reliable operation of the connected sensors, is the appropriate supply of external power to the connected sensors and their proper matching to the IoT sensor node. In standard mode, the IoT sensor node communicates to the data center through 3G/LTE, transmitting all digital/digitized sensor data, IoT device identity, and position. Moreover, the proposed IoT sensor node offers WiFi connectivity to mobile devices (smartphones, tablets) equipped with an appropriate application for the manual registration of vehicle- and driver-specific information, and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware. It is programmed with a high-level language (Python) on top of a modern operating system (Linux). Acknowledgment: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH—CREATE—INNOVATE (project code: T1EDK- 01359, IntelligentLogger).

Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics

Procedia PDF Downloads 135
19 Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces

Authors: Martin Alexander Eder, Sergei Semenov

Abstract:

Many glass-epoxy composite structures, such as large utility wind turbine rotor blades (WTBs), comprise of adhesive joints with typically thick bond lines used to connect the different components during assembly. Performance optimization of rotor blades to increase power output by simultaneously maintaining high stiffness-to-low-mass ratios entails intricate geometries in conjunction with complex anisotropic material behavior. Consequently, adhesive joints in WTBs are subject to multiaxial stress states with significant stress gradients depending on the local joint geometry. Moreover, the dynamic aero-elastic interaction of the WTB with the airflow generates non-proportional, variable amplitude stress histories in the material. Empiricism shows that a prominent failure type in WTBs is high cycle fatigue failure of adhesive bond line interfaces, which in fact over time developed into a design driver as WTB sizes increase rapidly. Structural optimization employed at an early design stage, therefore, sets high demands on computationally efficient interface fatigue models capable of predicting the critical locations prone for interface failure. The numerical stress-based interface fatigue model presented in this work uses the Drucker-Prager criterion to compute three different damage indices corresponding to the two interface shear tractions and the outward normal traction. The two-parameter Drucker-Prager model was chosen because of its ability to consider shear strength enhancement under compression and shear strength reduction under tension. The governing interface damage index is taken as the maximum of the triple. The damage indices are computed through the well-known linear Palmgren-Miner rule after separate rain flow-counting of the equivalent shear stress history and the equivalent pure normal stress history. The equivalent stress signals are obtained by self-similar scaling of the Drucker-Prager surface whose shape is defined by the uniaxial tensile strength and the shear strength such that it intersects with the stress point at every time step. This approach implicitly assumes that the damage caused by the prevailing multiaxial stress state is the same as the damage caused by an amplified equivalent uniaxial stress state in the three interface directions. The model was implemented as Python plug-in for the commercially available finite element code Abaqus for its use with solid elements. The model was used to predict the interface damage of an adhesively bonded, tapered glass-epoxy composite cantilever I-beam tested by LM Wind Power under constant amplitude compression-compression tip load in the high cycle fatigue regime. Results show that the model was able to predict the location of debonding in the adhesive interface between the webfoot and the cap. Moreover, with a set of two different constant life diagrams namely in shear and tension, it was possible to predict both the fatigue lifetime and the failure mode of the sub-component with reasonable accuracy. It can be concluded that the fidelity, robustness and computational efficiency of the proposed model make it especially suitable for rapid fatigue damage screening of large 3D finite element models subject to complex dynamic load histories.

Keywords: adhesive, fatigue, interface, multiaxial stress

Procedia PDF Downloads 150
18 Kanga Traditional Costume as a Tool for Community Empowerment in Tanzania in Ubuntu perspective - A Literature Review

Authors: Meinrad Haule Lembuka

Abstract:

Introduction: Ubuntu culture represents African humanism with collective and positive feeling of people living together, interdependence, equally and peaceful etc. Overtime, Ubuntu culture developed varieties of communicative strategies to express experiences, feelings and knowledge. Khanga or kanga (garment) is among the Ubuntu cultural practice of Bantu speaking people along the East African coast following interaction with Arabs and Bantu speaking people to formulate Swahili culture. Kanga or Kanga is a Swahili word which means a traditional soft cotton cloths in varieties of colours, patterns, and styles which as a deep cultural, historical, and social significance not only in Tanzania but the rest of East African coast. Swahili culture is a sub culture of Ubuntu African culture which is rich in customs and rituals that serve to preserve goodness and life where Tanzania, like the rest of East African societies along the Indian coast engaged in kanga dressing custom under Swahili culture to express their feelings and knowledge sharing. After the independence of Tanzania (formerly Tanganyika) from British colonial rule, Kanga traditional dressing gained momentum in Swahili culture and spread to the rest of East Africa and beyond. To date kanga dressing holds a good position as a formal and informal tool for advocating marginalised groups, counselling, psychosocial therapy, liberation, compassion, love, justice, campaign, and cerebration etc. Methodology: A literature review method was guided by Ubuntu theory to assess the implications of kanga traditional dressing in empowering Tanzanian community. Findings: During slavery, slaves wore Kaniki and people despised Kaniki dressing due to its association with slavery. Ex-slave women seeking to become part of the Swahili society began to decorate their Kaniki clothes. After slavery was abolished in 1897, Kangas began to be used for self-empowerment and to indicate that the wearer had personal wealth. During colonial era, freedom of expressions for Africans were restricted by colonial masters thus Tanzanians used kanga to express the evils of colonialism and other social problems, Under Ubuntu value of unity and solidarity liberation and independence fighters crafted motto and liberation messages that were shared and spread rapidly in the community. Political parities like TANU used kanga to spread nationalism and Ujamaa policy. kanga is more than a piece of fabric-it is a space for women to voice unspeakable communication and a women-centred repository for indigenous knowledge, feminisms addressing social ills, happiness, campaigns, memories and reconciliation etc. Kanga provides an indirect voice and support vulnerable and marginalised populations and strongly it has proved to be a peaceful platform of capture attention of government and societies. Kanga textiles gained increased international fame when an Obama kanga design was produced upon the president’s election in 2008 and his visit to Tanzania in 2013. Conclusion: Kanga preserves and symbolises Swahili culture and contributes in realization of social justice, inclusion, national identity and unity. As an inclusive cultural tool, Kanga spread across Africa to international community and the practice has moved from being a woman domination dressing code to other sex orientations.

Keywords: African culture, Kanga, khanga, swahili culture, ubuntu

Procedia PDF Downloads 46
17 Removing Maturational Influences from Female Youth Swimming: The Application of Corrective Adjustment Procedures

Authors: Clorinda Hogan, Shaun Abbott, Mark Halaki, Marcela Torres Catiglioni, Goshi Yamauchi, Lachlan Mitchell, James Salter, Michael Romann, Stephen Cobley

Abstract:

Introduction: Common annual age-group competition structures unintentionally introduce participation inequalities, performance (dis)advantages and selection biases due to the effect of maturational variation between youth swimmers. On this basis, there are implications for improving performance evaluation strategies. Therefore the aim was to: (1) To determine maturity timing distributions in female youth swimming; (2) quantify the relationship between maturation status and 100-m FC performance; (3) apply Maturational-based Corrective Adjustment Procedures (Mat-CAPs) for removal of maturational status performance influences. Methods: (1) Cross-sectional analysis of 663 female (10-15 years) swimmers who underwent assessment of anthropometrics (mass, height and sitting height) and estimations of maturity timing and offset. (2) 100-m front-crawl performance (seconds) was assessed at Australian regional, state, and national-level competitions between 2016-2020. To determine the relationship between maturation status and 100-m front-crawl performance, MO was plotted against 100-m FC performance time. The expected maturity status - performance relationship for females aged 10-15 years of age was obtained through a quadratic function (y = ax2 + bx + c) from unstandardized coefficients. The regression equation was subsequently used for Mat-CAPs. (3) Participants aged 10-13 years were categorised into maturity-offset categories. Maturity offset distributions for Raw (‘All’, ‘Top 50%’ & ‘Top 25%’) and Correctively Adjusted swim times were examined. Chi-square, Cramer’s V and ORs determined the occurrence of maturation biases for each age group and selection level. Results—: (1) Maturity timing distributions illustrated overrepresentation of ‘normative’ maturing swimmers (11.82 ± 0.40 years), with a descriptive shift toward the early maturing relative to the normative population. (2) A curvilinear relationship between maturity-offset and swim performance was identified (R2 = 0.53, P < 0.001) and subsequently utilised for Mat-CAPs. (3) Raw maturity offset categories identified partial maturation status skewing towards biologically older swimmers at 10/11 and 12 years, with effect magnitudes increasing in the ‘Top 50%’ and ‘25%’ of performance times. Following Mat-CAPs application, maturity offset biases were removed in similar age groups and selection levels. When adjusting performance times for maturity offset, Mat-CAPs was successful in mitigating against maturational biases until approximately 1-year post Peak Height Velocity. The overrepresentation of ‘normative’ maturing female swimmers contrasted with the substantial overrepresentation of ‘early’ maturing male swimmers found previously in 100-m front-crawl. These findings suggest early maturational timing is not advantageous in females, but findings associated with Aim 2, highlight how advanced maturational status remained beneficial to performance. Observed differences between female and male maturational biases may relate to the differential impact of physiological development during pubertal years. Females experience greater increases of fat mass and potentially differing changes in body shape which can negatively affect swim performance. Conclusions: Transient maturation status-based participation and performance advantages were apparent within a large sample of Australian female youth 100-m FC swimmers. By removing maturity status performance biases within female youth swimming, Mat-CAPs could help improve participation experiences and the accuracy of identifying genuinely skilled female youth swimmers.

Keywords: athlete development, long-term sport participation, performance evaluation, talent identification, youth competition

Procedia PDF Downloads 162
16 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 76
15 Improving Data Completeness and Timely Reporting: A Joint Collaborative Effort between Partners in Health and Ministry of Health in Remote Areas, Neno District, Malawi

Authors: Wiseman Emmanuel Nkhomah, Chiyembekezo Kachimanga, Moses Banda Aron, Julia Higgins, Manuel Mulwafu, Kondwani Mpinga, Mwayi Chunga, Grace Momba, Enock Ndarama, Dickson Sumphi, Atupere Phiri, Fabien Munyaneza

Abstract:

Background: Data is key to supporting health service delivery as stakeholders, including NGOs rely on it for effective service delivery, decision-making, and system strengthening. Several studies generated debate on data quality from national health management information systems (HMIS) in sub-Saharan Africa. This limits the utilization of data in resource-limited settings, which already struggle to meet standards set by the World Health Organization (WHO). We aimed to evaluate data quality improvement of Neno district HMIS over a 4-year period (2018 – 2021) following quarterly data reviews introduced in January 2020 by the district health management team and Partners In Health. Methods: Exploratory Mixed Research was used to examine report rates, followed by in-depth interviews using Key Informant Interviews (KIIs) and Focus Group Discussions (FGDs). We used the WHO module desk review to assess the quality of HMIS data in the Neno district captured from 2018 to 2021. The metrics assessed included the completeness and timeliness of 34 reports. Completeness was measured as a percentage of non-missing reports. Timeliness was measured as the span between data inputs and expected outputs meeting needs. We computed T-Test and recorded P-values, summaries, and percentage changes using R and Excel 2016. We analyzed demographics for key informant interviews in Power BI. We developed themes from 7 FGDs and 11 KIIs using Dedoose software, from which we picked perceptions of healthcare workers, interventions implemented, and improvement suggestions. The study was reviewed and approved by Malawi National Health Science Research Committee (IRB: 22/02/2866). Results: Overall, the average reporting completeness rate was 83.4% (before) and 98.1% (after), while timeliness was 68.1% and 76.4 respectively. Completeness of reports increased over time: 2018, 78.8%; 2019, 88%; 2020, 96.3% and 2021, 99.9% (p< 0.004). The trend for timeliness has been declining except in 2021, where it improved: 2018, 68.4%; 2019, 68.3%; 2020, 67.1% and 2021, 81% (p< 0.279). Comparing 2021 reporting rates to the mean of three preceding years, both completeness increased from 88% to 99% (in 2021), while timeliness increased from 68% to 81%. Sixty-five percent of reports have maintained meeting a national standard of 90%+ in completeness while only 24% in timeliness. Thirty-two percent of reports met the national standard. Only 9% improved on both completeness and timeliness, and these are; cervical cancer, nutrition care support and treatment, and youth-friendly health services reports. 50% of reports did not improve to standard in timeliness, and only one did not in completeness. On the other hand, factors associated with improvement included improved communications and reminders using internal communication, data quality assessments, checks, and reviews. Decentralizing data entry at the facility level was suggested to improve timeliness. Conclusion: Findings suggest that data quality in HMIS for the district has improved following collaborative efforts. We recommend maintaining such initiatives to identify remaining quality gaps and that results be shared publicly to support increased use of data. These results can inform Ministry of Health and its partners on some interventions and advise initiatives for improving its quality.

Keywords: data quality, data utilization, HMIS, collaboration, completeness, timeliness, decision-making

Procedia PDF Downloads 60
14 Quality of Care for the Maternal Complications at Selected Primary and Secondary Health Facilities of Bangladesh: Lessons Learned from a Formative Research

Authors: Mohiuddin Ahsanul Kabir Chowdhury, Nafisa Lira Huq, Afroza Khanom, Rafiqul Islam, Abdullah Nurus Salam Khan, Farhana Karim, Nabila Zaka, Shams El Arifeen, Sk. Masum Billah

Abstract:

After having astounding achievements in reducing maternal mortality and achieving the target for Millennium Development Goal (MDG) 5, the Government of Bangladesh has set new target to reduce Maternal Mortality Ratio (MMR) to 70 per 100,000 live births aligning with targets of Sustainable Development Goals (SDGs). Aversion of deaths from maternal complication by ensuring quality health care could be an important path to accelerate the rate of reduction of MMR. This formative research was aimed at exploring the provision of quality maternal health services at different level of health facilities. The study was conducted in 1 district hospital (DH) and 4 Upazila health complexes (UHC) of Kurigram district of Bangladesh, utilizing both quantitative and qualitative research methods. We conducted 14 key informant interviews with facility managers and 20 in-depth interviews with health care providers and support staff. Besides, we observed 387 normal deliveries from which we found 17 cases of post partum haemorrhage (PPH) and 2 cases of eclampsia during the data collection period extended from July-September 2016. The quantitative data were analyzed by using descriptive statistics, and the qualitative component underwent thematic analysis with the broad themes of facility readiness for maternal complication management, and management of complications. Inadequacy in human resources has been identified as the most important bottleneck to provide quality care to manage maternal complications. The DH had a particular paucity of human resources in medical officer cadre where about 61% posts were unfilled. On the other hand, in the UHCs the positions mostly empty were obstetricians (75%, paediatricians (75%), staff nurses (65%), and anaesthetists (100%). The workload on the existing staff is increased because of the persistence of vacant posts. Unavailability of anesthetists and consultants does not permit the health care providers (HCP) of lower cadres to perform emergency operative procedures and forces them to refer the patients although referral system is not well organized in rural Bangladesh. Insufficient bed capacity, inadequate training, shortage of emergency medicines etc. are other hindrance factors for facility readiness. Among the 387 observed delivery case, 17 (4.4%) were identified as PPH cases, and only 2 cases were found as eclampsia/pre-eclampsia. The majority of the patients were treated with uterine message (16 out of 17, 94.1%) and injectable Oxytocin (14 out of 17, 82.4%). The providers of DH mentioned that they can manage the PPH because of having provision for diagnostic and blood transfusion services, although not as 24/7 services. Regarding management of eclampsia/pre-eclampsia, HCPs provided Diazepam, MgSO4, and other anti-hypertensives. The UHCs did not have MgSO4 at stock even, and one facility manager admitted that they treat eclampsia with Diazepam only. The nurses of the UHCs were found to be afraid to handle eclampsia cases. The upcoming interventions must ensure refresher training of service providers, continuous availability of essential medicine and equipment needed for complication management, availability of skilled health workforce, availability of functioning blood transfusion unit and pairing of consultants and anaesthetists to reach the newly set targets altogether.

Keywords: Bangladesh, health facilities, maternal complications, quality of care

Procedia PDF Downloads 207
13 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers

Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek

Abstract:

Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.

Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations

Procedia PDF Downloads 112
12 Ensemble Sampler For Infinite-Dimensional Inverse Problems

Authors: Jeremie Coullon, Robert J. Webber

Abstract:

We introduce a Markov chain Monte Carlo (MCMC) sam-pler for infinite-dimensional inverse problems. Our sam-pler is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the target distribution. We extend this ensem-ble sampler for the first time to infinite-dimensional func-tion spaces, yielding a highly efficient gradient-free MCMC algorithm. Because our ensemble sampler does not require gradients or posterior covariance estimates, it is simple to implement and broadly applicable. In many Bayes-ian inverse problems, Markov chain Monte Carlo (MCMC) meth-ods are needed to approximate distributions on infinite-dimensional function spaces, for example, in groundwater flow, medical imaging, and traffic flow. Yet designing efficient MCMC methods for function spaces has proved challenging. Recent gradi-ent-based MCMC methods preconditioned MCMC methods, and SMC methods have improved the computational efficiency of functional random walk. However, these samplers require gradi-ents or posterior covariance estimates that may be challenging to obtain. Calculating gradients is difficult or impossible in many high-dimensional inverse problems involving a numerical integra-tor with a black-box code base. Additionally, accurately estimating posterior covariances can require a lengthy pilot run or adaptation period. These concerns raise the question: is there a functional sampler that outperforms functional random walk without requir-ing gradients or posterior covariance estimates? To address this question, we consider a gradient-free sampler that avoids explicit covariance estimation yet adapts naturally to the covariance struc-ture of the sampled distribution. This sampler works by consider-ing an ensemble of walkers and interpolating and extrapolating between walkers to make a proposal. This is called the affine in-variant ensemble sampler (AIES), which is easy to tune, easy to parallelize, and efficient at sampling spaces of moderate dimen-sionality (less than 20). The main contribution of this work is to propose a functional ensemble sampler (FES) that combines func-tional random walk and AIES. To apply this sampler, we first cal-culate the Karhunen–Loeve (KL) expansion for the Bayesian prior distribution, assumed to be Gaussian and trace-class. Then, we use AIES to sample the posterior distribution on the low-wavenumber KL components and use the functional random walk to sample the posterior distribution on the high-wavenumber KL components. Alternating between AIES and functional random walk updates, we obtain our functional ensemble sampler that is efficient and easy to use without requiring detailed knowledge of the target dis-tribution. In past work, several authors have proposed splitting the Bayesian posterior into low-wavenumber and high-wavenumber components and then applying enhanced sampling to the low-wavenumber components. Yet compared to these other samplers, FES is unique in its simplicity and broad applicability. FES does not require any derivatives, and the need for derivative-free sam-plers has previously been emphasized. FES also eliminates the requirement for posterior covariance estimates. Lastly, FES is more efficient than other gradient-free samplers in our tests. In two nu-merical examples, we apply FES to challenging inverse problems that involve estimating a functional parameter and one or more scalar parameters. We compare the performance of functional random walk, FES, and an alternative derivative-free sampler that explicitly estimates the posterior covariance matrix. We conclude that FES is the fastest available gradient-free sampler for these challenging and multimodal test problems.

Keywords: Bayesian inverse problems, Markov chain Monte Carlo, infinite-dimensional inverse problems, dimensionality reduction

Procedia PDF Downloads 138
11 Pathomorphological Markers of the Explosive Wave Action on Human Brain

Authors: Sergey Kozlov, Juliya Kozlova

Abstract:

Introduction: The increased attention of researchers to an explosive trauma around the world is associated with a constant renewal of military weapons and a significant increase in terrorist activities using explosive devices. Explosive wave is a well known damaging factor of explosion. The most sensitive to the action of explosive wave in the human body are the head brain, lungs, intestines, urine bladder. The severity of damage to these organs depends on the distance from the explosion epicenter to the object, the power of the explosion, presence of barriers, parameters of the body position, and the presence of protective clothing. One of the places where a shock wave acts, in human tissues and organs, is the vascular endothelial barrier, which suffers the greatest damage in the head brain and lungs. The objective of the study was to determine the pathomorphological changes of the head brain followed the action of explosive wave. Materials and methods of research: To achieve the purpose of the study, there have been studied 6 male corpses delivered to the morgue of Municipal Institution "Dnipropetrovsk regional forensic bureau" during 2014-2016 years. The cause of death of those killed was a military explosive injury. After a visual external assessment of the head brain, for histological study there was conducted the 1 x 1 x 1 cm/piece sampling from different parts of the head brain, i.e. the frontal, parietal, temporal, occipital sites, and also from the cerebellum, pons, medulla oblongata, thalamus, walls of the lateral ventricles, the bottom of the 4th ventricle. Pieces of the head brain were immersed in 10% formalin solution for 24 hours. After fixing, the paraffin blocks were made from the material using the standard method. Then, using a microtome, there were made sections of 4-6 micron thickness from paraffin blocks which then were stained with hematoxylin and eosin. Microscopic analysis was performed using a light microscope with x4, x10, x40 lenses. Results of the study: According to the results of our study, injuries of the head brain were divided into macroscopic and microscopic. Macroscopic injuries were marked according to the results of visual assessment of haemorrhages under the membranes and into the substance, their nature, and localisation, areas of softening. In the microscopic study, our attention was drawn to both vascular changes and those of neurons and glial cells. Microscopic qualitative analysis of histological sections of different parts of the head brain revealed a number of structural changes both at the cellular and tissue levels. Typical changes in most of the studied areas of the head brain included damages of the vascular system. The most characteristic microscopic sign was the separation of vascular walls from neuroglia with the formation of perivascular space. Along with this sign, wall fragmentation of these vessels, haemolysis of erythrocytes, formation of haemorrhages in the newly formed perivascular spaces were found. In addition to damages of the cerebrovascular system, destruction of the neurons, presence of oedema of the brain tissue were observed in the histological sections of the brain. On some sections, the head brain had a heterogeneous step-like or wave-like nature. Conclusions: The pathomorphological microscopic changes in the brain, identified in the study on the died of explosive traumas, can be used for diagnostic purposes in conjunction with other characteristic signs of explosive trauma in forensic and pathological studies. The complex of microscopic signs in the head brain, i.e. separation of blood vessel walls from neuroglia with the perivascular space formation, fragmentation of walls of these blood vessels, erythrocyte haemolysis, formation of haemorrhages in the newly formed perivascular spaces is the direct indication of explosive wave action.

Keywords: blast wave, neurotrauma, human, brain

Procedia PDF Downloads 170
10 Promoting Environmental Sustainability in Rural Areas with CMUH Green Experiential Education Center

Authors: Yi-Chu Liu, Hsiu-Huei Hung, Li-Hui Yang, Ming-Jyh Chen

Abstract:

introduction: To promote environmental sustainability, the hospital formed a corporate volunteer team in 2016 to build the Green Experiential Education Center. Our green creation center utilizes attic space to achieve sustainability objectives such as energy efficiency and carbon reduction. Other than executing sustainable plans, the center emphasizes experiential education. We invite our community to actively participate in building a sustainable, economically viable environment. Since 2020, the China Medical University Hospital has provided medical care to the Tgbin community in Taichung City's Heping District. The tribe, primarily composed of Atayal people, the elderly comprise 18% of the total population, and these families' per capita income is relatively low compared to Taiwanese citizens elsewhere. Purpose / Methods: With the experiences at the Green Experiential Education Center, CMUH team identifies the following objectives: Create an aquaponic system to supply vulnerable local households with food. Create a solar renewable energy system to meet the electricity needs of vulnerable local households. Promote the purchase of green electricity certificates to reduce the hospital's carbon emissions and generate additional revenue for the local community. Materials and Methods: In March 2020, we visited the community and installed The aquaponic system in January 2021. CMUH spent 150,000NT (approximately 5000US dollars) in March 2021 to build a 100-square-meter aquaponic system. The production of vegetables and fish caught determines the number of vulnerable families that can be supported. The aquaponics system is a kind of Low energy consumption and environmentally friendly production method, and can simultaneously achieve energy saving, water saving, and fertilizer saving .In September 2023, CMUH will complete a solar renewable energy system. The system will cover an area of 308 square meters and costs approximately NT$240,000 (approximately US$8,000). The installation of electricity meters will enable statistical analysis of power generation. And complete the Taiwan National Renewable Energy Certificate application process. The green electricity certificate will be obtained based on the monthly power generation from the solar renewable energy system. Results: I Food availability and access are crucial considering the remote location and aging population. By creating a fish and vegetable symbiosis system, the vegetables and catches produced will enable economically disadvantaged families to lower food costs. In 2021 and 2022, the aquaponic system produced 52 kilograms of vegetables and 75 kilograms of catch. The production ensures the daily needs of 8 disadvantaged families. Conclusions: The hospital serves as a fortress for public health and the ideal setting for corporate social responsibility. China Medical University Hospital and the Green Experiential Education Center work to strengthen ties with rural communities and offer top-notch specialty medical care. We are committed to assisting people in escaping poverty and hunger as part of the 2030 Sustainable Development Goals.

Keywords: environmental education, sustainability, energy conservation, carbon emissions, rural area development

Procedia PDF Downloads 59
9 Preparedness and Control of Mosquito-Borne Diseases: Experiences from Northwestern Italy

Authors: Federica Verna, Alessandra Pautasso, Maria Caramelli, Cristiana Maurella, Walter Mignone, Cristina Casalone

Abstract:

Mosquito-Borne Diseases (MBDs) are dangerously increasing in prevalence, geographical distribution and severity, representing an emerging threat for both humans and animals. Interaction between multiple disciplines is needed for an effective early warning, surveillance and control of MBDs, according to the One Health concept. This work reports the integrated surveillance system enforced by IZSPLV in Piedmont, Liguria and Valle d’Aosta regions (Northwestern Italy) in order to control MDBs spread. Veterinary services and local human health authority are involved in an information network, to connect the surveillance of human clinical cases with entomological surveillance and veterinary monitoring in order to implement control measures in case of outbreak. A systematic entomological surveillance is carried out during the vector season using mosquitoes traps located in sites selected according to risk factors. Collected mosquitoes are counted, identified to species level by morphological standard classification keys and pooled by collection site, date and species with a maximum of 100 individuals. Pools are analyzed, after RNA extraction, by Real Time RT-PCR distinctive for West Nile Virus (WNV) Lineage 1 and Lineage 2, Real Time RT-PCR USUTU virus (USUV) and a traditional flavivirus End-point RT-PCR. Positive pools are sequenced and the related sequences employed to perform a basic local alignment search tool (BLAST) in the GenBank library. Positive samples are sent to the National Reference Centre for Animal Exotic Diseases (CESME, Teramo) for confirmation. With particular reference to WNV, after the confirmation, as provided by national legislation, control measures involving both local veterinary and human health services are activated: equine sera are randomly sampled within a 4 km radius from the positive collection sites and tested with ELISA kit and WNV NAT screening of blood donors is introduced. This surveillance network allowed to detect since 2011 USUV circulation in this area of Italy. WNV was detected in Piedmont and Liguria for the first time in 2014 in mosquitoes. During the 2015 vector season, we observed the expansion of its activity in Piedmont. The virus was detected in almost all Provinces both in mosquitoes (6 pools) and animals (19 equine sera, 4 birds). No blood bag tested resulted infected. The first neuroinvasive human case occurred too. Competent authorities should be aware of a potentially increased risk of MBDs activity during the 2016 vector season. This work shows that this surveillance network allowed to early detect the presence of MBDs in humans and animals, and provided useful information to public authorities, in order to apply control measures. Finally, an additional value of our diagnostic protocol is the ability to detect all viruses belonging to the Flaviviridae family, considering the emergence caused by other Flaviviruses in humans such as the recent Zika virus infection in South America. Italy has climatic and environmental features conducive to Zika virus transmission, the competent vector and many travellers from Brazil reported every year.

Keywords: integrated surveillance, mosquito borne disease, West Nile virus, Zika virus

Procedia PDF Downloads 335
8 Analyzing Perceptions of Leadership Capacities After a Year-Long Leadership Development Training: An Exploratory Study of School Leaders in South Africa

Authors: Norma Kok, Diemo Masuko, Thandokazi Dlongwana, Komala Pillay

Abstract:

CONTEXT: While many school principals have been outstanding teachers and have inherent leadership potential, many have not had access to the quality of leadership development or support that empowers them to produce high-quality education outcomes in extremely challenging circumstances. Further, school leaders in under-served communities face formidable challenges arising from insufficient infrastructure, overcrowded classrooms, socio-economic challenges within the community, and insufficient parental involvement, all of which put a strain on principals’ ability to lead their schools effectively. In addition few school leaders have access to other supportive networks, and many do not know how to build and leverage social capital to create opportunities for their schools and learners. Moreover, we know that fostering parental involvement in their children’s learning improves a child’s morale, attitude, and academic achievement across all subject areas, and promotes better behaviour and social adjustment. Citizen Leader Lab facilitates the Partners for Possibility (PfP) programme to provide leadership development and support to school leaders serving under-resourced communities in South Africa to create effective environments of learning. This is done by creating partnerships between school leaders and private-sector business leaders over a 12-month period. (185) OBJECTIVES: To explore school leaders’ perceptions of their leadership capacities and changes at their schools after being exposed to a year-long leadership development training programme. METHODS: School leaders gained new leadership capacities e.g. resilience, improved confidence, communication and conflict resolution skills - catalysing into improved cultures of collaborative decision-making and environments for enhanced teaching and learningprogramme based on the 70:20:10 model whereby: 10% of learning comes from workshops, 20% of learning takes place through peer learning and 70% of learning occurs through experiential learning as partnerships work together to identify and tackle challenges in targeted schools. Participants completed a post-programme questionnaire consisting of structured and unstructured questions and semi-structured interviews were conducted with them and their business leader. The interviews were audio-recorded, transcribed and thematic content analysis was undertaken. The analysis was inductive and emerging themes were identified. A code list was generated after coding was undertaken using computer software (Dedoose). Quantitative data gathered from surveys was aggregated and analysed. RESULTS: School leadership found the programme interesting and rewarding. They gained new leadership capacities such as resilience, improved confidence, communication and conflict resolution skills - catalyzing into improved cultures of collaborative decision-making and environments for enhanced teaching and learning. New networks resulted in tangible outcomes such as upgrades to school infrastructure, water and sanitation, vegetable gardens at schools resulting in nutrition for learners and/or intangible outcomes such as skills for members of school management teams (SMTs). Collaborative leadership led to SMTs being more aligned, efficient, and cohesive; and teachers being more engaged and motivated. Notable positive changes at the school inspired parents and community members to become more actively involved in the school and in their children’s education. CONCLUSION: The PfP programme leads to improved leadership capacities and improved school culture which leads to improved teaching and learning and new resources for schools.

Keywords: collaborative decision-making, collaborative leadership, community involvement, confidence

Procedia PDF Downloads 69
7 Language Anxiety and Learner Achievement among University Undergraduates in Sri Lanka: A Case Study of University of Sri Jayewardenepura

Authors: Sujeeva Sebastian Pereira

Abstract:

Language Anxiety (LA) – a distinct psychological construct of self-perceptions and behaviors related to classroom language learning – is perceived as a significant variable highly correlated with Second Language Acquisition (SLA). However, the existing scholarship has inadequately explored the nuances of LA in relation to South Asia, especially in terms of Sri Lankan higher education contexts. Thus, the current study, situated within the broad areas of Psychology of SLA and Applied Linguistics, investigates the impact of competency-based LA and identity-based LA on learner achievement among undergraduates of Sri Lanka. Employing a case study approach to explore the impact of LA, 750 undergraduates of the University of Sri Jayewardenepura, Sri Lanka, thus covering 25% of the student population from all seven faculties of the university, were selected as participants using stratified proportionate sampling in terms of ethnicity, gender, and disciplines. The qualitative and quantitative research inquiry utilized for data collection include a questionnaire consisting a set of structured and unstructured questions, and semi-structured interviews as research instruments. Data analysis includes both descriptive and statistical measures. As per the quantitative measures of data analysis, the study employed Pearson Correlation Coefficient test, Chi-Square test, and Multiple Correspondence Analysis; it used LA as the dependent variable, and two types of independent variables were used: direct and indirect variables. Direct variables encompass the four main language skills- reading, writing, speaking and listening- and test anxiety. These variables were further explored through classroom activities on grammar, vocabulary and individual and group presentations. Indirect variables are identity, gender and cultural stereotypes, discipline, social background, income level, ethnicity, religion and parents’ education level. Learner achievement was measured through final scores the participants have obtained for Compulsory English- a common first-year course unit mandatory for all undergraduates. LA was measured using the FLCAS. In order to increase the validity and reliability of the study, data collected were triangulated through descriptive content analysis. Clearly evident through both the statistical analysis and the qualitative analysis of the results is the significant linear negative correlation between LA and learner achievement, and the significant negative correlation between LA and culturally-operated gender stereotypes which create identity disparities in learners. The study also found that both competency-based LA and identity-based LA are experienced primarily and inescapably due to the apprehensions regarding speaking in English. Most participants who reported high levels of LA were from an urban socio-economic background of lower income families. Findings exemplify the linguistic inequality prevalent in the socio-cultural milieu in Sri Lankan society. This inequality makes learning English a dire need, yet, very much an anxiety provoking process because of many sociolinguistic, cultural and ideological factors related to English as a Second Language (ESL) in Sri Lanka. The findings bring out the intricate interrelatedness of both the dependent variable (LA) and the independent variables stated above, emphasizing that the significant linear negative correlation between LA and learner achievement is connected to the affective, cognitive and sociolinguistic domains of SLA. Thus, the study highlights the promise in linguistic practices such as code-switching, crossing and accommodating hybrid identities as strategies in minimizing LA and maximizing the experience of ESL.

Keywords: language anxiety, identity-based anxiety, competence-based anxiety, TESL, Sri Lanka

Procedia PDF Downloads 174
6 Modelling Farmer’s Perception and Intention to Join Cashew Marketing Cooperatives: An Expanded Version of the Theory of Planned Behaviour

Authors: Gospel Iyioku, Jana Mazancova, Jiri Hejkrlik

Abstract:

The “Agricultural Promotion Policy (2016–2020)” represents a strategic initiative by the Nigerian government to address domestic food shortages and the challenges in exporting products at the required quality standards. Hindered by an inefficient system for setting and enforcing food quality standards, coupled with a lack of market knowledge, the Federal Ministry of Agriculture and Rural Development (FMARD) aims to enhance support for the production and activities of key crops like cashew. By collaborating with farmers, processors, investors, and stakeholders in the cashew sector, the policy seeks to define and uphold high-quality standards across the cashew value chain. Given the challenges and opportunities faced by Nigerian cashew farmers, active participation in cashew marketing groups becomes imperative. These groups serve as essential platforms for farmers to collectively navigate market intricacies, access resources, share knowledge, improve output quality, and bolster their overall bargaining power. Through engagement in these cooperative initiatives, farmers not only boost their economic prospects but can also contribute significantly to the sustainable growth of the cashew industry, fostering resilience and community development. This study explores the perceptions and intentions of farmers regarding their involvement in cashew marketing cooperatives, utilizing an expanded version of the Theory of Planned Behaviour. Drawing insights from a diverse sample of 321 cashew farmers in Southwest Nigeria, the research sheds light on the factors influencing decision-making in cooperative participation. The demographic analysis reveals a diverse landscape, with a substantial presence of middle-aged individuals contributing significantly to the agricultural sector and cashew-related activities emerging as a primary income source for a substantial proportion (23.99%). Employing Structural Equation Modelling (SEM) with Maximum Likelihood Robust (MLR) estimation in R, the research elucidates the associations among latent variables. Despite the model’s complexity, the goodness-of-fit indices attest to the validity of the structural model, explaining approximately 40% of the variance in the intention to join cooperatives. Moral norms emerge as a pivotal construct, highlighting the profound influence of ethical considerations in decision-making processes, while perceived behavioural control presents potential challenges in active participation. Attitudes toward joining cooperatives reveal nuanced perspectives, with strong beliefs in enhanced connections with other farmers but varying perceptions on improved access to essential information. The SEM analysis establishes positive and significant effects of moral norms, perceived behavioural control, subjective norms, and attitudes on farmers’ intention to join cooperatives. The knowledge construct positively affects key factors influencing intention, emphasizing the importance of informed decision-making. A supplementary analysis using partial least squares (PLS) SEM corroborates the robustness of our findings, aligning with covariance-based SEM results. This research unveils the determinants of cooperative participation and provides valuable insights for policymakers and practitioners aiming to empower and support this vital demographic in the cashew industry.

Keywords: marketing cooperatives, theory of planned behaviour, structural equation modelling, cashew farmers

Procedia PDF Downloads 49
5 Computational Fluid Dynamics Simulation of a Nanofluid-Based Annular Solar Collector with Different Metallic Nano-Particles

Authors: Sireetorn Kuharat, Anwar Beg

Abstract:

Motivation- Solar energy constitutes the most promising renewable energy source on earth. Nanofluids are a very successful family of engineered fluids, which contain well-dispersed nanoparticles suspended in a stable base fluid. The presence of metallic nanoparticles (e.g. gold, silver, copper, aluminum etc) significantly improves the thermo-physical properties of the host fluid and generally results in a considerable boost in thermal conductivity, density, and viscosity of nanofluid compared with the original base (host) fluid. This modification in fundamental thermal properties has profound implications in influencing the convective heat transfer process in solar collectors. The potential for improving solar collector direct absorber efficiency is immense and to gain a deeper insight into the impact of different metallic nanoparticles on efficiency and temperature enhancement, in the present work, we describe recent computational fluid dynamics simulations of an annular solar collector system. The present work studies several different metallic nano-particles and compares their performance. Methodologies- A numerical study of convective heat transfer in an annular pipe solar collector system is conducted. The inner tube contains pure water and the annular region contains nanofluid. Three-dimensional steady-state incompressible laminar flow comprising water- (and other) based nanofluid containing a variety of metallic nanoparticles (copper oxide, aluminum oxide, and titanium oxide nanoparticles) is examined. The Tiwari-Das model is deployed for which thermal conductivity, specific heat capacity and viscosity of the nanofluid suspensions is evaluated as a function of solid nano-particle volume fraction. Radiative heat transfer is also incorporated using the ANSYS solar flux and Rosseland radiative models. The ANSYS FLUENT finite volume code (version 18.1) is employed to simulate the thermo-fluid characteristics via the SIMPLE algorithm. Mesh-independence tests are conducted. Validation of the simulations is also performed with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation achieved. The influence of volume fraction on temperature, velocity, pressure contours is computed and visualized. Main findings- The best overall performance is achieved with copper oxide nanoparticles. Thermal enhancement is generally maximized when water is utilized as the base fluid, although in certain cases ethylene glycol also performs very efficiently. Increasing nanoparticle solid volume fraction elevates temperatures although the effects are less prominent in aluminum and titanium oxide nanofluids. Significant improvement in temperature distributions is achieved with copper oxide nanofluid and this is attributed to the superior thermal conductivity of copper compared to other metallic nano-particles studied. Important fluid dynamic characteristics are also visualized including circulation and temperature shoots near the upper region of the annulus. Radiative flux is observed to enhance temperatures significantly via energization of the nanofluid although again the best elevation in performance is attained consistently with copper oxide. Conclusions-The current study generalizes previous investigations by considering multiple metallic nano-particles and furthermore provides a good benchmark against which to calibrate experimental tests on a new solar collector configuration currently being designed at Salford University. Important insights into the thermal conductivity and viscosity with metallic nano-particles is also provided in detail. The analysis is also extendable to other metallic nano-particles including gold and zinc.

Keywords: heat transfer, annular nanofluid solar collector, ANSYS FLUENT, metallic nanoparticles

Procedia PDF Downloads 124
4 Utilization of Developed Single Sequence Repeats Markers for Dalmatian Pyrethrum (Tanacetum cinerariifolium) in Preliminary Genetic Diversity Study on Natural Populations

Authors: F. Varga, Z. Liber, J. Jakše, A. Turudić, Z. Šatović, I. Radosavljević, N. Jeran, M. Grdiša

Abstract:

Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.; Asteraceae), a source of the commercially dominant plant insecticide pyrethrin, is a species endemic to the eastern Adriatic. Genetic diversity of T. cinerariifolium was previously studied using amplified fragment length polymorphism (AFLP) markers. However, microsatellite markers (single sequence repeats - SSRs) are more informative because they are codominant, highly polymorphic, locus-specific, and more reproducible, and thus are most often used to assess the genetic diversity of plant species. Dalmatian pyrethrum is an outcrossing diploid (2n = 18) whose large genome size and high repeatability have prevented the success of the traditional approach to SSR markers development. The advent of next-generation sequencing combined with the specifically developed method recently enabled the development of, to the author's best knowledge, the first set of SSRs for genomic characterization of Dalmatian pyrethrum, which is essential from the perspective of plant genetic resources conservation. To evaluate the effectiveness of the developed SSR markers in genetic differentiation of Dalmatian pyrethrum populations, a preliminary genetic diversity study was conducted on 30 individuals from three geographically distinct natural populations in Croatia (northern Adriatic island of Mali Lošinj, southern Adriatic island of Čiovo, and Mount Biokovo) based on 12 SSR loci. Analysis of molecular variance (AMOVA) by randomization test with 10,000 permutations was performed in Arlequin 3.5. The average number of alleles per locus, observed and expected heterozygosity, probability of deviations from Hardy-Weinberg equilibrium, and inbreeding coefficient was calculated using GENEPOP 4.4. Genetic distance based on the proportion of common alleles (DPSA) was calculated using MICROSAT. Cluster analysis using the neighbor-joining method with 1,000 bootstraps was performed with PHYLIP to generate a dendrogram. The results of the AMOVA analysis showed that the total SSR diversity was 23% within and 77% between the three populations. A slight deviation from Hardy-Weinberg equilibrium was observed in the Mali Lošinj population. Allele richness ranged from 2.92 to 3.92, with the highest number of private alleles observed in the Mali Lošinj population (17). The average observed DPSA between 30 individuals was 0.557. The highest DPSA (0.875) was observed between several pairs of Dalmatian pyrethrum individuals from the Mali Lošinj and Mt. Biokovo populations, and the lowest between two individuals from the Čiovo population. Neighbor-joining trees, based on DPSA, grouped individuals into clusters according to their population affiliation. The separation of Mt. Biokovo clade was supported (bootstrap value 58%), which is consistent with the previous study on AFLP markers, where isolated populations from Mt. Biokovo differed from the rest of the populations. The developed SSR markers are an effective tool for assessing the genetic diversity and structure of natural Dalmatian pyrethrum populations. These preliminary results are encouraging for a future comprehensive study with a larger sample size across the species' range. Combined with the biochemical data, these highly informative markers could help identify potential genotypes of interest for future development of breeding lines and cultivars that are both resistant to environmental stress and high in pyrethrins. Acknowledgment: This work has been supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.) insecticidal potential’- (PyrDiv) (IP-06-2016-9034) and by project KK.01.1.1.01.0005, Biodiversity and Molecular Plant Breeding, at the Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia.

Keywords: Asteraceae, genetic diversity, genomic SSRs, NGS, pyrethrum, Tanacetum cinerariifolium

Procedia PDF Downloads 99
3 Light Sensitive Plasmonic Nanostructures for Photonic Applications

Authors: Istvan Csarnovics, Attila Bonyar, Miklos Veres, Laszlo Himics, Attila Csik, Judit Kaman, Julia Burunkova, Geza Szanto, Laszlo Balazs, Sandor Kokenyesi

Abstract:

In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Keywords: light sensitive nanocomposites, metallic nanoparticles, photonic application, plasmonic nanostructures

Procedia PDF Downloads 279
2 Open Science Philosophy, Research and Innovation

Authors: C.Ardil

Abstract:

Open Science translates the understanding and application of various theories and practices in open science philosophy, systems, paradigms and epistemology. Open Science originates with the premise that universal scientific knowledge is a product of a collective scholarly and social collaboration involving all stakeholders and knowledge belongs to the global society. Scientific outputs generated by public research are a public good that should be available to all at no cost and without barriers or restrictions. Open Science has the potential to increase the quality, impact and benefits of science and to accelerate advancement of knowledge by making it more reliable, more efficient and accurate, better understandable by society and responsive to societal challenges, and has the potential to enable growth and innovation through reuse of scientific results by all stakeholders at all levels of society, and ultimately contribute to growth and competitiveness of global society. Open Science is a global movement to improve accessibility to and reusability of research practices and outputs. In its broadest definition, it encompasses open access to publications, open research data and methods, open source, open educational resources, open evaluation, and citizen science. The implementation of open science provides an excellent opportunity to renegotiate the social roles and responsibilities of publicly funded research and to rethink the science system as a whole. Open Science is the practice of science in such a way that others can collaborate and contribute, where research data, lab notes and other research processes are freely available, under terms that enable reuse, redistribution and reproduction of the research and its underlying data and methods. Open Science represents a novel systematic approach to the scientific process, shifting from the standard practices of publishing research results in scientific publications towards sharing and using all available knowledge at an earlier stage in the research process, based on cooperative work and diffusing scholarly knowledge with no barriers and restrictions. Open Science refers to efforts to make the primary outputs of publicly funded research results (publications and the research data) publicly accessible in digital format with no limitations. Open Science is about extending the principles of openness to the whole research cycle, fostering, sharing and collaboration as early as possible, thus entailing a systemic change to the way science and research is done. Open Science is the ongoing transition in how open research is carried out, disseminated, deployed, and transformed to make scholarly research more open, global, collaborative, creative and closer to society. Open Science involves various movements aiming to remove the barriers for sharing any kind of output, resources, methods or tools, at any stage of the research process. Open Science embraces open access to publications, research data, source software, collaboration, peer review, notebooks, educational resources, monographs, citizen science, or research crowdfunding. The recognition and adoption of open science practices, including open science policies that increase open access to scientific literature and encourage data and code sharing, is increasing in the open science philosophy. Revolutionary open science policies are motivated by ethical, moral or utilitarian arguments, such as the right to access digital research literature for open source research or science data accumulation, research indicators, transparency in the field of academic practice, and reproducibility. Open science philosophy is adopted primarily to demonstrate the benefits of open science practices. Researchers use open science applications for their own advantage in order to get more offers, increase citations, attract media attention, potential collaborators, career opportunities, donations and funding opportunities. In open science philosophy, open data findings are evidence that open science practices provide significant benefits to researchers in scientific research creation, collaboration, communication, and evaluation according to more traditional closed science practices. Open science considers concerns such as the rigor of peer review, common research facts such as financing and career development, and the sacrifice of author rights. Therefore, researchers are recommended to implement open science research within the framework of existing academic evaluation and incentives. As a result, open science research issues are addressed in the areas of publishing, financing, collaboration, resource management and sharing, career development, discussion of open science questions and conclusions.

Keywords: Open Science, Open Science Philosophy, Open Science Research, Open Science Data

Procedia PDF Downloads 111
1 Recent Trends in Transportable First Response Healthcare Architecture

Authors: Stephen Verderber

Abstract:

The World Health Organization (WHO) calls for research and development on ecologically sustainable, resilient structures capable of effectively responding to disaster events globally, in response to climate change, politically based diasporas, earthquakes, and other adverse events upending the rhythms of everyday life globally. By 2050, nearly 80% of the world’s population will reside in coastal zones, and this, coupled with the increasingly dire impacts of climate change, constitute a recipe for further chaos and disruption, and in light of these events, architects have yet to rise up to meet the challenge. In the arena of healthcare, rapidly deployable clinics and field hospitals can provide immediate assistance in medically underserved disaster strike zones. Transportable facilities offer multiple advantages over conventional, fixed-site hospitals, as lightweight, comparatively unencumbered alternatives. These attributes have been proven repeatedly in 20th century vehicular and tent-based structures deployed in frontline combat theaters and in prior natural disasters. Prefab transportable clinics and trauma centers recently responded adroitly to medical emergencies in the aftermath of the Haitian (2010) and Ecuadorian (2016) earthquakes, and in North American post-hurricane relief efforts (2017) while architects continue to be castigated by their engineer colleagues as chronically poor first responders. Architecturally based portable structures for healthcare currently include Redeployable Health Centers (RHCs), Redeployable Trauma Centers (RTCs), and Permanent Modular Installations (PMIs). Five tectonic variants within this typology have recently been operationalized in the field: 1. Vehicular-based Nomadics: Prefab modules installed on a truck chassis with interior compartments dropped in prior to final assembly. Alternately, a two-component apparatus is preferred, with a truck cab pulling a modular medical unit, with independent transiting component; 2. Tent and Pneumatic Systems: Tent/yurt precursors and inflatable systems lightweight and responsive to topographically challenging terrain and diverse climates; 3. Containerized Systems: The standard modular intermodal-shipping container affords structural strength, resiliency in difficult transiting conditions, and can be densely close-packed and these can be custom-built or hold flat-pack systems; 4. Flat-Packs and Pop-Up Systems: These kit-of-part assemblies are shipped in standardized or specially-designed ISO containers; and 5. Hybrid Systems: These consist of composite facilities representing a synthesis of mobile vehicular components and/or tent or shipping containers, fused with conventional or pneumatically activated tent systems. Hybrids are advantageous in many installation contexts from an aesthetic, fabrication, and transiting perspective. Advantages/disadvantages of various modular systems are comparatively examined, followed by presentation of a compendium of 80 evidence (research)-based planning and design considerations addressing site/context, transiting and commissioning, triage, decontamination/intake, diagnostic and treatment, facility tectonics, and administration/total environment. The benefits of offsite pre-manufactured fabrication are examined, as is anticipated growth in international demand for transportable healthcare facilities to meet the challenges posed by accelerating global climate change and global conflicts. This investigation into rapid response facilities for pre and post-disaster zones is drawn from a recent book by the author, the first on architecture on this topic (Innovations in Transportable Healthcare Architecture).

Keywords: disaster mitigation, rapid response healthcare architecture, offsite prefabrication

Procedia PDF Downloads 101