Search results for: agricultural value chain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3716

Search results for: agricultural value chain

656 Well-Defined Polypeptides: Synthesis and Selective Attachment of Poly(ethylene glycol) Functionalities

Authors: Cristina Lavilla, Andreas Heise

Abstract:

The synthesis of sequence-controlled polymers has received increasing attention in the last years. Well-defined polyacrylates, polyacrylamides and styrene-maleimide copolymers have been synthesized by sequential or kinetic addition of comonomers. However this approach has not yet been introduced to the synthesis of polypeptides, which are in fact polymers developed by nature in a sequence-controlled way. Polypeptides are natural materials that possess the ability to self-assemble into complex and highly ordered structures. Their folding and properties arise from precisely controlled sequences and compositions in their constituent amino acid monomers. So far, solid-phase peptide synthesis is the only technique that allows preparing short peptide sequences with excellent sequence control, but also requires extensive protection/deprotection steps and it is a difficult technique to scale-up. A new strategy towards sequence control in the synthesis of polypeptides is introduced, based on the sequential addition of α-amino acid-N-carboxyanhydrides (NCAs). The living ring-opening process is conducted to full conversion and no purification or deprotection is needed before addition of a new amino acid. The length of every block is predefined by the NCA:initiator ratio in every step. This method yields polypeptides with a specific sequence and controlled molecular weights. A series of polypeptides with varying block sequences have been synthesized with the aim to identify structure-property relationships. All of them are able to adopt secondary structures similar to natural polypeptides, and display properties in the solid state and in solution that are characteristic of the primary structure. By design the prepared polypeptides allow selective modification of individual block sequences, which has been exploited to introduce functionalities in defined positions along the polypeptide chain. Poly(ethylene glycol)(PEG) was the functionality chosen, as it is known to favor hydrophilicity and also yield thermoresponsive materials. After PEGylation, hydrophilicity of the polypeptides is enhanced, and their thermal response in H2O has been studied. Noteworthy differences in the behavior of the polypeptides having different sequences have been found. Circular dichroism measurements confirmed that the α-helical conformation is stable over the examined temperature range (5-90 °C). It is concluded that PEG units are the main responsible of the changes in H-bonding interactions with H2O upon variation of temperature, and the position of these functional units along the backbone is a factor of utmost importance in the resulting properties of the α-helical polypeptides.

Keywords: α-amino acid N-carboxyanhydrides, multiblock copolymers, poly(ethylene glycol), polypeptides, ring-opening polymerization, sequence control

Procedia PDF Downloads 186
655 Analysis of Lift Arm Failure and Its Improvement for the Use in Farm Tractor

Authors: Japinder Wadhawan, Pradeep Rajan, Alok K. Saran, Navdeep S. Sidhu, Daanvir K. Dhir

Abstract:

Currently, research focus in the development of agricultural equipment and tractor parts in India is innovation and use of alternate materials like austempered ductile iron (ADI). Three-point linkage mechanism of the tractor is susceptible to unpredictable load conditions in the field, and one of the critical components vulnerable to failure is lift arm. Conventionally, lift arm is manufactured either by forging or casting (SG Iron) and main objective of the present work is to reduce the failure occurrences in the lift arm, which is achieved by changing the manufacturing material, i.e ADI, without changing existing design. Effect of four pertinent variables of manufacturing ADI, viz. austenitizing temperature, austenitizing time, austempering temperature, austempering time, was investigated using Taguchi method for design of experiments. To analyze the effect of parameters on the mechanical properties, mean average and signal-to-noise (S/N) ratio was calculated based on the design of experiments with L9 orthogonal array and the linear graph. The best combination for achieving the desired mechanical properties of lift arm is austenitization at 860°C for 90 minutes and austempering at 350°C for 60 minutes. Results showed that the developed component is having 925 MPA tensile strength, 7.8 per cent elongation and 120 joules toughness making it more suitable material for lift arm manufacturing. The confirmatory experiment has been performed and found a good agreement between predicted and experimental value. Also, the CAD model of the existing design was developed in computer aided design software, and structural loading calculations were performed by a commercial finite element analysis package. An optimized shape of the lift arm has also been proposed resulting in light weight and cheaper product than the existing design, which can withstand the same loading conditions effectively.

Keywords: austempered ductile iron, design of experiment, finite element analysis, lift arm

Procedia PDF Downloads 224
654 Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5

Authors: Ali Zaker, Zhi Chen

Abstract:

Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. One particular area of interest is the generation of bio-oil through sewage sludge (SS) pyrolysis. SS can be a potential candidate in contrast to other types of biomasses due to its availability and low cost. However, the presence of high molecular weight hydrocarbons and oxygenated compounds in the SS bio-oil hinders some of its fuel applications. In this context, catalytic pyrolysis is another attainable route to upgrade bio-oil quality. Among different catalysts (i.e., zeolites) studied for SS pyrolysis, activated chars (AC) are eco-friendly alternatives. The beneficial features of AC derived from SS comprise the comparatively large surface area, porosity, enriched surface functional groups, and presence of a high amount of metal species that can improve the catalytic activity. Hence, a sludge-based AC catalyst was fabricated in a single-step pyrolysis reaction with NaOH as the activation agent and was compared with HZSM5 zeolite in this study. The thermal decomposition and kinetics were invested via thermogravimetric analysis (TGA) for guidance and control of pyrolysis and catalytic pyrolysis and the design of the pyrolysis setup. The results indicated that the pyrolysis and catalytic pyrolysis contains four obvious stages, and the main decomposition reaction occurred in the range of 200-600°C. The Coats-Redfern method was applied in the 2nd and 3rd devolatilization stages to estimate the reaction order and activation energy (E) from the mass loss data. The average activation energy (Em) values for the reaction orders n = 1, 2, and 3 were in the range of 6.67-20.37 kJ for SS; 1.51-6.87 kJ for HZSM5; and 2.29-9.17 kJ for AC, respectively. According to the results, AC and HZSM5 both were able to improve the reaction rate of SS pyrolysis by abridging the Em value. Moreover, to generate and examine the effect of the catalysts on the quality of bio-oil, a fixed-bed pyrolysis system was designed and implemented. The composition analysis of the produced bio-oil was carried out via gas chromatography/mass spectrometry (GC/MS). The selected SS to catalyst ratios were 1:1, 2:1, and 4:1. The optimum ratio in terms of cracking the long-chain hydrocarbons and removing oxygen-containing compounds was 1:1 for both catalysts. The upgraded bio-oils with AC and HZSM5 were in the total range of C4-C17, with around 72% in the range of C4-C9. The bio-oil from pyrolysis of SS contained 49.27% oxygenated compounds, while with the presence of AC and HZSM5 dropped to 13.02% and 7.3%, respectively. Meanwhile, the generation of benzene, toluene, and xylene (BTX) compounds was significantly improved in the catalytic process. Furthermore, the fabricated AC catalyst was characterized by BET, SEM-EDX, FT-IR, and TGA techniques. Overall, this research demonstrated AC is an efficient catalyst in the pyrolysis of SS and can be used as a cost-competitive catalyst in contrast to HZSM5.

Keywords: catalytic pyrolysis, sewage sludge, activated char, HZSM5, bio-oil

Procedia PDF Downloads 169
653 Investigation of Input Energy Efficiency in Corn (KSC704) Farming in Khoy City, Iran

Authors: Nasser Hosseini

Abstract:

Energy cycle is one of the essential points in agricultural ecosystems all over the world. Corn is one of the important products in Khoy city. Knowing input energy level and evaluating output energy from farms to reduce energy and increase efficiency in farms is very important if one can reduce input energy level into farms through the indices like poisons, fertilization, tractor energy and labour force. In addition to the net income of the farmers, this issue would play a significant role in preserving farm ecosystem from pollution and wrecker factors. For this reason, energy balance sheet in corn farms as well as input and output energy in 2012-2013 were researched by distributing a questionnaire among farmers in various villages in Khoy city. Then, the input energy amount into farms via energy-consuming factors, mentioned above, with regard to special coefficients was computed. Energy was computed on the basis of seed corn function, chemical compound and its content as well. In this investigation, we evaluated the level of stored energy 10792831 kcal per hectare. We found out that the greatest part of energy depended on irrigation which has 5136141.8 kcal and nitrate fertilizer energy with 2509760 kcal and the lowest part of energy depended on phosphor fertilizer, the rate of posited energy equaled 36362500 kcal and energy efficiency on the basis of seed corn function were estimated as 3.36. We found some ways to reduce consumptive energy in farm and nitrate fertilizer and, on the other hand, to increase balance sheet. They are, to name a few, using alternative farming and potherbs for biological stabilizing of nitrogen and changing kind of fertilizers such as urea fertilizer with sulphur cover, and using new generation of irrigation, the compound of water super absorbent like colored hydrogels and using natural fertilizer to preserve.

Keywords: corn (KSC704), output and input, energy efficiency, Khoy city

Procedia PDF Downloads 427
652 Blockchain Platform Configuration for MyData Operator in Digital and Connected Health

Authors: Minna Pikkarainen, Yueqiang Xu

Abstract:

The integration of digital technology with existing healthcare processes has been painfully slow, a huge gap exists between the fields of strictly regulated official medical care and the quickly moving field of health and wellness technology. We claim that the promises of preventive healthcare can only be fulfilled when this gap is closed – health care and self-care becomes seamless continuum “correct information, in the correct hands, at the correct time allowing individuals and professionals to make better decisions” what we call connected health approach. Currently, the issues related to security, privacy, consumer consent and data sharing are hindering the implementation of this new paradigm of healthcare. This could be solved by following MyData principles stating that: Individuals should have the right and practical means to manage their data and privacy. MyData infrastructure enables decentralized management of personal data, improves interoperability, makes it easier for companies to comply with tightening data protection regulations, and allows individuals to change service providers without proprietary data lock-ins. This paper tackles today’s unprecedented challenges of enabling and stimulating multiple healthcare data providers and stakeholders to have more active participation in the digital health ecosystem. First, the paper systematically proposes the MyData approach for healthcare and preventive health data ecosystem. In this research, the work is targeted for health and wellness ecosystems. Each ecosystem consists of key actors, such as 1) individual (citizen or professional controlling/using the services) i.e. data subject, 2) services providing personal data (e.g. startups providing data collection apps or data collection devices), 3) health and wellness services utilizing aforementioned data and 4) services authorizing the access to this data under individual’s provided explicit consent. Second, the research extends the existing four archetypes of orchestrator-driven healthcare data business models for the healthcare industry and proposes the fifth type of healthcare data model, the MyData Blockchain Platform. This new architecture is developed by the Action Design Research approach, which is a prominent research methodology in the information system domain. The key novelty of the paper is to expand the health data value chain architecture and design from centralization and pseudo-decentralization to full decentralization, enabled by blockchain, thus the MyData blockchain platform. The study not only broadens the healthcare informatics literature but also contributes to the theoretical development of digital healthcare and blockchain research domains with a systemic approach.

Keywords: blockchain, health data, platform, action design

Procedia PDF Downloads 92
651 Extraction and Electrochemical Behaviors of Au(III) using Phosphonium-Based Ionic Liquids

Authors: Kyohei Yoshino, Masahiko Matsumiya, Yuji Sasaki

Abstract:

Recently, studies have been conducted on Au(III) extraction using ionic liquids (ILs) as extractants or diluents. ILs such as piperidinium, pyrrolidinium, and pyridinium have been studied as extractants for noble metal extractions. Furthermore, the polarity, hydrophobicity, and solvent miscibility of these ILs can be adjusted depending on their intended use. Therefore, the unique properties of ILs make them functional extraction media. The extraction mechanism of Au(III) using phosphonium-based ILs and relevant thermodynamic studies are yet to be reported. In the present work, we focused on the mechanism of Au(III) extraction and related thermodynamic analyses using phosphonium-based ILs. Triethyl-n-pentyl, triethyl-n-octyl, and triethyl-n-dodecyl phosphonium bis(trifluoromethyl-sulfonyl)amide, [P₂₂₂ₓ][NTf₂], (X = 5, 8, and 12) were investigated for Au(III) extraction. The IL–Au complex was identified as [P₂₂₂₅][AuCl₄] using UV–Vis–NIR and Raman spectroscopic analyses. The extraction behavior of Au(III) was investigated with a change in the [P₂₂₂ₓ][NTf₂]IL concentration from 1.0 × 10–4 to 1.0 × 10–1 mol dm−3. The results indicate that Au(III) can be easily extracted by the anion-exchange reaction in the [P₂₂₂ₓ][NTf₂]IL. The slope range 0.96–1.01 on the plot of log D vs log[P₂₂₂ₓ][NTf2]IL indicates the association of one mole of IL with one mole of [AuCl4−] during extraction. Consequently, [P₂₂₂ₓ][NTf₂] is an anion-exchange extractant for the extraction of Au(III) in the form of anions from chloride media. Thus, this type of phosphonium-based IL proceeds via an anion exchange reaction with Au(III). In order to evaluate the thermodynamic parameters on the Au(III) extraction, the equilibrium constant (logKₑₓ’) was determined from the temperature dependence. The plot of the natural logarithm of Kₑₓ’ vs the inverse of the absolute temperature (T–1) yields a slope proportional to the enthalpy (ΔH). By plotting T–1 vs lnKₑₓ’, a line with a slope range 1.129–1.421 was obtained. Thus, the result indicated that the extraction reaction of Au(III) using the [P₂₂₂ₓ][NTf₂]IL (X=5, 8, and 12) was exothermic (ΔH=-9.39〜-11.81 kJ mol-1). The negative value of TΔS (-4.20〜-5.27 kJ mol-1) indicates that microscopic randomness is preferred in the [P₂₂₂₅][NTf₂]IL extraction system over [P₂₂₂₁₂][NTf₂]IL. The total negative alternation in Gibbs energy (-5.19〜-6.55 kJ mol-1) for the extraction reaction would thus be relatively influenced by the TΔS value on the number of carbon atoms in the alkyl side length, even if the efficiency of ΔH is significantly influenced by the total negative alternations in Gibbs energy. Electrochemical analysis revealed that extracted Au(III) can be reduced in two steps: (i) Au(III)/Au(I) and (ii) Au(I)/Au(0). The diffusion coefficients of the extracted Au(III) species in [P₂₂₂ₓ][NTf₂] (X = 5, 8, and 12) were evaluated from 323 to 373 K using semi-integral and semi-differential analyses. Because of the viscosity of the IL medium, the diffusion coefficient of the extracted Au(III) increases with increasing alkyl chain length. The 4f7/2 spectrum based on X-ray photoelectron spectroscopy revealed that the Au electrodeposits obtained after 10 cycles of continuous extraction and electrodeposition were in the metallic state.

Keywords: au(III), electrodeposition, phosphonium-based ionic liquids, solvent extraction

Procedia PDF Downloads 85
650 Seed Priming Winter Wheat (Triticum aestivum L.) for Germination and Emergence

Authors: Pakize Ozlem Kurt Polat, Gizem Metin, Koksal Yagdi

Abstract:

In order to evaluate the effect of the different sources of salt on germination and early growth of five wheat cultivars (Katea, Bezostaja, Koksal-2000, Golia, Pehlivan) an experiment was conducted at the seed laboratory of the Uludag University, Agricultural Faculty, Department of Field Crops in Bursa/Turkey. Seeds were applied in five different resources media (KCl % 2, KCl %4, KNO₃ %0,5, KH₂PO₄ %0,5, PEG %10) and distilled water as the control). The seed was fully immersed in priming media at a temperature of 24ᵒC for durations of 12 and 24hours. Six different agronomic characters (seed germination, stem length, stem weight, radicle length, fresh weight, dry weight) were measured in 7th days and 14th days. Maximum seed germination percentage of seven days are Pehlivan was observed when the seeds were applied by KH₂PO₄ and Katea by distilled water as a control. The most stem length and stem weight were obtained for seeds were applied by KH₂PO₄ %0,5 with Katea and Bezostja immersed in priming media at 12h intervals beginning 7d after planting. Seeds were applied KH₂PO₄ %0,5 media produced maximum radicle length by Koksal and dry weight by Katea. The freshest weight obtains in Katea by KNO₃ %0,5 immersed in priming media at 24h. The most germination percent, dry weight, stem length of fourteen days was observed in Katea which subjected to KH₂PO₄ %0,5 solution. The most radicle length was observed Katea and Koksal in media of KH₂PO₄ %0,5. The most stem length was obtained for seeds were applied by KH₂PO₄ %0,5 and KNO₃ with Katea and Bezostaja. When the applied chemicals and all days examined KH₂PO₄ %0,5 treatment in fourteen days and immersed for the duration of 24 hours had better effects than other medias, seven days treatments and 12hours immersed. As a result of this research, the best response of media for the wheat germination can be said that the KH₂PO₄ %0,5 immersed in priming media at 24h intervals beginning 14 days after planting.

Keywords: germination, priming, seedling growth, wheat

Procedia PDF Downloads 168
649 Effect of Packaging Material and Water-Based Solutions on Performance of Radio Frequency Identification for Food Packaging Applications

Authors: Amelia Frickey, Timothy (TJ) Sheridan, Angelica Rossi, Bahar Aliakbarian

Abstract:

The growth of large food supply chains demanded improved end-to-end traceability of food products, which has led to companies being increasingly interested in using smart technologies such as Radio Frequency Identification (RFID)-enabled packaging to track items. As technology is being widely used, there are several technological or economic issues that should be overcome to facilitate the adoption of this track-and-trace technology. One of the technological challenges of RFID technology is its sensitivity to different environmental form factors, including packaging materials and the content of the packaging. Although researchers have assessed the performance loss due to the proximity of water and aqueous solutions, there is still the need to further investigate the impacts of food products on the reading range of RFID tags. However, to the best of our knowledge, there are not enough studies to determine the correlation between RFID tag performance and food beverages properties. The goal of this project was to investigate the effect of the solution properties (pH and conductivity) and different packaging materials filled with food-like water-based solutions on the performance of an RFID tag. Three commercially available ultra high-frequency RFID tags were placed on three different bottles and filled with different concentrations of water-based solutions, including sodium chloride, citric acid, sucrose, and ethanol. Transparent glass, Polyethylneterephtalate (PET), and Tetrapak® were used as the packaging materials commonly used in the beverage industries. Tag readability (Theoretical Read Range, TRR) and sensitivity (Power on Tag Forward, PoF) were determined using an anechoic chamber. First, the best place to attach the tag for each packaging material was investigated using empty and water-filled bottles. Then, the bottles were filled with the food-like solutions and tested with the three different tags and the PoF and TRR at the fixed frequency of 915MHz. In parallel, the pH and conductivity of solutions were measured. The best-performing tag was then selected to test the bottles filled with wine, orange, and apple juice. Despite various solutions altering the performance of each tag, the change in tag performance had no correlation with the pH or conductivity of the solution. Additionally, packaging material played a significant role in tag performance. Each tag tested performed optimally under different conditions. This study is the first part of comprehensive research to determine the regression model for the prediction of tag performance behavior based on the packaging material and the content. More investigations, including more tags and food products, are needed to be able to develop a robust regression model. The results of this study can be used by RFID tag manufacturers to design suitable tags for specific products with similar properties.

Keywords: smart food packaging, supply chain management, food waste, radio frequency identification

Procedia PDF Downloads 103
648 Epidemiology, Clinical, Immune, and Molecular Profiles of Microsporidiosis and Cryptosporidiosis among HIV/AIDS patients

Authors: Roger WUMBA

Abstract:

The objective of this study was to determine the prevalence of intestinal parasites, with special emphasis on microsporidia and Cryptosporidium, as well as their association with human immunodeficiency virus (HIV) symptoms, risk factors, and other digestive parasites. We also wish to determine the molecular biology definitions of the species and genotypes of microsporidia and Cryptosporidium in HIV patients. In this cross-sectional study, carried out in Kinshasa, Democratic Republic of the Congo, stool samples were collected from 242 HIV patients (87 men and 155 women) with referred symptoms and risk factors for opportunistic intestinal parasites. The analysis of feces specimen were performed using Ziehl–Neelsen stainings, real-time polymerase chain reaction (PCR), immunofluorescence indirect monoclonal antibody, nested PCR-restriction fragment length polymorphism, and PCR amplification and sequencing. Odds ratio (OR) and 95% confidence intervals were used to quantify the risk. Of the 242 HIV patients, 7.8%, 0.4%, 5.4%, 0.4%, 2%, 10.6%, and 2.8% had Enterocytozoon bieneusi, Encephalitozoon intestinalis, Cryptosporidium spp., Isospora belli, pathogenic intestinal protozoa, nonpathogenic intestinal protozoa, and helminths, respectively. We found five genotypes of E. bieneusi: two older, NIA1 and D, and three new, KIN1, KIN2, and KIN3. Only 0.4% and 1.6% had Cryptosporidium parvum and Cryptosporidium hominis, respectively. Of the patients, 36.4%, 34.3%, 31%, and 39% had asthenia, diarrhea, a CD4 count of ,100 cells/mm³, and no antiretroviral therapy (ART), respectively. The majority of those with opportunistic intestinal parasites and C. hominis, and all with C. parvum and new E. bieneusi genotypes, had diarrhea, low CD4+ counts of ,100 cells/mm³, and no ART. There was a significant association between Entamoeba coli, Kaposi sarcoma, herpes zoster, chronic diarrhea, and asthenia, and the presence of 28 cases with opportunistic intestinal parasites. Rural areas, public toilets, and exposure to farm pigs were the univariate risk factors present in the 28 cases with opportunistic intestinal parasites. In logistic regression analysis, a CD4 count of ,100 cells/mm³ (OR = 4.60; 95% CI 1.70–12.20; P = 0.002), no ART (OR = 5.00; 95% CI 1.90–13.20; P , 0.001), and exposure to surface water (OR = 2.90; 95% CI 1.01–8.40; P = 0.048) were identified as the significant and independent determinants for the presence of opportunistic intestinal parasites. E. bieneusi and Cryptosporidium are becoming more prevalent in Kinshasa, Congo. Based on the findings, we recommend epidemiology surveillance and prevention by means of hygiene, the emphasis of sensitive PCR methods, and treating opportunistic intestinal parasites that may be acquired through fecal–oral transmission, surface water, normal immunity, rural area-based person–person and animal–human nfection, and transmission of HIV. Therapy, including ART and treatment with fumagillin, is needed.

Keywords: diarrhea, enterocytozoon bieneusi, cryptosporidium hominis, cryptosporidium parvum, risk factors, africans

Procedia PDF Downloads 110
647 Engineering Study on the Handling of Date Palm Fronds to Reduce Waste and Used as Energy Environmentally Friendly Fuel

Authors: Ayman H. Amer Eissa, Abdul Rahman O. Alghannam

Abstract:

The agricultural crop residuals are considered one of the most important problems faced by the environmental life and farmers in the world. A study was carried out to evaluate the physical characteristics of chopped date palm stalks (fronds and leaflets). These properties are necessary to apply normal design procedures such as pneumatic conveying, fluidization, drying, and combustion. The mechanical treatment by cutting, crushing or chopping and briquetting processes are the primary step and the suitable solution for solving this problem and recycling these residuals to be transformed into useful products. So the aim of the present work to get a high quality for agriculture residues such as date palm stalks (fronds), date palm leaflets briquettes. The results obtained from measuring the mechanical properties (average shear and compressive strength) for date palm stalks at different moisture content (12.63, 33.21 and 60.54%) was (6.4, 4.7 and 3.21MPa) and (3.8, 3.18 and 2.86MPa) respectively. The modulus of elasticity and toughness were evaluated as a function of moisture content. As the moisture content of the stalk regions increased the modulus of elasticity and toughness decreased indicating a reduction in the brittleness of the stalk regions. Chopped date palm stalks (palm fronds), date palm leaflets having moisture content of 8, 10 and 12% and 8, 10 and 12.8% w.b. were dandified into briquettes without binder and with binder (urea-formaldehyde) using a screw press machine. Quality properties for briquettes were durability, compression ratio hardness, bulk density, compression ratio, resiliency, water resistance and gases emission. The optimum quality properties found for briquettes at 8 % moisture content and without binder. Where the highest compression stress and durability were 8.95, 10.39 MPa and 97.06 %, 93.64 % for date palm stalks (palm fronds), date palm leaflets briquettes, respectively. The CO and CO2 emissions for date palm stalks (fronds), date palm leaflets briquettes were less than these for loose residuals.

Keywords: residues, date palm stalks, chopper, briquetting, quality properties

Procedia PDF Downloads 527
646 Using Hierarchical Modelling to Understand the Role of Plantations in the Abundance of Koalas, Phascolarctos cinereus

Authors: Kita R. Ashman, Anthony R. Rendall, Matthew R. E. Symonds, Desley A. Whisson

Abstract:

Forest cover is decreasing globally, chiefly due to the conversion of forest to agricultural landscapes. In contrast, the area under plantation forestry is increasing significantly. For wildlife occupying landscapes where native forest is the dominant land cover, plantations generally represent a lower value habitat; however, plantations established on land formerly used for pasture may benefit wildlife by providing temporary forest habitat and increasing connectivity. This study investigates the influence of landscape, site, and climatic factors on koala population density in far south-west Victoria where there has been extensive plantation establishment. We conducted koala surveys and habitat characteristic assessments at 72 sites across three habitat types: plantation, native vegetation blocks, and native vegetation strips. We employed a hierarchical modeling framework for estimating abundance and constructed candidate multinomial N-mixture models to identify factors influencing the abundance of koalas. We detected higher mean koala density in plantation sites (0.85 per ha) than in either native block (0.68 per ha) or native strip sites (0.66 per ha). We found five covariates of koala density and using these variables, we spatially modeled koala abundance and discuss factors that are key in determining large-scale distribution and density of koala populations. We provide a distribution map that can be used to identify high priority areas for population management as well as the habitat of high conservation significance for koalas. This information facilitates the linkage of ecological theory with the on-ground implementation of management actions and may guide conservation planning and resource management actions to consider overall landscape configuration as well as the spatial arrangement of plantations adjacent to the remnant forest.

Keywords: abundance modelling, arboreal mammals plantations, wildlife conservation

Procedia PDF Downloads 106
645 Carbon Capture and Storage Using Porous-Based Aerogel Materials

Authors: Rima Alfaraj, Abeer Alarawi, Murtadha AlTammar

Abstract:

The global energy landscape heavily relies on the oil and gas industry, which faces the critical challenge of reducing its carbon footprint. To address this issue, the integration of advanced materials like aerogels has emerged as a promising solution to enhance sustainability and environmental performance within the industry. This study thoroughly examines the application of aerogel-based technologies in the oil and gas sector, focusing particularly on their role in carbon capture and storage (CCS) initiatives. Aerogels, known for their exceptional properties, such as high surface area, low density, and customizable pore structure, have garnered attention for their potential in various CCS strategies. The review delves into various fabrication techniques utilized in producing aerogel materials, including sol-gel, supercritical drying, and freeze-drying methods, to assess their suitability for specific industry applications. Beyond fabrication, the practicality of aerogel materials in critical areas such as flow assurance, enhanced oil recovery, and thermal insulation is explored. The analysis spans a wide range of applications, from potential use in pipelines and equipment to subsea installations, offering valuable insights into the real-world implementation of aerogels in the oil and gas sector. The paper also investigates the adsorption and storage capabilities of aerogel-based sorbents, showcasing their effectiveness in capturing and storing carbon dioxide (CO₂) molecules. Optimization of pore size distribution and surface chemistry is examined to enhance the affinity and selectivity of aerogels towards CO₂, thereby improving the efficiency and capacity of CCS systems. Additionally, the study explores the potential of aerogel-based membranes for separating and purifying CO₂ from oil and gas streams, emphasizing their role in the carbon capture and utilization (CCU) value chain in the industry. Emerging trends and future perspectives in integrating aerogel-based technologies within the oil and gas sector are also discussed, including the development of hybrid aerogel composites and advanced functional components to further enhance material performance and versatility. By synthesizing the latest advancements and future directions in aerogel used for CCS applications in the oil and gas industry, this review offers a comprehensive understanding of how these innovative materials can aid in transitioning towards a more sustainable and environmentally conscious energy landscape. The insights provided can assist in strategic decision-making, drive technology development, and foster collaborations among academia, industry, and policymakers to promote the widespread adoption of aerogel-based solutions in the oil and gas sector.

Keywords: CCS, porous, carbon capture, oil and gas, sustainability

Procedia PDF Downloads 20
644 Biodegradation of 2,4-Dichlorophenol by Pseudomonas chlororaphis Strain Isolated from Activated Sludge Sample from a Wastewater Treatment Plant in Durban, South Africa

Authors: Boitumelo Setlhare, Mduduzi P. Mokoena, Ademola O. Olaniran

Abstract:

Agricultural and industrial activities have led to increasing production of xenobiotics such as 2,4-dichlorophenol (2,4-DCP), a derivative of 2,4-dichlorophenoxyacetic acid (2,4-D), which is a widely used herbicide. Bioremediation offers an efficient, cost-effective and environmentally friendly method for degradation of the compound through the activities of the various microbial enzymes involved in the catabolic pathway. The aim of this study was to isolate and characterize bacterial isolate indigenous to contaminated sites in Durban, South Africa for 2,4-DCP degradation. One bacterium capable of utilizing 2,4-DCP as sole carbon source was isolated using culture enrichment technique and identified as Pseudomonas chlororaphis strain UFB2 via PCR amplification and analysis of 16S rRNA gene sequence. This isolate was able to degrade up to 75.11% of 2,4-DCP in batch cultures within 10 days, with the degradation rate constant of 0.14 mg/l/d. Phylogenetic analysis revealed the relatedness of this bacterial isolate to other Pseudomonas sp. previously characterized for chlorophenol degradation. PCR amplification of the catabolic genes involved in 2,4-DCP degradation revealed the presence of the correct amplicons for phenol hydroxylase (600 bp), catechol 1,2-dioxygenase (214 bp), muconate isomerase (851 bp), cis-dienelactone hydrolase (577 bp), and trans-dienelactone hydrolase (491 bp) genes. Enzyme assays revealed activity as high as 21840 mU/mg, 15630 mU/mg, 2340 mU/mg and 1490 mU/mg obtained for phenol hydroxylase, catechol 1,2-dioxygenase, cis-dienelactone hydroxylase and trans-dienelactone hydroxylase, respectively. The absence of catechol 2,3-dioxygenase gene and the corresponding enzyme in this isolate suggests that the organism followed ortho-pathway for 2,4-DCP degradation. Furthermore, the absence of malaycetate reductase genes showed that the bacterium may not be able to completely mineralize 2,4-DCP. Further studies are required to optimize 2,4-DCP degradation by this isolate as well as to elucidate the mechanism of 2,4-DCP degradation.

Keywords: biodegradation, catechol 1, 2-dioxygenase, 2, 4-dichlorophenol, phenol hydroxylase, Pseudomonas chlororaphis

Procedia PDF Downloads 240
643 Cytotoxicological Evaluation of a Folate Receptor Targeting Drug Delivery System Based on Cyclodextrins

Authors: Caroline Mendes, Mary McNamara, Orla Howe

Abstract:

For chemotherapy, a drug delivery system should be able to specifically target cancer cells and deliver the therapeutic dose without affecting normal cells. Folate receptors (FR) can be considered key targets since they are commonly over-expressed in cancer cells and they are the molecular marker used in this study. Here, cyclodextrin (CD) has being studied as a vehicle for delivering the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within the CD cavity. In this study, β-CD has been modified using folic acid so as to specifically target the FR molecular marker. Thus, the system studied here for drug delivery consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 9.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 10.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 8.5 for A549 and 132.6 µM ± 12.1 and 288.1 µM ± 16.3 for BEAS-2B. These results demonstrate that MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug.

Keywords: cyclodextrins, cancer treatment, drug delivery, folate receptors, reduced folate carriers

Procedia PDF Downloads 294
642 Evaluation of the Execution Effect of the Minimum Grain Purchase Price in Rural Areas

Authors: Zhaojun Wang, Zongdi Sun, Yongjie Chen, Manman Chen, Linghui Wang

Abstract:

This paper uses the analytic hierarchy process to study the execution effect of the minimum purchase price of grain in different regions and various grain crops. Firstly, for different regions, five indicators including grain yield, grain sown area, gross agricultural production, grain consumption price index, and disposable income of rural residents were selected to construct an evaluation index system. We collect data of six provinces including Hebei Province, Heilongjiang Province and Shandong Province from 2006 to 2017. Then, the judgment matrix is constructed, and the hierarchical single ordering and consistency test are carried out to determine the scoring standard for the minimum purchase price of grain. The ranking of the execution effect from high to low is: Heilongjiang Province, Shandong Province, Hebei Province, Guizhou Province, Shaanxi Province, and Guangdong Province. Secondly, taking Shandong Province as an example, we collect the relevant data of sown area and yield of cereals, beans, potatoes and other crops from 2006 to 2017. The weight of area and yield index is determined by expert scoring method. And the average sown area and yield of cereals, beans and potatoes in 2006-2017 were calculated, respectively. On this basis, according to the sum of products of weights and mean values, the execution effects of different grain crops are determined. It turns out that among the cereals, the minimum purchase price had the best execution effect on paddy, followed by wheat and finally maize. Moreover, among major categories of crops, cereals perform best, followed by beans and finally potatoes. Lastly, countermeasures are proposed for different regions, various categories of crops, and different crops of the same category.

Keywords: analytic hierarchy process, grain yield, grain sown area, minimum grain purchase price

Procedia PDF Downloads 128
641 Communities And Local Food Systems In The Post Pandemic World: Lessons For Kerala

Authors: Salimah Hasnah, Namratha Radhakrishnan

Abstract:

Communities play a vital role in mobilizing people and resources for the benefit of all. Since time immemorial, communities have been spear heading different activities ranging from disaster management, palliative care, local economic development and many more with laudable success. Urban agriculture is one such activity where communities can prove to make a real difference. Farming activities in cities across different developed countries have proved to have favorable outcomes in the form of increased food security, neighborhood revitalization, health benefits and local economic growth. However, urban agriculture in the developing nations have never been prioritized as an important planning tool to cater to the basic needs of the public. Urban agricultural practices are being carried out in a fragmented fashion without a formal backing. The urban dwellers rely heavily on their far-off rural counterparts for daily food requirements. With the onset of the pandemic and the recurring lockdowns, the significance of geographic proximity and its impact on the availability of food to the public are gradually being realized around the globe. This warrants a need for localized food systems by shortening the distance between production and consumption of food. The significance of communities in realizing these urban farming benefits is explored in this paper. A case-study approach is adopted to understand how different communities have overcome barriers to urban farming in cities. The applicability of these practices is validated against the state of Kerala in India wherein different community centered approaches have been successful in the past. The existing barriers are assessed and way forward to achieve a self-sufficient localized food systems is formulated with the key lessons from the case studies. These recommendations will be helpful to successfully establish and sustain farming activities in urban areas by leveraging the power of communities.

Keywords: community-centric, COVID-19, drivers and barriers, local food system, urban agriculture

Procedia PDF Downloads 127
640 Artificial Intelligence and Robotics in the Eye of Private Law with Special Regards to Intellectual Property and Liability Issues

Authors: Barna Arnold Keserű

Abstract:

In the last few years (what is called by many scholars the big data era) artificial intelligence (hereinafter AI) get more and more attention from the public and from the different branches of sciences as well. What previously was a mere science-fiction, now starts to become reality. AI and robotics often walk hand in hand, what changes not only the business and industrial life, but also has a serious impact on the legal system. The main research of the author focuses on these impacts in the field of private law, with special regards to liability and intellectual property issues. Many questions arise in these areas connecting to AI and robotics, where the boundaries are not sufficiently clear, and different needs are articulated by the different stakeholders. Recognizing the urgent need of thinking the Committee on Legal Affairs of the European Parliament adopted a Motion for a European Parliament Resolution A8-0005/2017 (of January 27th, 2017) in order to take some recommendations to the Commission on civil law rules on robotics and AI. This document defines some crucial usage of AI and/or robotics, e.g. the field of autonomous vehicles, the human job replacement in the industry or smart applications and machines. It aims to give recommendations to the safe and beneficial use of AI and robotics. However – as the document says – there are no legal provisions that specifically apply to robotics or AI in IP law, but that existing legal regimes and doctrines can be readily applied to robotics, although some aspects appear to call for specific consideration, calls on the Commission to support a horizontal and technologically neutral approach to intellectual property applicable to the various sectors in which robotics could be employed. AI can generate some content what worth copyright protection, but the question came up: who is the author, and the owner of copyright? The AI itself can’t be deemed author because it would mean that it is legally equal with the human persons. But there is the programmer who created the basic code of the AI, or the undertaking who sells the AI as a product, or the user who gives the inputs to the AI in order to create something new. Or AI generated contents are so far from humans, that there isn’t any human author, so these contents belong to public domain. The same questions could be asked connecting to patents. The research aims to answer these questions within the current legal framework and tries to enlighten future possibilities to adapt these frames to the socio-economical needs. In this part, the proper license agreements in the multilevel-chain from the programmer to the end-user become very important, because AI is an intellectual property in itself what creates further intellectual property. This could collide with data-protection and property rules as well. The problems are similar in the field of liability. We can use different existing forms of liability in the case when AI or AI led robotics cause damages, but it is unsure that the result complies with economical and developmental interests.

Keywords: artificial intelligence, intellectual property, liability, robotics

Procedia PDF Downloads 189
639 Working Towards More Sustainable Food Waste: A Circularity Perspective

Authors: Rocío González-Sánchez, Sara Alonso-Muñoz

Abstract:

Food waste implies an inefficient management of the final stages in the food supply chain. Referring to Sustainable Development Goals (SDGs) by United Nations, the SDG 12.3 proposes to halve per capita food waste at the retail and consumer level and to reduce food losses. In the linear system, food waste is disposed and, to a lesser extent, recovery or reused after consumption. With the negative effect on stocks, the current food consumption system is based on ‘produce, take and dispose’ which put huge pressure on raw materials and energy resources. Therefore, greater focus on the circular management of food waste will mitigate the environmental, economic, and social impact, following a Triple Bottom Line (TBL) approach and consequently the SDGs fulfilment. A mixed methodology is used. A total sample of 311 publications from Web of Science database were retrieved. Firstly, it is performed a bibliometric analysis by SciMat and VOSviewer software to visualise scientific maps about co-occurrence analysis of keywords and co-citation analysis of journals. This allows for the understanding of the knowledge structure about this field, and to detect research issues. Secondly, a systematic literature review is conducted regarding the most influential articles in years 2020 and 2021, coinciding with the most representative period under study. Thirdly, to support the development of this field it is proposed an agenda according to the research gaps identified about circular economy and food waste management. Results reveal that the main topics are related to waste valorisation, the application of waste-to-energy circular model and the anaerobic digestion process towards fossil fuels replacement. It is underlined that the use of food as a source of clean energy is receiving greater attention in the literature. There is a lack of studies about stakeholders’ awareness and training. In addition, available data would facilitate the implementation of circular principles for food waste recovery, management, and valorisation. The research agenda suggests that circularity networks with suppliers and customers need to be deepened. Technological tools for the implementation of sustainable business models, and greater emphasis on social aspects through educational campaigns are also required. This paper contributes on the application of circularity to food waste management by abandoning inefficient linear models. Shedding light about trending topics in the field guiding to scholars for future research opportunities.

Keywords: bibliometric analysis, circular economy, food waste management, future research lines

Procedia PDF Downloads 96
638 To Include or Not to Include: Resolving Ethical Concerns over the 20% High Quality Cassava Flour Inclusion in Wheat Flour Policy in Nigeria

Authors: Popoola I. Olayinka, Alamu E. Oladeji, B. Maziya-Dixon

Abstract:

Cassava, an indigenous crop grown locally by subsistence farmers in Nigeria has potential to bring economic benefits to the country. Consumption of bread and other confectionaries has been on the rise due to lifestyle changes of Nigerian consumers. However, wheat, being the major ingredient for bread and confectionery production does not thrive well under Nigerian climate hence the huge spending on wheat importation. To reduce spending on wheat importation, the Federal Government of Nigeria intends passing into law mandatory inclusion of 20% high-quality cassava flour (HQCF) in wheat flour. While the proposed policy may reduce post harvest loss of cassava, and also increase food security and domestic agricultural productivity, there are downsides to the policy which include reduction in nutritional quality and low sensory appeal of cassava-wheat bread, reluctance of flour millers to use HQCF, technology and processing challenges among others. The policy thus presents an ethical dilemma which must be resolved for its successful implementation. While inclusion of HQCF to wheat flour in bread and confectionery is a topic that may have been well addressed, resolving the ethical dilemma resulting from the act has not received much attention. This paper attempts to resolve this dilemma using various approaches in food ethics (cost benefits, utilitarianism, deontological and deliberative). The Cost-benefit approach did not provide adequate resolution of the dilemma as all the costs and benefits of the policy could not be stated in the quantitative term. The utilitarianism approach suggests that the policy delivers greatest good to the greatest number while the deontological approach suggests that the act (inclusion of HQCF to wheat flour) is right hence the policy is not utterly wrong. The deliberative approach suggests a win-win situation through deliberation with the parties involved.

Keywords: HQCF, ethical dilemma, food security, composite flour, cassava bread

Procedia PDF Downloads 398
637 Secondhand Clothing and the Future of Fashion

Authors: Marike Venter de Villiers, Jessica Ramoshaba

Abstract:

In recent years, the fashion industry has been associated with the exploitation of both people and resources. This is largely due to the emergence of the fast fashion concept, which entails rapid and continual style changes where clothes quickly lose their appeal, become out-of-fashion, and are then disposed of. This cycle often entails appalling working conditions in sweatshops with low wages, child labor, and a significant amount of textile waste that ends up in landfills. Although the awareness of the negative implications of ‘mindless fashion production and consumption’ is growing, fast fashion remains to be a popular choice among the youth. This is especially prevalent in South Africa, a poverty-stricken country where a vast number of young adults are unemployed and living in poverty. Despite being in poverty, the celebrity conscious culture and fashion products frequently portrayed on the growing intrusive social media platforms in South Africa pressurizes the consumers to purchase fashion and luxury products. Young adults are therefore more vulnerable to the temptation to purchase fast fashion products. A possible solution to the detrimental effects that the fast fashion industry has on the environment is the revival of the secondhand clothing trend. Although the popularity of secondhand clothing has gained momentum among selected consumer segments, the adoption rate of such remains slow. The main purpose of this study was to explore consumers’ perceptions of the secondhand clothing trend and to gain insight into factors that inhibit the adoption of secondhand clothing. This study also aimed to investigate whether consumers are aware of the negative implications of the fast fashion industry and their likelihood to shift their clothing purchases to that of secondhand clothing. By means of a quantitative study, fifty young females were asked to complete a semi-structured questionnaire. The researcher approached females between the ages of 18 and 35 in a face-to-face setting. The results indicated that although they had an awareness of the negative consequences of fast fashion, they lacked detailed insight into the pertinent effects of fast fashion on the environment. Further, a number of factors inhibit their decision to buy from secondhand stores: firstly, the accessibility to the latest trends was not always available in secondhand stores; secondly, the convenience of shopping from a chain store outweighs the inconvenience of searching for and finding a secondhand store; and lastly, they perceived secondhand clothing to pose a hygiene risk. The findings of this study provide fashion marketers, and secondhand clothing stores, with insight into how they can incorporate the secondhand clothing trend into their strategies and marketing campaigns in an attempt to make the fashion industry more sustainable.

Keywords: eco-friendly fashion, fast fashion, secondhand clothing, eco-friendly fashion

Procedia PDF Downloads 125
636 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 47
635 Exposure to Radon on Air in Tourist Caves in Bulgaria

Authors: Bistra Kunovska, Kremena Ivanova, Jana Djounova, Desislava Djunakova, Zdenka Stojanovska

Abstract:

The carcinogenic effects of radon as a radioactive noble gas have been studied and show a strong correlation between radon exposure and lung cancer occurrence, even in the case of low radon levels. The major part of the natural radiation dose in humans is received by inhaling radon and its progenies, which originates from the decay chain of U-238. Indoor radon poses a substantial threat to human health when build-up occurs in confined spaces such as homes, mines and caves and the risk increases with the duration of radon exposure and is proportional to both the radon concentration and the time of exposure. Tourist caves are a case of special environmental conditions that may be affected by high radon concentration. Tourist caves are a recognized danger in terms of radon exposure to cave workers (guides, employees working in shops built above the cave entrances, etc.), but due to the sensitive nature of the cave environment, high concentrations cannot be easily removed. Forced ventilation of the air in the caves is considered unthinkable due to the possible harmful effects on the microclimate, flora and fauna. The risks to human health posed by exposure to elevated radon levels in caves are not well documented. Various studies around the world often detail very high concentrations of radon in caves and exposure of employees but without a follow-up assessment of the overall impact on human health. This study was developed in the implementation of a national project to assess the potential health effects caused by exposure to elevated levels of radon in buildings with public access under the National Science Fund of Bulgaria, in the framework of grant No КП-06-Н23/1/07.12.2018. The purpose of the work is to assess the radon level in Bulgarian caves and the exposure of the visitors and workers. The number of caves (sampling size) was calculated for simple random selection from total available caves 65 (sampling population) are 13 caves with confidence level 95 % and confidence interval (margin of error) approximately 25 %. A measurement of the radon concentration in air at specific locations in caves was done by using CR-39 type nuclear track-etch detectors that were placed by the participants in the research team. Despite the fact that all of the caves were formed in karst rocks, the radon levels were rather different from each other (97–7575 Bq/m3). An assessment of the influence of the orientation of the caves in the earth's surface (horizontal, inclined, vertical) on the radon concentration was performed. Evaluation of health hazards and radon risk exposure causing by inhaling the radon and its daughter products in each surveyed caves was done. Reducing the time spent in the cave has been recommended in order to decrease the exposure of workers.

Keywords: tourist caves, radon concentration, exposure, Bulgaria

Procedia PDF Downloads 177
634 Remote Sensing and GIS Based Methodology for Identification of Low Crop Productivity in Gautam Buddha Nagar District

Authors: Shivangi Somvanshi

Abstract:

Poor crop productivity in salt-affected environment in the country is due to insufficient and untimely canal supply to agricultural land and inefficient field water management practices. This could further degrade due to inadequate maintenance of canal network, ongoing secondary soil salinization and waterlogging, worsening of groundwater quality. Large patches of low productivity in irrigation commands are occurring due to waterlogging and salt-affected soil, particularly in the scarcity rainfall year. Satellite remote sensing has been used for mapping of areas of low crop productivity, waterlogging and salt in irrigation commands. The spatial results obtained for these problems so far are less reliable for further use due to rapid change in soil quality parameters over the years. The existing spatial databases of canal network and flow data, groundwater quality and salt-affected soil were obtained from the central and state line departments/agencies and were integrated with GIS. Therefore, an integrated methodology based on remote sensing and GIS has been developed in ArcGIS environment on the basis of canal supply status, groundwater quality, salt-affected soils, and satellite-derived vegetation index (NDVI), salinity index (NDSI) and waterlogging index (NSWI). This methodology was tested for identification and delineation of area of low productivity in the Gautam Buddha Nagar district (Uttar Pradesh). It was found that the area affected by this problem lies mainly in Dankaur and Jewar blocks of the district. The problem area was verified with ground data and was found to be approximately 78% accurate. The methodology has potential to be used in other irrigation commands in the country to obtain reliable spatial data on low crop productivity.

Keywords: remote sensing, GIS, salt affected soil, crop productivity, Gautam Buddha Nagar

Procedia PDF Downloads 277
633 The Impact of Formulate and Implementation Strategy for an Organization to Better Financial Consequences in Malaysian Private Hospital

Authors: Naser Zouri

Abstract:

Purpose: Measures of formulate and implementation strategy shows amount of product rate-market based strategic management category such as courtesy, competence, and compliance to reach the high loyalty of financial ecosystem. Despite, it solves the market place error intention to fair trade organization. Finding: Finding shows the ability of executives’ level of management to motivate and better decision-making to solve the treatments in business organization. However, it made ideal level of each interposition policy for a hypothetical household. Methodology/design. Style of questionnaire about the data collection was selected to survey of both pilot test and real research. Also, divide of questionnaire and using of Free Scale Semiconductor`s between the finance employee was famous of this instrument. Respondent`s nominated basic on non-probability sampling such as convenience sampling to answer the questionnaire. The way of realization costs to performed the questionnaire divide among the respondent`s approximately was suitable as a spend the expenditure to reach the answer but very difficult to collect data from hospital. However, items of research survey was formed of implement strategy, environment, supply chain, employee from impact of implementation strategy on reach to better financial consequences and also formulate strategy, comprehensiveness strategic design, organization performance from impression on formulate strategy and financial consequences. Practical Implication: Dynamic capability approach of formulate and implement strategy focuses on the firm-specific processes through which firms integrate, build, or reconfigure resources valuable for making a theoretical contribution. Originality/ value of research: Going beyond the current discussion, we show that case studies have the potential to extend and refine theory. We present new light on how dynamic capabilities can benefit from case study research by discovering the qualifications that shape the development of capabilities and determining the boundary conditions of the dynamic capabilities approach. Limitation of the study :Present study also relies on survey of methodology for data collection and the response perhaps connection by financial employee was difficult to responds the question because of limitation work place.

Keywords: financial ecosystem, loyalty, Malaysian market error, dynamic capability approach, rate-market, optimization intelligence strategy, courtesy, competence, compliance

Procedia PDF Downloads 291
632 Sensory and Microbiological Sustainability of Smoked Meat Products–Smoked Ham in Order to Determine the Shelf-Life under the Changed Conditions at +15°C

Authors: Radovan Čobanović, Milica Rankov Šicar

Abstract:

The meat is in the group of perishable food which can be spoiled very rapidly if stored at room temperature. Salting in combination with smoke is intended to extend shelf life, and also to form the specific taste, odor and color. The smoke do not affect only on taste and flavor of the product, it has a bactericidal and oxidative effect and that is the reason because smoked products are less susceptible to oxidation and decay processes. According to mentioned the goal of this study was to evaluate shelf life of smoked ham, which is stored in conditions of high temperature (+15 °C). For the purposes of this study analyzes were conducted on eight samples of smoked ham every 7th day from the day of reception until 21st day. During this period, smoked ham is subjected to sensory analysis (appearance, odor, taste, color, aroma) and bacteriological analyzes (Listeria monocytogenes, Salmonella spp. and yeasts and molds) according to Serbian state regulation. All analyses were tested according to ISO methodology: sensory analysis ISO 6658, Listeria monocytogenes ISO 11 290-1, Salmonella spp ISO 6579 and yeasts and molds ISO 21527-2. Results of sensory analysis of smoked ham indicating that the samples after the first seven days of storage showed visual changes at the surface in the form of allocations of salt, most likely due to the process of drying out the internal parts of the product. The sample, after fifteen days of storage had intensive exterior changes, but the taste was still acceptable. Between the fifteenth and twenty-first day of storage, there is an unacceptable change on the surface and inside of the product and the occurrence of molds and yeasts but neither one analyzed pathogen was found. Based on the obtained results it can be concluded that this type of product cannot be stored for more than seven days at an elevated temperature of +15°C because there are a visual changes that would certainly have influence on decision of customers when purchase of this product is concerned.

Keywords: sustainability, smoked meat products, food engineering, agricultural process engineering

Procedia PDF Downloads 355
631 Surprising Behaviour of Kaolinitic Soils under Alkaline Environment

Authors: P. Hari Prasad Reddy, Shimna Paulose, V. Sai Kumar, C. H. Rama Vara Prasad

Abstract:

Soil environment gets contaminated due to rapid industrialisation, agricultural-chemical application and improper disposal of waste generated by the society. Unexpected volume changes can occur in soil in the presence of certain contaminants usually after the long duration of interaction. Alkali is one of the major soil contaminant that has a considerable effect on behaviour of soils and capable of inducing swelling potential in soil. Chemical heaving of clayey soils occurs when they are wetted by aqueous solutions of alkalis. Mineralogical composition of the soil is one of the main factors influencing soil- alkali interaction. In the present work, studies are carried out to understand the swell potential of soils due to soil-alkali interaction with different concentrations of NaOH solution. Locally available soil, namely, red earth containing kaolinite which is of non-swelling nature is selected for the study. In addition to this, two commercially available clayey soils, namely ball clay and china clay containing mainly of kaolinite are selected to understand the effect of alkali interaction in various kaolinitic soils. Non-swelling red earth shows maximum swell at lower concentrations of alkali solution (0.1N) and a slightly decreasing trend of swelling with further increase in concentration (1N, 4N, and 8N). Marginal decrease in swell potential with increase in concentration indicates that the increased concentration of alkali solution exists as free solution in case of red earth. China clay and ball clay both falling under kaolinite group of clay minerals, show swelling with alkaline solution. At lower concentrations of alkali solution both the soils shows similar swell behaviour, but at higher concentration of alkali solution ball clay shows high swell potential compared to china clay which may be due to lack of well ordered crystallinity in ball clay compared to china clay. The variations in the results obtained were corroborated by carrying XRD and SEM studies.

Keywords: alkali, kaolinite, swell potential, XRD, SEM

Procedia PDF Downloads 485
630 Analysis of Distance Travelled by Plastic Consumables Used in the First 24 Hours of an Intensive Care Admission: Impacts and Methods of Mitigation

Authors: Aidan N. Smallwood, Celestine R. Weegenaar, Jack N. Evans

Abstract:

The intensive care unit (ICU) is a particularly resource heavy environment, in terms of staff, drugs and equipment required. Whilst many areas of the hospital are attempting to cut down on plastic use and minimise their impact on the environment, this has proven challenging within the confines of intensive care. Concurrently, as globalization has progressed over recent decades, there has been a tendency towards centralised manufacturing with international distribution networks for products, often covering large distances. In this study, we have modelled the standard consumption of plastic single-use items over the course of the first 24-hours of an average individual patient’s stay in a 12 bed ICU in the United Kingdom (UK). We have identified the country of manufacture and calculated the minimum possible distance travelled by each item from factory to patient. We have assumed direct transport via the shortest possible straight line from country of origin to the UK and have not accounted for transport within either country. Assuming an intubated patient with invasive haemodynamic monitoring and central venous access, there are a total of 52 distincts, largely plastic, disposable products which would reasonably be required in the first 24-hours after admission. Each product type has only been counted once to account for multiple items being shipped as one package. Travel distances from origin were summed to give the total distance combined for all 52 products. The minimum possible total distance travelled from country of origin to the UK for all types of product was 273,353 km, equivalent to 6.82 circumnavigations of the globe, or 71% of the way to the moon. The mean distance travelled was 5,256 km, approximately the distance from London to Mecca. With individual packaging for each item, the total weight of consumed products was 4.121 kg. The CO2 produced shipping these items by air freight would equate to 30.1 kg, however doing the same by sea would produce 0.2 kg CO2. Extrapolating these results to the 211,932 UK annual ICU admissions (2018-2019), even with the underestimates of distance and weight of our assumptions, air freight would account for 6586 tons CO2 emitted annually, approximately 130 times that of sea freight. Given the drive towards cost saving within the UK health service, and the decline of the local manufacturing industry, buying from intercontinental manufacturers is inevitable However, transporting all consumables by sea where feasible would be environmentally beneficial, as well as being less costly than air freight. At present, the NHS supply chain purchases from medical device companies, and there is no freely available information as to the transport mode used to deliver the product to the UK. This must be made available to purchasers in order to give a fuller picture of life cycle impact and allow for informed decision making in this regard.

Keywords: CO2, intensive care, plastic, transport

Procedia PDF Downloads 164
629 Optimization of the Feedstock Supply of an Oilseeds Conversion Unit for Biofuel Production in West Africa: A Comparative Study of the Supply of Jatropha curcas and Balanites aegyptiaca Seeds

Authors: Linda D. F. Bambara, Marie Sawadogo

Abstract:

Jatropha curcas (jatropha) is the plant that has been the most studied for biofuel production in West Africa. There exist however other plants such as Balanites aegyptiaca (balanites) that have been targeted as a potential feedstock for biofuel production. This biomass could be an alternative feedstock for the production of straight vegetable oil (SVO) at costs lower than jatropha-based SVO production costs. This study aims firstly to determine, through an MILP model, the optimal organization that minimizes the costs of the oilseeds supply of two biomass conversion units (BCU) exploiting respectively jatropha seeds and the balanitès seeds. Secondly, the study aims to carry out a comparative study of these costs obtained for each BCU. The model was then implemented on two theoretical cases studies built on the basis of the common practices in Burkina Faso and two scenarios were carried out for each case study. In Scenario 1, 3 pre-processing locations ("at the harvesting area", "at the gathering points", "at the BCU") are possible. In scenario 2, only one location ("at the BCU") is possible. For each biomass, the system studied is the upstream supply chain (harvesting, transport and pre-processing (drying, dehulling, depulping)), including cultivation (for jatropha). The model optimizes the area of land to be exploited based on the productivity of the studied plants and material losses that may occur during the harvesting and the supply of the BCU. It then defines the configuration of the logistics network allowing an optimal supply of the BCU taking into account the most common means of transport in West African rural areas. For the two scenarios, the results of the implementation showed that the total area exploited for balanites (1807 ha) is 4.7 times greater than the total area exploited for Jatropha (381 ha). In both case studies, the location of pre-processing “at the harvesting area” was always chosen for scenario1. As the balanites trees were not planted and because the first harvest of the jatropha seeds took place 4 years after planting, the cost price of the seeds at the BCU without the pre-processing costs was about 430 XOF/kg. This cost is 3 times higher than the balanites's one, which is 140 XOF/kg. After the first year of harvest, i.e. 5 years after planting, and assuming that the yield remains constant, the same cost price is about 200 XOF/kg for Jatropha. This cost is still 1.4 times greater than the balanites's one. The transport cost of the balanites seeds is about 120 XOF/kg. This cost is similar for the jatropha seeds. However, when the pre-processing is located at the BCU, i.e. for scenario2, the transport costs of the balanites seeds is 1200 XOF/kg. These costs are 6 times greater than the transport costs of jatropha which is 200 XOF/kg. These results show that the cost price of the balanites seeds at the BCU can be competitive compared to the jatropha's one if the pre-processing is located at the harvesting area.

Keywords: Balanites aegyptiaca, biomass conversion, Jatropha curcas, optimization, post-harvest operations

Procedia PDF Downloads 325
628 Characterization of Banana Based Farming Systems in the Arumeru District, Arusha- Tanzania

Authors: Siah Koka, Rony Swennen

Abstract:

Arumeru district is located in Arusha region in Upper Pangani basin in Tanzania. Economically it is dominated with agricultural activities. Banana, coffee, maize, beans, tomatoes, and cassava are the most important food and cash crops. This paper characterized the banana-based farming system of Arumeru district, evaluates its sustainability as well as research needs. The household questionnaire was performed on-site and on farm observation. Transect walk also involved to identify different agro- ecological zones. Results show that farm holdings (home gardens) are smaller than a hectare (0.7 ha) and continue to fragment as population continues to grow. Banana cultivation is the backbone of the farming systems present both in the upland and plains. In the upper belt banana found their place in the forest, which form the home garden structure typical to East African highland banana production systems. However, in the plains, cultivation is done in monoculture and depends heavily on irrigation. We found slightly less cultivars present and hypothetically more pest and disease pressure. This was mainly seen for Fusarium oxysporum species, which eradicates susceptible cultivars such as Mchare cultivars rapidly given the method of irrigation. The smaller permanent upland home garden plots provide thus a more suitable environment where banana perform better. It should be noted that findings indicated good performance to occur in the less suitable plains too. Good management is believed to be the most influencing factor, although our survey failed in identifying them. Population pressure is currently pushing the sustainable system in the uplands to its boundaries. Nutrient mining, deforestation and changing rain patterns threat production not only on Mt. Meru but on a global scale.

Keywords: Arumeru district, banana-based farming system, Tanzania, Arumeru district

Procedia PDF Downloads 170
627 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein

Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel

Abstract:

Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.

Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome

Procedia PDF Downloads 191