Search results for: root systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10090

Search results for: root systems

7060 Trehalose Application Increased Membrane Stability and Cell Viability to Affect Growth of Wheat Genotypes under Heat Stress

Authors: S. K. Thind, Aparjot Kaur

Abstract:

Heat stress is one of the major environmental factors drastically reducing wheat production. Crop heat tolerance can be enhanced by preconditioning of plants by exogenous application of osmoprotectants. Presently, the effect of trehalose pretreatment (at 1 mM, and 1.5 nM) under heat stress of 35±2˚C (moderate) and 40±2˚ (severe) for four and eight hour was conducted in wheat (Tricticum aestivum L.) genotypes viz. HD2967, PBW 175, PBW 343, PBW 621, and PBW 590. Heat stress affects wide spectrum of physiological processes within plants that are irreversibly damaged by stress. Membrane thermal stability (MTS) and cell viability was significantly decreased under heat stress for eight hours. Pretreatment with trehalose improved MTS and cell viability under stress and this effect was more promotory with higher concentration. Thermal stability of photosynthetic apparatus differed markedly between genotypes and Hill reaction activity was recorded more in PBW621 followed by C306 as compared with others. In all genotypes photolysis of water showed decline with increase in temperature stress. Trehalose pretreatment helped in sustaining Hill reaction activity probably by stabilizing the photosynthetic apparatus against heat-induced photo inhibition. Both plant growth and development were affected by temperature in both shoot and root under heat stress. The reduction was compensated partially by trehalose (1.5 mM) application. Adaption to heat stress is associated with the metabolic adjustment which led to accumulation of soluble sugars including non-reducing and reducing for their role in adaptive mechanism. Higher acid invertase activity in shoot of tolerant genotypes appeared to be a characteristic for stress tolerance. As sucrose synthase play central role in sink strength and in studied wheat genotype was positively related to dry matter accumulation. The duration of heat stress for eight hours had more severe effect on these parameters and trehalose application at 1.5 mM ameliorated it to certain extent.

Keywords: heat stress, Triticum aestivum, trehalose, membrane thermal stability, triphenyl tetrazolium chloride, reduction test, growth, sugar metabolism

Procedia PDF Downloads 311
7059 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank

Authors: Jalal Haghighat Monfared, Zahra Akbari

Abstract:

Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.

Keywords: business intelligence, business intelligence capability, decision making, decision quality

Procedia PDF Downloads 101
7058 A Next Generation Multi-Scale Modeling Theatre for in silico Oncology

Authors: Safee Chaudhary, Mahnoor Naseer Gondal, Hira Anees Awan, Abdul Rehman, Ammar Arif, Risham Hussain, Huma Khawar, Zainab Arshad, Muhammad Faizyab Ali Chaudhary, Waleed Ahmed, Muhammad Umer Sultan, Bibi Amina, Salaar Khan, Muhammad Moaz Ahmad, Osama Shiraz Shah, Hadia Hameed, Muhammad Farooq Ahmad Butt, Muhammad Ahmad, Sameer Ahmed, Fayyaz Ahmed, Omer Ishaq, Waqar Nabi, Wim Vanderbauwhede, Bilal Wajid, Huma Shehwana, Muhammad Tariq, Amir Faisal

Abstract:

Cancer is a manifestation of multifactorial deregulations in biomolecular pathways. These deregulations arise from the complex multi-scale interplay between cellular and extracellular factors. Such multifactorial aberrations at gene, protein, and extracellular scales need to be investigated systematically towards decoding the underlying mechanisms and orchestrating therapeutic interventions for patient treatment. In this work, we propose ‘TISON’, a next-generation web-based multiscale modeling platform for clinical systems oncology. TISON’s unique modeling abstraction allows a seamless coupling of information from biomolecular networks, cell decision circuits, extra-cellular environments, and tissue geometries. The platform can undertake multiscale sensitivity analysis towards in silico biomarker identification and drug evaluation on cellular phenotypes in user-defined tissue geometries. Furthermore, integration of cancer expression databases such as The Cancer Genome Atlas (TCGA) and Human Proteome Atlas (HPA) facilitates in the development of personalized therapeutics. TISON is the next-evolution of multiscale cancer modeling and simulation platforms and provides a ‘zero-code’ model development, simulation, and analysis environment for application in clinical settings.

Keywords: systems oncology, cancer systems biology, cancer therapeutics, personalized therapeutics, cancer modelling

Procedia PDF Downloads 201
7057 Design of Transmit Beamspace and DOA Estimation in MIMO Radar

Authors: S. Ilakkiya, A. Merline

Abstract:

A multiple-input multiple-output (MIMO) radar systems use modulated waveforms and directive antennas to transmit electromagnetic energy into a specific volume in space to search for targets. This paper deals with the design of transmit beamspace matrix and DOA estimation for multiple-input multiple-output (MIMO) radar with collocated antennas.The design of transmit beamspace matrix is based on minimizing the difference between a desired transmit beampattern and the actual one while enforcing the constraint of uniform power distribution across the transmit array elements. Rotational invariance property is established at the transmit array by imposing a specific structure on the beamspace matrix. Semidefinite programming and spatial-division based design (SDD) are also designed separately. In MIMO radar systems, DOA estimation is an essential process to determine the direction of incoming signals and thus to direct the beam of the antenna array towards the estimated direction. This estimation deals with non-adaptive spectral estimation and adaptive spectral estimation techniques. The design of the transmit beamspace matrix and spectral estimation techniques are studied through simulation.

Keywords: adaptive and non-adaptive spectral estimation, direction of arrival estimation, MIMO radar, rotational invariance property, transmit, receive beamforming

Procedia PDF Downloads 503
7056 Understanding the Impact of Background Experience from Staff in Diversion Programs: The Voices of a Community-Based Diversion Program

Authors: Ana Magana

Abstract:

Youth are entering the juvenile justice system at alarming rates. For the youth of color entering the system, the outcomes are far worse than for their white counterparts. In fact, the youth of color are more likely to be arrested and sentenced for longer periods of time than white youth. Race disproportionality in the juvenile justice system is evident, but what happens to the youth that exit the juvenile justice system? Who supports them after they are incarcerated and who can prevent them from re-offending? There are several diversion programs that have been implemented in the US to aid the reduction of juvenile incarceration and help reduce recidivism. The program interviewed for this study is a community-based diversion program (CBDP). The CBDP is a pre-filing diversion non-profit organization based in South Seattle. The objective of this exploratory research study is to provide a space and platform for the CBDP team to speak about their background experiences and the influence their background has on their current approach and practice with juveniles. A qualitative, exploratory study was conducted. Interviews were conducted with staff and provided oral consent. The interview included six open-ended, semi-structured questions. Interviews were digitally recoded and transcribed. The aim of this study was to understand how the influence of the participant’s backgrounds and previous experiences impact their current practice approaches with the CBDP youth and young adults. Ecological systems theory was the guiding framework for analysis. After careful analysis, three major themes emerged: 1) strong influence of participant’s background, 2) participants belonging to community and 3) strong self-identity with the CBDP. Within these three themes, subthemes were developed based on participant’s responses. It was concluded that the participant’s approach is influenced by their background experiences. This corresponds to the ecological systems theory and the community-based lens which underscores theoretical analysis. The participant’s approach is grounded in interpersonal relationships within the client’s systems, meaning that the participants understand and view their clients within an ecological systems perspective. When choosing participants that reflect the population being served, the clients receive a balanced, inclusive and caring approach. Youth and young adults are searching for supportive adults to be there for them, it is essential for diversion programs to provide a space for shared background experiences and have people that hold similar identities. Grassroots organizations such as CBDP have the tools and experience to work with marginalized populations that are constantly being passed on. While articles and studies focus on the reduction of recidivism and re-offending it is important to question the reasons behind this data. For instance, there can be a reduction in statistics, but at whose expense. Are the youth and young adults truly being supported? Or is it just a requirement that they are completing in order to remove their charge? This research study can serve as the beginning of a series of studies conducted at CBDP to further understand and validate the need to employ individuals with similar backgrounds as the participants CBDP serves.

Keywords: background experience, diversion, ecological systems theory, relationships

Procedia PDF Downloads 133
7055 Implementation of the Circular Economy Concept in Greenhouse Production Systems: Microalgae and Biostimulant Production Using Soilless Crops’ Drainage Nutrient Solution

Authors: Nikolaos Katsoulas, Sofia Faliagka, George Kountrias, Eleni Dimitriou, Eleftheria Pechlivani

Abstract:

The challenges to feed the world in 2050 are becoming more and more apparent. This calls for producing more with fewer inputs (most of them under scarcity), higher resource efficiency, minimum or zero effect on the environment, and higher sustainability. Therefore, increasing the circularity of production systems is highly significant for their sustainability. Protected horticulture offers opportunities for maximum resource efficiency across various levels within and between farms and at the regional level), high-quality production, and contributes significantly to the nutrition security as part of the world food production. In greenhouses, closed soilless cultivation systems give the opportunity to increase the water and nutrient use efficiency and reduce the environmental impact of the cultivation system by the reuse of the drained water and nutrients. However, due to the low quality of the water used in the Mediterranean countries, a completely closed system is not feasible. Partial discharge of the drainage nutrient solution when the levels of electrical conductivity (EC) or of the toxic ions in the system are reached is still a necessity. Thus, in the frame of the circular economy concept, this work presents the utilisation of the drainage solution of soilless cultivation systems for microalgae and biofertilisers production. The system includes a greenhouse equipped with a soilless cultivation system, a drainage solution collection tank, a closed bioreactor for microalgae production, and a biocatalysis tank. The bioreactor tested in the frame of this work includes two closed tube loops of a capacity of 1000 L each where, after the initial inoculation, the microalgae is developed using as a growth medium the drainage solution collected from the greenhouse crops. The bioreactor includes light and temperature control while pH is still manually regulated. As soon as the microalgae culture reaches a certain density level, 20% of the culture is harvested, and the culture system is refiled by a drainage nutrient solution. The microalgae produced goes through a biocatalysis process, which leads to the production of a rich aminoacids (and nitrogen) biofertiliser. The produced biofertiliser is then used for the fertilisation of greenhouse crops. The complete production cycle along with the effects of the biofertiliser produced on crop growth and yield are presented and discussed in this manuscript. Acknowledgment: This work was carried out under the PestNu project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Green Deal grant agreement No. 101037128 — PestNu.

Keywords: soilless, water use efficiency, nutrients use efficiency, biostimulant

Procedia PDF Downloads 59
7054 The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation

Authors: Nguyen Thu Huong, Nguyen Quang Bau

Abstract:

The Hall Coefficient (HC) and the Magnetoresistance (MR) have been studied in two-dimensional systems. The HC and the MR in Rectangular Quantum Wire (RQW) subjected to a crossed DC electric field and magnetic field in the presence of a Strong Electromagnetic Wave (EMW) characterized by electric field are studied in this work. Using the quantum kinetic equation for electrons interacting with optical phonons, we obtain the analytic expressions for the HC and the MR with a dependence on magnetic field, EMW frequency, temperatures of systems and the length characteristic parameters of RQW. These expressions are different from those obtained for bulk semiconductors and cylindrical quantum wires. The analytical results are applied to GaAs/GaAs/Al. For this material, MR depends on the ratio of the EMW frequency to the cyclotron frequency. Indeed, MR reaches a minimum at the ratio 5/4, and when this ratio increases, it tends towards a saturation value. The HC can take negative or positive values. Each curve has one maximum and one minimum. When magnetic field increases, the HC is negative, achieves a minimum value and then increases suddenly to a maximum with a positive value. This phenomenon differs from the one observed in cylindrical quantum wire, which does not have maximum and minimum values.

Keywords: hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation

Procedia PDF Downloads 466
7053 Rheumatoid Arthritis, Periodontitis and the Subgingival Microbiome: A Circular Relationship

Authors: Isabel Lopez-Oliva, Akshay Paropkari, Shweta Saraswat, Stefan Serban, Paola de Pablo, Karim Raza, Andrew Filer, Iain Chapple, Thomas Dietrich, Melissa Grant, Purnima Kumar

Abstract:

Objective: We aimed to explicate the role of the subgingival microbiome in the causal link between rheumatoid arthritis (RA) and periodontitis (PD). Methods: Subjects with/without RA and with/without PD were randomized for treatment with scaling and root planing (SRP) or oral hygiene instructions. Subgingival biofilm, gingival crevicular fluid, and serum were collected at baseline and at 3- and 6-months post-operatively. Correlations were generated between 72 million 16S rDNA sequences, immuno-inflammatory mediators, circulating antibodies to oral microbial antigens, serum inflammatory molecules, and clinical metrics of RA. The dynamics of inter-microbial and host-microbial interactions were modeled using differential network analysis. Results: RA superseded periodontitis as a determinant of microbial composition, and DAS28 score superseded the severity of periodontitis as a driver of microbial assemblages (p=0.001, ANOSIM). RA subjects evidenced higher serum anti-PPAD (p=0.0013), anti-Pg-enolase (p=0.0031), anti-RPP3, anti- Pg-OMP and anti- Pi-OMP (p=0.001) antibodies than non-RA controls (with and without periodontitis). Following SRP, bacterial networks anchored by IL-1b, IL-4, IL-6, IL-10, IL-13, MIP-1b, and PDGF-b underwent ≥5-fold higher rewiring; and serum antibodies to microbial antigens decreased significantly. Conclusions: Our data suggest a circular relationship between RA and PD, beginning with an RA-influenced dysbiosis within the healthy subgingival microbiome that leads to exaggerated local inflammation in periodontitis and circulating antibodies to periodontal pathogens and positive correlation between severity of periodontitis and RA activity. Periodontal therapy restores host-microbial homeostasis, reduces local inflammation, and decreases circulating microbial antigens. Our data highlights the importance of integrating periodontal care into the management of RA patients.

Keywords: rheumatoid arthritis, periodontal, subgingival, DNA sequence analysis, oral microbiome

Procedia PDF Downloads 87
7052 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems

Authors: Emanuel Koseos

Abstract:

Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.

Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools

Procedia PDF Downloads 159
7051 Development of Nanostructrued Hydrogel for Spatial and Temporal Controlled Release of Active Compounds

Authors: Shaker Alsharif, Xavier Banquy

Abstract:

Controlled drug delivery technology represents one of the most rapidly advancing areas of science in which chemists and chemical engineers are contributing to human health care. Such delivery systems provide numerous advantages compared to conventional dosage forms including improved efficacy, and improved patient compliance and convenience. Such systems often use synthetic polymers as carriers for the drugs. As a result, treatments that would not otherwise be possible are now in conventional use. The role of bilayered vesicles as efficient carriers for drugs, vaccines, diagnostic agents and other bioactive agents have led to a rapid advancement in the liposomal drug delivery system. Moreover, the site avoidance and site-specific drug targeting therapy could be achieved by formulating a liposomal product, so as to reduce the cytotoxicity of many potent therapeutic agents. Our project focuses on developing and building hydrogel with nanoinclusion of liposomes loaded with active compounds such as proteins and growth factors able to release them in a controlled fashion. In order to achieve that, we synthesize several liposomes of two different phospholipids concentrations encapsulating model drug. Then, formulating hydrogel with specific mechanical properties embedding the liposomes to manage the release of active compound.

Keywords: controlled release, hydrogel, liposomes, active compounds

Procedia PDF Downloads 435
7050 Study on Control Techniques for Adaptive Impact Mitigation

Authors: Rami Faraj, Cezary Graczykowski, Błażej Popławski, Grzegorz Mikułowski, Rafał Wiszowaty

Abstract:

Progress in the field of sensors, electronics and computing results in more and more often applications of adaptive techniques for dynamic response mitigation. When it comes to systems excited with mechanical impacts, the control system has to take into account the significant limitations of actuators responsible for system adaptation. The paper provides a comprehensive discussion of the problem of appropriate design and implementation of adaptation techniques and mechanisms. Two case studies are presented in order to compare completely different adaptation schemes. The first example concerns a double-chamber pneumatic shock absorber with a fast piezo-electric valve and parameters corresponding to the suspension of a small unmanned aerial vehicle, whereas the second considered system is a safety air cushion applied for evacuation of people from heights during a fire. For both systems, it is possible to ensure adaptive performance, but a realization of the system’s adaptation is completely different. The reason for this is technical limitations corresponding to specific types of shock-absorbing devices and their parameters. Impact mitigation using a pneumatic shock absorber corresponds to much higher pressures and small mass flow rates, which can be achieved with minimal change of valve opening. In turn, mass flow rates in safety air cushions relate to gas release areas counted in thousands of sq. cm. Because of these facts, both shock-absorbing systems are controlled based on completely different approaches. Pneumatic shock-absorber takes advantage of real-time control with valve opening recalculated at least every millisecond. In contrast, safety air cushion is controlled using the semi-passive technique, where adaptation is provided using prediction of the entire impact mitigation process. Similarities of both approaches, including applied models, algorithms and equipment, are discussed. The entire study is supported by numerical simulations and experimental tests, which prove the effectiveness of both adaptive impact mitigation techniques.

Keywords: adaptive control, adaptive system, impact mitigation, pneumatic system, shock-absorber

Procedia PDF Downloads 76
7049 A Content Analysis of Corporate Sustainability Performance and Business Excellence Models

Authors: Kari M. Solomon

Abstract:

Companies with a culture accepting of change management and performance excellence are better suited to determine their sustainability performance and impacts. A mature corporate culture supportive of performance excellence is better positioned to integrate sustainability management tools into their standard business strategy. Companies use various sustainability management tools and reporting standards to communicate levels of sustainability performance to their stakeholders, more often focusing on shareholders and investors. A research gap remains in understanding how companies adapt business excellence models to define corporate sustainability performance. A content analysis of medium-sized enterprises using corporate sustainability reports and business excellence models reveals the challenges and opportunities of reporting sustainability performance in the context of organizational excellence. The outcomes of this content analysis contribute knowledge on the resources needed for companies to build sustainability performance management systems integral to existing management systems. The findings of this research inform academic research areas of corporate sustainability performance, the business community contributing to sustainable development initiatives, and integrating sustainable development issues into business excellence models. There are potential research links between sustainability performance management and the alignment of the United Nations Sustainable Development Goals (UN SDGs) when organizations promote a culture of performance or business excellence.

Keywords: business excellence, corporate sustainability, performance excellence, sustainability performance

Procedia PDF Downloads 161
7048 English Grammatical Errors of Arabic Sentence Translations Done by Machine Translations

Authors: Muhammad Fathurridho

Abstract:

Grammar as a rule used by every language to be understood by everyone is always related to syntax and morphology. Arabic grammar is different with another languages’ grammars. It has more rules and difficulties. This paper aims to investigate and describe the English grammatical errors of machine translation systems in translating Arabic sentences, including declarative, exclamation, imperative, and interrogative sentences, specifically in year 2018 which can be supported with artificial intelligence’s role. The Arabic sample sentences which are divided into two; verbal and nominal sentence of several Arabic published texts will be examined as the source language samples. The translated sentences done by several popular online machine translation systems, including Google Translate, Microsoft Bing, Babylon, Facebook, Hellotalk, Worldlingo, Yandex Translate, and Tradukka Translate are the material objects of this research. Descriptive method that will be taken to finish this research will show the grammatical errors of English target language, and classify them. The conclusion of this paper has showed that the grammatical errors of machine translation results are varied and generally classified into morphological, syntactical, and semantic errors in all type of Arabic words (Noun, Verb, and Particle), and it will be one of the evaluations for machine translation’s providers to correct them in order to improve their understandable results.

Keywords: Arabic, Arabic-English translation, machine translation, grammatical errors

Procedia PDF Downloads 142
7047 Outcome-Based Water Resources Management in the Gash River Basin, Eastern Sudan

Authors: Muna Mohamed Omer Mirghani

Abstract:

This paper responds to one of the key national development strategies and a typical challenge in the Gash Basin as well as in different parts of Sudan, namely managing water scarcity in view of climate change impacts in minor water systems sustaining over 50% of the Sudan population. While now focusing on the Gash river basin, the ultimate aim is to replicate the same approach in similar water systems in central and west Sudan. The key objective of the paper is the identification of outcome-based water governance interventions in Gash Basin, guided by the global Sustainable Development Goal six (SDG 6 on water and sanitation) and the Sudan water resource policy framework. The paper concluded that improved water resources management of the Gash Basin is a prerequisite for ensuring desired policy outcomes of groundwater use and flood risk management purposes. Analysis of various water governance dimensions in the Gash indicated that the operationalization of a Basin-level institutional reform is critically focused on informed actors and adapted practices through knowledge and technologies along with the technical data and capacity needed to make that. Adapting the devolved Institutional structure at state level is recommended to strengthen the Gash basin regulatory function and improve compliance of groundwater users.

Keywords: water governance, Gash Basin, integrated groundwater management, Sudan

Procedia PDF Downloads 162
7046 Blockchain for Transport: Performance Simulations of Blockchain Network for Emission Monitoring Scenario

Authors: Dermot O'Brien, Vasileios Christaras, Georgios Fontaras, Igor Nai Fovino, Ioannis Kounelis

Abstract:

With the rise of the Internet of Things (IoT), 5G, and blockchain (BC) technologies, vehicles are becoming ever increasingly connected and are already transmitting substantial amounts of data to the original equipment manufacturers (OEMs) servers. This data could be used to help detect mileage fraud and enable more accurate vehicle emissions monitoring. This would not only help regulators but could enable applications such as permitting efficient drivers to pay less tax, geofencing for air quality improvement, as well as pollution tolling and trading platforms for transport-related businesses and EU citizens. Other applications could include traffic management and shared mobility systems. BC enables the transmission of data with additional security and removes single points of failure while maintaining data provenance, identity ownership, and the possibility to retain varying levels of privacy depending on the requirements of the applied use case. This research performs simulations of vehicles interacting with European member state authorities and European Commission BC nodes that are running hyperleger fabric and explores whether the technology is currently feasible for transport applications such as the emission monitoring use-case.

Keywords: future transportation systems, technological innovations, policy approaches for transportation future, economic and regulatory trends, blockchain

Procedia PDF Downloads 159
7045 Utilization of an Object Oriented Tool to Perform Model-Based Safety Analysis According to Extended Failure System Models

Authors: Royia Soliman, Salma ElAnsary, Akram Amin Abdellatif, Florian Holzapfel

Abstract:

Model-Based Safety Analysis (MBSA) is an approach in which the system and safety engineers share a common system model created using a model-based development process. The model can also be extended by the failure modes of the system components. There are two famous approaches for the addition of fault behaviors to system models. The first one is to enclose the failure into the system design directly. The second approach is to develop a fault model separately from the system model, thus combining both independent models for safety analysis. This paper introduces a hybrid approach of MBSA. The approach tries to use informal abstracted models to investigate failure behaviors. The approach will combine various concepts such as directed graph traversal, event lists and Constraint Satisfaction Problems (CSP). The approach is implemented using an Object Oriented programming language. The components are abstracted to its failure logic and relationships of connected components. The implemented approach is tested on various flight control systems, including electrical and multi-domain examples. The various tests are analyzed, and a comparison to different approaches is represented.

Keywords: flight control systems, model based safety analysis, safety assessment analysis, system modelling

Procedia PDF Downloads 146
7044 Artificial Intelligence and Governance in Relevance to Satellites in Space

Authors: Anwesha Pathak

Abstract:

With the increasing number of satellites and space debris, space traffic management (STM) becomes crucial. AI can aid in STM by predicting and preventing potential collisions, optimizing satellite trajectories, and managing orbital slots. Governance frameworks need to address the integration of AI algorithms in STM to ensure safe and sustainable satellite activities. AI and governance play significant roles in the context of satellite activities in space. Artificial intelligence (AI) technologies, such as machine learning and computer vision, can be utilized to process vast amounts of data received from satellites. AI algorithms can analyse satellite imagery, detect patterns, and extract valuable information for applications like weather forecasting, urban planning, agriculture, disaster management, and environmental monitoring. AI can assist in automating and optimizing satellite operations. Autonomous decision-making systems can be developed using AI to handle routine tasks like orbit control, collision avoidance, and antenna pointing. These systems can improve efficiency, reduce human error, and enable real-time responsiveness in satellite operations. AI technologies can be leveraged to enhance the security of satellite systems. AI algorithms can analyze satellite telemetry data to detect anomalies, identify potential cyber threats, and mitigate vulnerabilities. Governance frameworks should encompass regulations and standards for securing satellite systems against cyberattacks and ensuring data privacy. AI can optimize resource allocation and utilization in satellite constellations. By analyzing user demands, traffic patterns, and satellite performance data, AI algorithms can dynamically adjust the deployment and routing of satellites to maximize coverage and minimize latency. Governance frameworks need to address fair and efficient resource allocation among satellite operators to avoid monopolistic practices. Satellite activities involve multiple countries and organizations. Governance frameworks should encourage international cooperation, information sharing, and standardization to address common challenges, ensure interoperability, and prevent conflicts. AI can facilitate cross-border collaborations by providing data analytics and decision support tools for shared satellite missions and data sharing initiatives. AI and governance are critical aspects of satellite activities in space. They enable efficient and secure operations, ensure responsible and ethical use of AI technologies, and promote international cooperation for the benefit of all stakeholders involved in the satellite industry.

Keywords: satellite, space debris, traffic, threats, cyber security.

Procedia PDF Downloads 54
7043 Multi-Objective Discrete Optimization of External Thermal Insulation Composite Systems in Terms of Thermal and Embodied Energy Performance

Authors: Berfin Yildiz

Abstract:

These days, increasing global warming effects, limited amount of energy resources, etc., necessitates the awareness that must be present in every profession group. The architecture and construction sectors are responsible for both the embodied and operational energy of the materials. This responsibility has led designers to seek alternative solutions for energy-efficient material selection. The choice of energy-efficient material requires consideration of the entire life cycle, including the building's production, use, and disposal energy. The aim of this study is to investigate the method of material selection of external thermal insulation composite systems (ETICS). Embodied and in-use energy values of material alternatives were used for the evaluation in this study. The operational energy is calculated according to the u-value calculation method defined in the TS 825 (Thermal Insulation Requirements) standard for Turkey, and the embodied energy is calculated based on the manufacturer's Energy Performance Declaration (EPD). ETICS consists of a wall, adhesive, insulation, lining, mechanical, mesh, and exterior finishing materials. In this study, lining, mechanical, and mesh materials were ignored because EPD documents could not be obtained. The material selection problem is designed as a hypothetical volume area (5x5x3m) and defined as a multi-objective discrete optimization problem for external thermal insulation composite systems. Defining the problem as a discrete optimization problem is important in order to choose between materials of various thicknesses and sizes. Since production and use energy values, which are determined as optimization objectives in the study, are often conflicting values, material selection is defined as a multi-objective optimization problem, and it is aimed to obtain many solution alternatives by using Hypervolume (HypE) algorithm. The enrollment process started with 100 individuals and continued for 50 generations. According to the obtained results, it was observed that autoclaved aerated concrete and Ponce block as wall material, glass wool, as insulation material gave better results.

Keywords: embodied energy, multi-objective discrete optimization, performative design, thermal insulation

Procedia PDF Downloads 120
7042 Organ Dose Calculator for Fetus Undergoing Computed Tomography

Authors: Choonsik Lee, Les Folio

Abstract:

Pregnant patients may undergo CT in emergencies unrelated with pregnancy, and potential risk to the developing fetus is of concern. It is critical to accurately estimate fetal organ doses in CT scans. We developed a fetal organ dose calculation tool using pregnancy-specific computational phantoms combined with Monte Carlo radiation transport techniques. We adopted a series of pregnancy computational phantoms developed at the University of Florida at the gestational ages of 8, 10, 15, 20, 25, 30, 35, and 38 weeks (Maynard et al. 2011). More than 30 organs and tissues and 20 skeletal sites are defined in each fetus model. We calculated fetal organ dose-normalized by CTDIvol to derive organ dose conversion coefficients (mGy/mGy) for the eight fetuses for consequential slice locations ranging from the top to the bottom of the pregnancy phantoms with 1 cm slice thickness. Organ dose from helical scans was approximated by the summation of doses from multiple axial slices included in the given scan range of interest. We then compared dose conversion coefficients for major fetal organs in the abdominal-pelvis CT scan of pregnancy phantoms with the uterine dose of a non-pregnant adult female computational phantom. A comprehensive library of organ conversion coefficients was established for the eight developing fetuses undergoing CT. They were implemented into an in-house graphical user interface-based computer program for convenient estimation of fetal organ doses by inputting CT technical parameters as well as the age of the fetus. We found that the esophagus received the least dose, whereas the kidneys received the greatest dose in all fetuses in AP scans of the pregnancy phantoms. We also found that when the uterine dose of a non-pregnant adult female phantom is used as a surrogate for fetal organ doses, root-mean-square-error ranged from 0.08 mGy (8 weeks) to 0.38 mGy (38 weeks). The uterine dose was up to 1.7-fold greater than the esophagus dose of the 38-week fetus model. The calculation tool should be useful in cases requiring fetal organ dose in emergency CT scans as well as patient dose monitoring.

Keywords: computed tomography, fetal dose, pregnant women, radiation dose

Procedia PDF Downloads 122
7041 Environmental Impact of Autoclaved Aerated Concrete in Modern Construction: A Case Study from the New Egyptian Administrative Capital

Authors: Esraa A. Khalil, Mohamed N. AbouZeid

Abstract:

Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.

Keywords: AAC blocks, building material, environmental impact, modern construction, new Egyptian administrative capital

Procedia PDF Downloads 108
7040 Context Aware Anomaly Behavior Analysis for Smart Home Systems

Authors: Zhiwen Pan, Jesus Pacheco, Salim Hariri, Yiqiang Chen, Bozhi Liu

Abstract:

The Internet of Things (IoT) will lead to the development of advanced Smart Home services that are pervasive, cost-effective, and can be accessed by home occupants from anywhere and at any time. However, advanced smart home applications will introduce grand security challenges due to the increase in the attack surface. Current approaches do not handle cybersecurity from a holistic point of view; hence, a systematic cybersecurity mechanism needs to be adopted when designing smart home applications. In this paper, we present a generic intrusion detection methodology to detect and mitigate the anomaly behaviors happened in Smart Home Systems (SHS). By utilizing our Smart Home Context Data Structure, the heterogeneous information and services acquired from SHS are mapped in context attributes which can describe the context of smart home operation precisely and accurately. Runtime models for describing usage patterns of home assets are developed based on characterization functions. A threat-aware action management methodology, used to efficiently mitigate anomaly behaviors, is proposed at the end. Our preliminary experimental results show that our methodology can be used to detect and mitigate known and unknown threats, as well as to protect SHS premises and services.

Keywords: Internet of Things, network security, context awareness, intrusion detection

Procedia PDF Downloads 171
7039 Connecting Critical Macro-Finance to Theories of Capitalism

Authors: Vithul Kalki

Abstract:

The mainstream political economy failed to explain the nature and causes of systemic failures and thus to compare and comprehend how contemporary capitalist systems work. An alternative research framework of Critical Macro-Finance (CMF) is an attempt to collaborate political theory with post-Keynesian economics with an objective to find answers to unresolved questions that emerged since the international financial crisis and repeated failures of capital systems. This unorthodox approach brings out four main propositions, namely : (a) that the adoption of American financial practices has anchored financial globalization in market-based finance; (b) that global finance is a set of interconnected, hierarchical balance sheets, increasingly subject to time-critical liquidity; (c) that credit creation in market-based finance involves new forms of money; and (d) that market-based finance structurally requires a de-risking state capable both of protecting systemic liabilities and creating new investment opportunities. The ongoing discussion of CMF literature is yet to be tested or even fully framed. This qualitative paper will critically examine the CMF framework and will engage in discussions aiming to connect the CMF with theories of capitalism in a wider context to bring a holistic approach for analyzing contemporary financial capitalism.

Keywords: critical macro-finance, capitalism, financial system, comparative political economy

Procedia PDF Downloads 166
7038 Application of Biomimetic Approach in Optimizing Buildings Heat Regulating System Using Parametric Design Tools to Achieve Thermal Comfort in Indoor Spaces in Hot Arid Regions

Authors: Aya M. H. Eissa, Ayman H. A. Mahmoud

Abstract:

When it comes to energy efficient thermal regulation system, natural systems do not only offer an inspirational source of innovative strategies but also sustainable and even regenerative ones. Using biomimetic design an energy efficient thermal regulation system can be developed. Although, conventional design process methods achieved fairly efficient systems, they still had limitations which can be overcome by using parametric design software. Accordingly, the main objective of this study is to apply and assess the efficiency of heat regulation strategies inspired from termite mounds in residential buildings’ thermal regulation system. Parametric design software is used to pave the way for further and more complex biomimetic design studies and implementations. A hot arid region is selected due to the deficiency of research in this climatic region. First, the analysis phase in which the stimuli, affecting, and the parameters, to be optimized, are set mimicking the natural system. Then, based on climatic data and using parametric design software Grasshopper, building form and openings height and areas are altered till settling on an optimized solution. Finally, an assessment of the efficiency of the optimized system, in comparison with a conventional system, is determined by firstly, indoors airflow and indoors temperature, by Ansys Fluent (CFD) simulation. Secondly by and total solar radiation falling on the building envelope, which was calculated using Ladybug, Grasshopper plugin. The results show an increase in the average indoor airflow speed from 0.5m/s to 1.5 m/s. Also, a slight decrease in temperature was noticed. And finally, the total radiation was decreased by 4%. In conclusion, despite the fact that applying a single bio-inspired heat regulation strategy might not be enough to achieve an optimum system, the concluded system is more energy efficient than the conventional ones as it aids achieving indoors comfort through passive techniques. Thus demonstrating the potential of parametric design software in biomimetic design.

Keywords: biomimicry, heat regulation systems, hot arid regions, parametric design, thermal comfort

Procedia PDF Downloads 281
7037 Railway Composite Flooring Design: Numerical Simulation and Experimental Studies

Authors: O. Lopez, F. Pedro, A. Tadeu, J. Antonio, A. Coelho

Abstract:

The future of the railway industry lies in the innovation of lighter, more efficient and more sustainable trains. Weight optimizations in railway vehicles allow reducing power consumption and CO₂ emissions, increasing the efficiency of the engines and the maximum speed reached. Additionally, they reduce wear of wheels and rails, increase the space available for passengers, etc. Among the various systems that integrate railway interiors, the flooring system is one which has greater impact both on passenger safety and comfort, as well as on the weight of the interior systems. Due to the high weight saving potential, relative high mechanical resistance, good acoustic and thermal performance, ease of modular design, cost-effectiveness and long life, the use of new sustainable composite materials and panels provide the latest innovations for competitive solutions in the development of flooring systems. However, one of the main drawbacks of the flooring systems is their relatively poor resistance to point loads. Point loads in railway interiors can be caused by passengers or by components fixed to the flooring system, such as seats and restraint systems, handrails, etc. In this way, they can originate higher fatigue solicitations under service loads or zones with high stress concentrations under exceptional loads (higher longitudinal, transverse and vertical accelerations), thus reducing its useful life. Therefore, to verify all the mechanical and functional requirements of the flooring systems, many physical prototypes would be created during the design phase, with all of the high costs associated with it. Nowadays, the use of virtual prototyping methods by computer-aided design (CAD) and computer-aided engineering (CAE) softwares allow validating a product before committing to making physical test prototypes. The scope of this work was to current computer tools and integrate the processes of innovation, development, and manufacturing to reduce the time from design to finished product and optimise the development of the product for higher levels of performance and reliability. In this case, the mechanical response of several sandwich panels with different cores, polystyrene foams, and composite corks, were assessed, to optimise the weight and the mechanical performance of a flooring solution for railways. Sandwich panels with aluminum face sheets were tested to characterise its mechanical performance and determine the polystyrene foam and cork properties when used as inner cores. Then, a railway flooring solution was fully modelled (including the elastomer pads to provide the required vibration isolation from the car body) and perform structural simulations using FEM analysis to comply all the technical product specifications for the supply of a flooring system. Zones with high stress concentrations are studied and tested. The influence of vibration modes on the comfort level and stability is discussed. The information obtained with the computer tools was then completed with several mechanical tests performed on some solutions, and on specific components. The results of the numerical simulations and experimental campaign carried out are presented in this paper. This research work was performed as part of the POCI-01-0247-FEDER-003474 (coMMUTe) Project funded by Portugal 2020 through COMPETE 2020.

Keywords: cork agglomerate core, mechanical performance, numerical simulation, railway flooring system

Procedia PDF Downloads 164
7036 A Hybrid Combustion Chamber Design for Diesel Engines

Authors: R. Gopakumar, G. Nagarajan

Abstract:

Both DI and IDI systems possess inherent advantages as well as disadvantages. The objective of the present work is to obtain maximum advantages of both systems by implementing a hybrid design. A hybrid combustion chamber design consists of two combustion chambers viz., the main combustion chamber and an auxiliary combustion chamber. A fuel injector supplies major quantity of fuel to the auxiliary chamber. Due to the increased swirl motion in auxiliary chamber, mixing becomes more efficient which contributes to reduction in soot/particulate emissions. Also, by increasing the fuel injection pressure, NOx emissions can be reduced. The main objective of the hybrid combustion chamber design is to merge the positive features of both DI and IDI combustion chamber designs, which provides increased swirl motion and improved thermal efficiency. Due to the efficient utilization of fuel, low specific fuel consumption can be ensured. This system also aids in increasing the power output for same compression ratio and injection timing as compared with the conventional combustion chamber designs. The present system also reduces heat transfer and fluid dynamic losses which are encountered in IDI diesel engines. Since the losses are reduced, overall efficiency of the engine increases. It also minimizes the combustion noise and NOx emissions in conventional DI diesel engines.

Keywords: DI, IDI, hybrid combustion, diesel engines

Procedia PDF Downloads 506
7035 An Experiential Learning of Ontology-Based Multi-document Summarization by Removal Summarization Techniques

Authors: Pranjali Avinash Yadav-Deshmukh

Abstract:

Remarkable development of the Internet along with the new technological innovation, such as high-speed systems and affordable large storage space have led to a tremendous increase in the amount and accessibility to digital records. For any person, studying of all these data is tremendously time intensive, so there is a great need to access effective multi-document summarization (MDS) systems, which can successfully reduce details found in several records into a short, understandable summary or conclusion. For semantic representation of textual details in ontology area, as a theoretical design, our system provides a significant structure. The stability of using the ontology in fixing multi-document summarization problems in the sector of catastrophe control is finding its recommended design. Saliency ranking is usually allocated to each phrase and phrases are rated according to the ranking, then the top rated phrases are chosen as the conclusion. With regards to the conclusion quality, wide tests on a selection of media announcements are appropriate for “Jammu Kashmir Overflow in 2014” records. Ontology centered multi-document summarization methods using “NLP centered extraction” outshine other baselines. Our participation in recommended component is to implement the details removal methods (NLP) to enhance the results.

Keywords: disaster management, extraction technique, k-means, multi-document summarization, NLP, ontology, sentence extraction

Procedia PDF Downloads 367
7034 Simulations to Predict Solar Energy Potential by ERA5 Application at North Africa

Authors: U. Ali Rahoma, Nabil Esawy, Fawzia Ibrahim Moursy, A. H. Hassan, Samy A. Khalil, Ashraf S. Khamees

Abstract:

The design of any solar energy conversion system requires the knowledge of solar radiation data obtained over a long period. Satellite data has been widely used to estimate solar energy where no ground observation of solar radiation is available, yet there are limitations on the temporal coverage of satellite data. Reanalysis is a “retrospective analysis” of the atmosphere parameters generated by assimilating observation data from various sources, including ground observation, satellites, ships, and aircraft observation with the output of NWP (Numerical Weather Prediction) models, to develop an exhaustive record of weather and climate parameters. The evaluation of the performance of reanalysis datasets (ERA-5) for North Africa against high-quality surface measured data was performed using statistical analysis. The estimation of global solar radiation (GSR) distribution over six different selected locations in North Africa during ten years from the period time 2011 to 2020. The root means square error (RMSE), mean bias error (MBE) and mean absolute error (MAE) of reanalysis data of solar radiation range from 0.079 to 0.222, 0.0145 to 0.198, and 0.055 to 0.178, respectively. The seasonal statistical analysis was performed to study seasonal variation of performance of datasets, which reveals the significant variation of errors in different seasons—the performance of the dataset changes by changing the temporal resolution of the data used for comparison. The monthly mean values of data show better performance, but the accuracy of data is compromised. The solar radiation data of ERA-5 is used for preliminary solar resource assessment and power estimation. The correlation coefficient (R2) varies from 0.93 to 99% for the different selected sites in North Africa in the present research. The goal of this research is to give a good representation for global solar radiation to help in solar energy application in all fields, and this can be done by using gridded data from European Centre for Medium-Range Weather Forecasts ECMWF and producing a new model to give a good result.

Keywords: solar energy, solar radiation, ERA-5, potential energy

Procedia PDF Downloads 195
7033 Applied Methods for Lightweighting Structural Systems

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

With gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing.

Keywords: gravity load, lightweighting structural system, load bearing geometry, seismic behavior

Procedia PDF Downloads 499
7032 Spontaneous Eruption of Impacted Teeth While Awaiting Surgical Intervention

Authors: Alison Ryan, Himani Chhabra, Mohammed Dungarwalla, Judith Jones

Abstract:

Background: Impacted and ectopic teeth present in 1-2% of orthodontic patients and often require joint surgical and orthodontic management. The authors present two patients undergoing orthodontic treatment, where the impacted teeth, in a hopeless position, spontaneously erupted during the period of cessation of general anaesthetic lists during the COVID-19 pandemic. Patient information: A healthy 11-year-old boy was referred to the Department of Oral and Maxillofacial Surgery for the management of a mesioangular impacted LR7. The patient was seen by the joint oral surgery/orthodontic team, who planned for the removal of the LR7 under general anaesthetic. A healthy 13-year-old boy was referred to the same Department and team for surgical extraction of unerupted and buccally impacted UL3 and UR3 under general anaesthetic. Management and outcome: The majority of elective dental-alveolar work ceased as a result of the global pandemic. On resumption of activity, the first patient was reviewed in July 2021. The LR7 had spontaneously erupted in a favourable position, and following MDT review, a decision was made to forgo any further surgical intervention. The second patient was reviewed in July 2021. The UL3 had clinically erupted, and there was radiographic evidence of favourable movement of UR3. Due to the nature of the patient’s malocclusion, the decision was made to proceed with the extractions as previously planned. Key Learning Points: Severely impacted teeth do have a prospect of spontaneous eruption or alignment without clinical intervention, and current literature states the initial location, axial inclination, degree of root formation, and relation of the impacted tooth to adjacent teeth roots may influence spontaneous eruption. There is potential to introduce a period of observation to account for this possibility in the developing dentition, with the aim of reducing the unnecessary need for surgical intervention. This could help prevent episodes of general anaesthetic and allocate theatre space more appropriately.

Keywords: spontaneous eruption, impaction, observation, hopeless position, surgical, orthodontic, change in treatment plan

Procedia PDF Downloads 67
7031 Thickness-Tunable Optical, Magnetic, and Dielectric Response of Lithium Ferrite Thin Film Synthesized by Pulsed Laser Deposition

Authors: Prajna Paramita Mohapatra, Pamu Dobbidi

Abstract:

Lithium ferrite (LiFe5O8) has potential applications as a component of microwave magnetic devices such as circulators and monolithic integrated circuits. For efficient device applications, spinel ferrites in the form of thin films are highly required. It is necessary to improve their magnetic and dielectric behavior by optimizing the processing parameters during deposition. The lithium ferrite thin films are deposited on Pt/Si substrate using the pulsed laser deposition technique (PLD). As controlling the film thickness is the easiest parameter to tailor the strain, we deposited the thin films having different film thicknesses (160 nm, 200 nm, 240 nm) at oxygen partial pressure of 0.001 mbar. The formation of single phase with spinel structure (space group - P4132) is confirmed by the XRD pattern and the Rietveld analysis. The optical bandgap is decreased with the increase in thickness. FESEM confirmed the formation of uniform grains having well separated grain boundaries. Further, the film growth and the roughness are analyzed by AFM. The root-mean-square (RMS) surface roughness is decreased from 13.52 nm (160 nm) to 9.34 nm (240 nm). The room temperature magnetization is measured with a maximum field of 10 kOe. The saturation magnetization is enhanced monotonically with an increase in thickness. The magnetic resonance linewidth is obtained in the range of 450 – 780 Oe. The dielectric response is measured in the frequency range of 104 – 106 Hz and in the temperature range of 303 – 473 K. With an increase in frequency, the dielectric constant and the loss tangent of all the samples decreased continuously, which is a typical behavior of conventional dielectric material. The real part of the dielectric constant and the dielectric loss is increased with an increase in thickness. The contribution of grain and grain boundaries is also analyzed by employing the equivalent circuit model. The highest dielectric constant is obtained for the film having a thickness of 240 nm at 104 Hz. The obtained results demonstrate that desired response can be obtained by tailoring the film thickness for the microwave magnetic devices.

Keywords: PLD, optical response, thin films, magnetic response, dielectric response

Procedia PDF Downloads 85