Search results for: fish waste
413 Engineering Study on the Handling of Date Palm Fronds to Reduce Waste and Used as Energy Environmentally Friendly Fuel
Authors: Ayman H. Amer Eissa, Abdul Rahman O. Alghannam
Abstract:
The agricultural crop residuals are considered one of the most important problems faced by the environmental life and farmers in the world. A study was carried out to evaluate the physical characteristics of chopped date palm stalks (fronds and leaflets). These properties are necessary to apply normal design procedures such as pneumatic conveying, fluidization, drying, and combustion. The mechanical treatment by cutting, crushing or chopping and briquetting processes are the primary step and the suitable solution for solving this problem and recycling these residuals to be transformed into useful products. So the aim of the present work to get a high quality for agriculture residues such as date palm stalks (fronds), date palm leaflets briquettes. The results obtained from measuring the mechanical properties (average shear and compressive strength) for date palm stalks at different moisture content (12.63, 33.21 and 60.54%) was (6.4, 4.7 and 3.21MPa) and (3.8, 3.18 and 2.86MPa) respectively. The modulus of elasticity and toughness were evaluated as a function of moisture content. As the moisture content of the stalk regions increased the modulus of elasticity and toughness decreased indicating a reduction in the brittleness of the stalk regions. Chopped date palm stalks (palm fronds), date palm leaflets having moisture content of 8, 10 and 12% and 8, 10 and 12.8% w.b. were dandified into briquettes without binder and with binder (urea-formaldehyde) using a screw press machine. Quality properties for briquettes were durability, compression ratio hardness, bulk density, compression ratio, resiliency, water resistance and gases emission. The optimum quality properties found for briquettes at 8 % moisture content and without binder. Where the highest compression stress and durability were 8.95, 10.39 MPa and 97.06 %, 93.64 % for date palm stalks (palm fronds), date palm leaflets briquettes, respectively. The CO and CO2 emissions for date palm stalks (fronds), date palm leaflets briquettes were less than these for loose residuals.Keywords: residues, date palm stalks, chopper, briquetting, quality properties
Procedia PDF Downloads 545412 Accumulation of Pollutants, Self-Purification and Impact on Peripheral Urban Areas: A Case Study in Shantytowns in Argentina
Authors: N. Porzionato, M. Mantiñan, E. Bussi, S. Grinberg, R. Gutierrez, G. Curutchet
Abstract:
This work sets out to debate the tensions involved in the processes of contamination and self-purification in the urban space, particularly in the streams that run through the Buenos Aires metropolitan area. For much of their course, those streams are piped; their waters do not come into contact with the outdoors until they have reached deeply impoverished urban areas with high levels of environmental contamination. These are peripheral zones that, until thirty years ago, were marshlands and fields. They are now densely populated areas largely lacking in urban infrastructure. The Cárcova neighborhood, where this project is underway, is in the José León Suárez section of General San Martín country, Buenos Aires province. A stretch of José León Suarez canal crosses the neighborhood. Starting upstream, this canal carries pollutants due to the sewage and industrial waste released into it. Further downstream, in the neighborhood, domestic drainage is poured into the stream. In this paper, we formulate a hypothesis diametrical to the one that holds that these neighborhoods are the primary source of contamination, suggesting instead that in the stretch of the canal that runs through the neighborhood the stream’s waters are actually cleaned and the sediments accumulate pollutants. Indeed, the stretches of water that runs through these neighborhoods act as water processing plants for the metropolis. This project has studied the different organic-load polluting contributions to the water in a certain stretch of the canal, the reduction of that load over the course of the canal, and the incorporation of pollutants into the sediments. We have found that the surface water has considerable ability to self-purify, mostly due to processes of sedimentation and adsorption. The polluting load is accumulated in the sediments where that load stabilizes slowly by means of anaerobic processes. In this study, we also investigated the risks of sediment management and the use of the processes studied here in controlled conditions as tools of environmental restoration.Keywords: bioremediation, pollutants, sediments, urban streams
Procedia PDF Downloads 439411 Dynamic Modeling of Advanced Wastewater Treatment Plants Using BioWin
Authors: Komal Rathore, Aydin Sunol, Gita Iranipour, Luke Mulford
Abstract:
Advanced wastewater treatment plants have complex biological kinetics, time variant influent flow rates and long processing times. Due to these factors, the modeling and operational control of advanced wastewater treatment plants become complicated. However, development of a robust model for advanced wastewater treatment plants has become necessary in order to increase the efficiency of the plants, reduce energy costs and meet the discharge limits set by the government. A dynamic model was designed using the Envirosim (Canada) platform software called BioWin for several wastewater treatment plants in Hillsborough County, Florida. Proper control strategies for various parameters such as mixed liquor suspended solids, recycle activated sludge and waste activated sludge were developed for models to match the plant performance. The models were tuned using both the influent and effluent data from the plant and their laboratories. The plant SCADA was used to predict the influent wastewater rates and concentration profiles as a function of time. The kinetic parameters were tuned based on sensitivity analysis and trial and error methods. The dynamic models were validated by using experimental data for influent and effluent parameters. The dissolved oxygen measurements were taken to validate the model by coupling them with Computational Fluid Dynamics (CFD) models. The Biowin models were able to exactly mimic the plant performance and predict effluent behavior for extended periods. The models are useful for plant engineers and operators as they can take decisions beforehand by predicting the plant performance with the use of BioWin models. One of the important findings from the model was the effects of recycle and wastage ratios on the mixed liquor suspended solids. The model was also useful in determining the significant kinetic parameters for biological wastewater treatment systems.Keywords: BioWin, kinetic modeling, flowsheet simulation, dynamic modeling
Procedia PDF Downloads 153410 Assessment of Environmental Implications of Rapid Population Growth on Land Use Dynamics: A Case Study of Eleme Local Government Area, Rivers State, Nigeria
Authors: Moses Obenade, Henry U. Okeke, Francis I. Okpiliya, Eugene J. Aniah
Abstract:
Population growth in Eleme has been rapid over the past 75 years with its attendant pressure on the natural resources of the area. Between 1937 and 2006 the population of Eleme grew from 2,528 to 190,194 and is projected to be above 265,707 in 2016 based on an annual growth rate of 3.4%. Using the combined technologies of Geographic Information Systems (GIS), remote sensing (RS) and Demography techniques as its methodology, this paper examines the environmental implications of rapid population growth on land use dynamics in Eleme between 1986 and 2015. The study reveals that between 1986 and 2006, Built-up area and Farmland increased by 72.67 and 12.77% respectively, while light and thick vegetation recorded a decrease of -6.92 and -61.64% respectively. Water body remains fairly constant with minimal changes. Also, between 2006 and 2015 covering a period of 9 years, Built-up area further increased by 53% with an annual growth rate of 2.32 km2 gaining more land area on the detriment of other land uses. Built-up area has an annual growth rate of 2.32km2 and is expected to increase from 18.67km2 in 2006 to 41.87km2 in 2016.The observed Land used/Land cover dynamics is derived by the demographic characteristics of the Study area. Eleme has a total area of 138km2 out of which the Federal Government of Nigeria compulsorily acquired an estimated area of 59.34km2 for industrial purposes excluding acquisitions by the Rivers State Government. It is evident from the findings of this study that the carrying capacity of Eleme ecosystem is under threat due to the current population growth and land consumption rates. Therefore, measures such as use of appropriate technologies in farming techniques, waste management; investment in family planning and female empowerment, maternal health and education, afforestation programs; and amendment of Land Use Act of 1978 are recommended.Keywords: population growth, Eleme, land use, GIS and remote sensing
Procedia PDF Downloads 377409 The Effect of Electromagnetic Stirring during Solidification of Nickel Based Alloys
Authors: Ricardo Paiva, Rui Soares, Felix Harnau, Bruno Fragoso
Abstract:
Nickel-based alloys are materials well suited for service in extreme environments subjected to pressure and heat. Some industrial applications for Nickel-based alloys are aerospace and jet engines, oil and gas extraction, pollution control and waste processing, automotive and marine industry. It is generally recognized that grain refinement is an effective methodology to improve the quality of casted parts. Conventional grain refinement techniques involve the addition of inoculation substances, the control of solidification conditions, or thermomechanical treatment with recrystallization. However, such methods often lead to non-uniform grain size distribution and the formation of hard phases, which are detrimental to both wear performance and biocompatibility. Stirring of the melt by electromagnetic fields has been widely used in continuous castings with success for grain refinement, solute redistribution, and surface quality improvement. Despite the advantages, much attention has not been paid yet to the use of this approach on functional castings such as investment casting. Furthermore, the effect of electromagnetic stirring (EMS) fields on Nickel-based alloys is not known. In line with the gaps/needs of the state-of-art, the present research work targets to promote new advances in controlling grain size and morphology of investment cast Nickel based alloys. For such a purpose, a set of experimental tests was conducted. A high-frequency induction furnace with vacuum and controlled atmosphere was used to cast the Inconel 718 alloy in ceramic shells. A coil surrounded the casting chamber in order to induce electromagnetic stirring during solidification. Aiming to assess the effect of the electromagnetic stirring on Ni alloys, the samples were subjected to microstructural analysis and mechanical tests. The results show that electromagnetic stirring can be an effective methodology to modify the grain size and mechanical properties of investment-cast parts.Keywords: investment casting, grain refinement, electromagnetic stirring, nickel alloys
Procedia PDF Downloads 131408 Capacity Oversizing for Infrastructure Sharing Synergies: A Game Theoretic Analysis
Authors: Robin Molinier
Abstract:
Industrial symbiosis (I.S) rely on two basic modes of cooperation between organizations that are infrastructure/service sharing and resource substitution (the use of waste materials, fatal energy and recirculated utilities for production). The former consists in the intensification of use of an asset and thus requires to compare the incremental investment cost to be incurred and the stand-alone cost faced by each potential participant to satisfy its own requirements. In order to investigate the way such a cooperation mode can be implemented we formulate a game theoretic model integrating the grassroot investment decision and the ex-post access pricing problem. In the first period two actors set cooperatively (resp. non-cooperatively) a level of common (resp. individual) infrastructure capacity oversizing to attract ex-post a potential entrant with a plug-and-play offer (available capacity, tariff). The entrant’s requirement is randomly distributed and known only after investments took place. Capacity cost exhibits sub-additive property so that there is room for profitable overcapacity setting in the first period under some conditions that we derive. The entrant willingness-to-pay for the access to the infrastructure is driven by both her standalone cost and the complement cost to be incurred in case she chooses to access an infrastructure whose the available capacity is lower than her requirement level. The expected complement cost function is thus derived, and we show that it is decreasing, convex and shaped by the entrant’s requirements distribution function. For both uniform and triangular distributions optimal capacity level is obtained in the cooperative setting and equilibrium levels are determined in the non-cooperative case. Regarding the latter, we show that competition is deterred by the first period investor with the highest requirement level. Using the non-cooperative game outcomes which gives lower bounds for the profit sharing problem in the cooperative one we solve the whole game and describe situations supporting sharing agreements.Keywords: capacity, cooperation, industrial symbiosis, pricing
Procedia PDF Downloads 439407 The Effects of Some Organic Amendments on Sediment Yield, Splash Loss, and Runoff of Soils of Selected Parent Materials in Southeastern Nigeria
Authors: Leonard Chimaobi Agim, Charles Arinzechukwu Igwe, Emmanuel Uzoma Onweremadu, Gabreil Osuji
Abstract:
Soil erosion has been linked to stream sedimentation, ecosystem degradation, and loss of soil nutrients. A study was conducted to evaluate the effect of some organic amendment on sediment yield, splash loss, and runoff of soils of selected parent materials in southeastern Nigeria. A total of 20 locations, five from each of four parent materials namely: Asu River Group (ARG), Bende Ameki Group (BAG), Coastal Plain Sand (CPS) and Falsebedded Sandstone (FBS) were used for the study. Collected soil samples were analyzed with standard methods for the initial soil properties. Rainfall simulation at an intensity of 190 mm hr-1was conducted for 30 minutes on the soil samples at both the initial stage and after amendment to obtain erosion parameters. The influence of parent material on sediment yield, splash loss and runoff based on rainfall simulation was tested for using one way analyses of variance, while the influence of organic material and their combinations were a factorially fitted in a randomized complete block design. The organic amendments include; goat dropping (GD), poultry dropping (PD), municipal solid waste (MSW) and their combinations (COA) applied at four rates of 0, 10, 20 and 30 t ha-1 respectively. Data were analyzed using analyses of variance suitable for a factorial experiment. Significant means were separated using LSD at 5 % probability levels. Result showed significant (p ≤ 0.05) lower values of sediment yield, splash loss and runoff following amendment. For instance, organic amendment reduced sediment yield under wet and dry runs by 12.91 % and 26.16% in Ishiagu, 40.76% and 45.67%, in Bende, 16.17% and 50% in Obinze and 22.80% and 42.35% in Umulolo respectively. Goat dropping and combination of amendment gave the best results in reducing sediment yield.Keywords: organic amendment, parent material, rainfall simulation, soil erosion
Procedia PDF Downloads 342406 A Comparative Analysis of the Performances of Four Different In-Ground Lagoons Anaerobic Digesters in the Treatment of Palm Oil Mill Effluent (POME)
Authors: Mohd Amran, Chan Yi Jing, Chong Chien Hwa
Abstract:
Production of biogas from POME requires anaerobic digestion (AD), thus, anaerobic digester performance in biogas plants is crucial. As POME from different sources have varying characteristics due to different process flows in mills, there is no ideal treatment parameters for POME. Hence, different treatment plants alter different parameters in anaerobic digestion to achieve desired biogas production levels and to meet POME waste discharge limits. The objective of this study is to evaluate the performance of mesophilic anaerobic digestion in four different biogas plants in Malaysia. Aspects of POME pre-treatment efficiency, analysis of treated POME and AD’s bottom sludge characteristics, including several parameters like chemical oxygen demand (COD), biological oxygen demand (BOD), total solid (TS) removal in the effluent, pH and temperature changes, total biogas produced, the composition of biogas including methane (CH₄), carbon dioxide (CO₂), hydrogen sulfide (H₂S) and oxygen (O₂) were investigated. The effect of organic loading rate (OLR) and hydraulic retention time (HRT) on anaerobic digester performance is also evaluated. In pre-treatment, it is observed that BGP B has the lowest average outlet temperature of 40.41°C. All BGP shows a high-temperature fluctuation (36 to 49 0C) and good pH readings (minimum 6.7), leaving the pre-treatment facility before entering the AD.COD removal of POME is considered good, with an average of 78% and maximum removal of 85%. BGP C has the lowest average COD and TS content in treated POME, 13,313 mg/L, and 12,048 mg/L, respectively. However, it is observed that the treated POME leaving all ADs, still contains high-quality organic substances (COD between 12,000 to 19,000 mg/L) that might be able to digest further to produce more biogas. The biogas produced in all four BGPs varies due to different COD loads. BGP B has the highest amount of biogas produced, 378,874.7 Nm³/month, while BGP D has the lowest biogas production of 272,378.5 Nm³/month. Furthermore, the composition of biogas produced in all plants is well within literature values (CH4 between 55 to 65% and CO₂ between 32 to 36%).Keywords: palm oil mill effluent, in-ground lagoon anaerobic digester, anaerobic digestion, biogas
Procedia PDF Downloads 99405 HCl-Based Hydrometallurgical Recycling Route for Metal Recovery from Li-Ion Battery Wastes
Authors: Claudia Schier, Arvid Biallas, Bernd Friedrich
Abstract:
The demand for Li-ion-batteries owing to their benefits, such as; fast charging time, high energy density, low weight, large temperature range, and a long service life performance is increasing compared to other battery systems. These characteristics are substantial not only for battery-operated portable devices but also in the growing field of electromobility where high-performance energy storage systems in the form of batteries are highly requested. Due to the sharp rising production, there is a tremendous interest to recycle spent Li-Ion batteries in a closed-loop manner owed to the high content of valuable metals such as cobalt, manganese, and lithium as well as regarding the increasing demand for those scarce applied metals. Currently, there are just a few industrial processes using hydrometallurgical methods to recover valuable metals from Li-ion-battery waste. In this study, the extraction of valuable metals from spent Li-ion-batteries is investigated by pretreated and subsequently leached battery wastes using different precipitation methods in a comparative manner. For the extraction of lithium, cobalt, and other valuable metals, pelletized battery wastes with an initial Li content of 2.24 wt. % and cobalt of 22 wt. % is used. Hydrochloric acid with 4 mol/L is applied with 1:50 solid to liquid (s/l) ratio to generate pregnant leach solution for subsequent precipitation steps. In order to obtain pure precipitates, two different pathways (pathway 1 and pathway 2) are investigated, which differ from each other with regard to the precipitation steps carried out. While lithium carbonate recovery is the final process step in pathway 1, pathway 2 requires a preliminary removal of lithium from the process. The aim is to evaluate both processes in terms of purity and yield of the products obtained. ICP-OES is used to determine the chemical content of leach liquor as well as of the solid residue.Keywords: hydrochloric acid, hydrometallurgy, Li-ion-batteries, metal recovery
Procedia PDF Downloads 170404 Surprising Behaviour of Kaolinitic Soils under Alkaline Environment
Authors: P. Hari Prasad Reddy, Shimna Paulose, V. Sai Kumar, C. H. Rama Vara Prasad
Abstract:
Soil environment gets contaminated due to rapid industrialisation, agricultural-chemical application and improper disposal of waste generated by the society. Unexpected volume changes can occur in soil in the presence of certain contaminants usually after the long duration of interaction. Alkali is one of the major soil contaminant that has a considerable effect on behaviour of soils and capable of inducing swelling potential in soil. Chemical heaving of clayey soils occurs when they are wetted by aqueous solutions of alkalis. Mineralogical composition of the soil is one of the main factors influencing soil- alkali interaction. In the present work, studies are carried out to understand the swell potential of soils due to soil-alkali interaction with different concentrations of NaOH solution. Locally available soil, namely, red earth containing kaolinite which is of non-swelling nature is selected for the study. In addition to this, two commercially available clayey soils, namely ball clay and china clay containing mainly of kaolinite are selected to understand the effect of alkali interaction in various kaolinitic soils. Non-swelling red earth shows maximum swell at lower concentrations of alkali solution (0.1N) and a slightly decreasing trend of swelling with further increase in concentration (1N, 4N, and 8N). Marginal decrease in swell potential with increase in concentration indicates that the increased concentration of alkali solution exists as free solution in case of red earth. China clay and ball clay both falling under kaolinite group of clay minerals, show swelling with alkaline solution. At lower concentrations of alkali solution both the soils shows similar swell behaviour, but at higher concentration of alkali solution ball clay shows high swell potential compared to china clay which may be due to lack of well ordered crystallinity in ball clay compared to china clay. The variations in the results obtained were corroborated by carrying XRD and SEM studies.Keywords: alkali, kaolinite, swell potential, XRD, SEM
Procedia PDF Downloads 499403 Assessment of Barriers Influencing the Adoption of Building Information Modelling in the Construction Industry, Lagos State, Nigeria
Authors: Tosin Deborah Akanbi, Adeyemi Oluwaseun Adepoju, Hameed Olusegun Adebambo, Akinloye Fatai Lawal
Abstract:
Building information modelling (BIM) is a process that starts with the development of a sequential 3D design and encourages data administration, organization, and visualization throughout the life span of a facility (drawings, construction, and supervision). The implementation of building information modelling has been slow in recent years, and this is due to some prominent barriers that hinder its adoption. In this regard, the study aims to examine the significant barriers that influence the adoption of building information modelling in the Lagos state construction industry. Data were gathered through a questionnaire survey with 332 construction professionals in the study area. Three online structured interviews were conducted to support and validate the findings of the quantitative analysis. The results revealed that interest (lack of awareness and understanding of BIM, absence of in-house BIM competent professionals, and unavailability of BIM competent professionals in the labour market), legal (lack of policies and regulations on copyright ownership and lack of enforcement from government agencies and industry leaderships) and professional (people’s inability or refusal to learn new technologies and processes, waste in time and human resource and lack of clarity of professional roles in BIM) barriers are the major barriers influencing the adoption of BIM. The results also revealed that six final themes were generated, namely: finance barriers, industry barriers, interest barriers, leadership barriers, legal barriers, and professional barriers. Thus, there is a need for policymakers to design and implement policies (regulatory, economic, and information) to promote financial schemes to support construction firms and professionals and to reduce financial barriers. It is also important for the government to lay down rules and regulations that must be enforced among the construction professionals and firms in the Lagos state construction industry.Keywords: BIM barriers, BIM adoption characteristics, construction industry, Lagos State Nigeria
Procedia PDF Downloads 49402 Cost-Effective Materials for Hydrocarbons Recovery from Produced Water
Authors: Fahd I. Alghunaimi, Hind S. Dossary, Norah W. Aljuryyed, Tawfik A. Saleh
Abstract:
Produced water (PW) is one of the largest by-volume waste streams and one of the most challenging effluents in the oil and gas industry. This is due to the variation of contaminants that make up PW. Severalmaterialshavebeen developed, studied, and implemented to remove hydrocarbonsfrom PW. Adsorption is one of the most effective ways ofremoving oil fromPW. In this work, three new and cost-effective hydrophobic adsorbentmaterials based on 9-octadecenoic acid grafted graphene (POG) were synthesized for oil/water separation. Graphene derived from graphite was modified with 9-octadecenoic acid to yield 9-octadecenoic acid grafted graphene (OG). The newsynthesized materials which called POG25, POG50, and POG75 were characterized by using N₂-physisorption (BET) and Fourier transform infrared (FTIR). The BET surface area of POG75 was the highest with 288 m²/g, whereas POG50 was 225 m²/g and POG25 was lowest 79 m²/g. These three materials were also evaluated for their oil-water separation efficiency using a model mixture, whichdemonstrated that POG-75 has the highest oil removal efficiency and the faster rate of the adsorption (Figure-1). POG75 was regenerated, and its performance was verified again with a little reduced adsorption rate compared to the fresh material. The mixtures that used in the performance test were prepared by mixing nonpolar organic liquids such as heptane, dodecane, or hexadecane into the colored water. In general, the new materials showed fast uptake of the certain quantity of the oildue to the high hydrophobicity nature of the materials, which repel water as confirmed by the contact angle of approximately 150˚. Besides that, novel superhydrophobic material was also synthesized by introducing hydrophobic branches of laurate on the surface of the stainless steel mesh (SSM). This novel mesh could help to hold the novel adsorbent materials in a column to remove oil from PW. Both BOG-75 and the novel mesh have the potential to remove oil contaminants from produced water, which will help to provide an opportunity to recover useful components, in addition, to reduce the environmental impact and reuse produced water in several applications such as fracturing.Keywords: graphite to graphene, oleophilic, produced water, separation
Procedia PDF Downloads 121401 Performance Study of Geopolymer Concrete by Partial Replacement of Fly Ash with Cement and Full Replacement of River Sand by Crushed Sand
Authors: Asis Kumar Khan, Rajeev Kumar Goel
Abstract:
Recent infrastructure growth all around the world lead to increase in demand for concrete day by day. Cement being binding material for concrete the usage of cement also gone up significantly. Cement manufacturing utilizes abundant natural resources and causes environment pollution by releasing a huge quantity of CO₂ into the atmosphere. So, it is high time to look for alternates to reduce the cement consumption in concrete. Geopolymer concrete is one such material which utilizes the industrial waste such as fly ash, ground granulated blast furnace slag and low-cost alkaline liquids such as sodium hydroxide and sodium silicate to produce the concrete. On the other side, river sand is becoming very expensive due to its large-scale depletion at source and the high cost of transportation. In this view, river sand is replaced by crushed sand in this study. In this work, an attempt has been made to understand the durability parameters of geopolymer concrete by partially replacing fly ash with cement. Fly ash is replaced by cement at various levels e.g., from 0 to 50%. Concrete cubes of 100x100x100mm were used for investigating different durability parameters. The various parameters studied includes compressive strength, split tensile strength, drying shrinkage, sodium sulphate attack resistance, sulphuric acid attack resistance and chloride permeability. Highest compressive strength & highest split tensile strength is observed in 30% replacement level. Least drying is observed with 30% replacement level. Very good resistance for sulphuric acid & sodium sulphate is found with 30% replacement. However, it was not possible to find out the chloride permeability due to the high conductivity of geopolymer samples of all replacement levels.Keywords: crushed sand, compressive strength, drying shrinkage, geopolymer concrete, split tensile strength, sodium sulphate attack resistance, sulphuric acid attack resistance
Procedia PDF Downloads 293400 Laboratory Analysis of Stormwater Runoff Hydraulic and Pollutant Removal Performance of Pervious Concrete Based on Seashell By-Products
Authors: Jean-Jacques Randrianarimanana, Nassim Sebaibi, Mohamed Boutouil
Abstract:
In order to solve problems associated with stormwater runoff in urban areas and their effects on natural and artificial water bodies, the integration of new technical solutions to the rainwater drainage becomes even more essential. Permeable pavement systems are one of the most widely used techniques. This paper presents a laboratory analysis of stormwater runoff hydraulic and pollutant removal performance of permeable pavement system using pervious pavements based on seashell products. The laboratory prototype is a square column of 25 cm of side and consists of the surface in pervious concrete, a bedding of 3 cm in height, a geotextile and a subbase layer of 50 cm in height. A series of constant simulated rain events using semi-synthetic runoff which varied in intensity and duration were carried out. The initial vertical saturated hydraulic conductivity of the entire pervious pavement system was 0.25 cm/s (148 L/m2/min). The hydraulic functioning was influenced by both the inlet flow rate value and the test duration. The total water losses including evaporation ranged between 9% to 20% for all hydraulic experiments. The temporal and vertical variability of the pollutant removal efficiency (PRE) of the system were studied for total suspended solids (TSS). The results showed that the PRE along the vertical profile was influenced by the size of the suspended solids, and the pervious paver has the highest capacity to trap pollutant than the other porous layers of the permeable pavement system after the geotextile. The TSS removal efficiency was about 80% for the entire system. The first-flush effect of TSS was observed, but it appeared only at the beginning (2 to 6 min) of the experiments. It has been shown that the PPS can capture first-flush. The project in which this study is integrated aims to contribute to both the valorization of shellfish waste and the sustainable management of rainwater.Keywords: hydraulic, pervious concrete, pollutant removal efficiency, seashell by-products, stormwater runoff
Procedia PDF Downloads 214399 A Comprehensive Study of a Hybrid System Integrated Solid Oxide Fuel cell, Gas Turbine, Organic Rankine Cycle with Compressed air Energy Storage
Authors: Taiheng Zhang, Hongbin Zhao
Abstract:
Compressed air energy storage become increasingly vital for solving intermittency problem of some renewable energies. In this study, a new hybrid system on a combination of compressed air energy storage (CAES), solid oxide fuel cell (SOFC), gas turbine (GT), and organic Rankine cycle (ORC) is proposed. In the new system, excess electricity during off-peak time is utilized to compress air. Then, the compressed air is stored in compressed air storage tank. During peak time, the compressed air enters the cathode of SOFC directly instead of combustion chamber of traditional CAES. There is no air compressor consumption of SOFC-GT in peak demand, so SOFC- GT can generate power with high-efficiency. In addition, the waste heat of exhaust from GT is recovered by applying an ORC. Three different organic working fluid (R123, R601, R601a) of ORC are chosen to evaluate system performance. Based on Aspen plus and Engineering Equation Solver (EES) software, energy and exergoeconomic analysis are used to access the viability of the combined system. Besides, the effect of two parameters (fuel flow and ORC turbine inlet pressure) on energy efficiency is studied. The effect of low-price electricity at off-peak hours on thermodynamic criteria (total unit exergy cost of products and total cost rate) is also investigated. Furthermore, for three different organic working fluids, the results of round-trip efficiency, exergy efficiency, and exergoeconomic factors are calculated and compared. Based on thermodynamic performance and exergoeconomic performance of different organic working fluids, the best suitable working fluid will be chosen. In conclusion, this study can provide important guidance for system efficiency improvement and viability.Keywords: CAES, SOFC, ORC, energy and exergoeconomic analysis, organic working fluids
Procedia PDF Downloads 122398 Anaerobic Co-Digestion of Sewage Sludge and Bagasse for Biogas Recovery
Authors: Raouf Ahmed Mohamed Hassan
Abstract:
In Egypt, the excess sewage sludge from wastewater Treatment Plants (WWTPs) is rapidly increasing due to the continuous increase of population, urban planning and industrial developments. Also, cane bagasses constitute an important component of Urban Solid Waste (USW), especially at the south of Egypt, which are difficult to degrade under normal composting conditions. These wastes need to be environmentally managed to reduce the negative impacts of its application or disposal. In term of biogas recovery, the anaerobic digestion of sewage sludge or bagasse separately is inefficient, due to the presence of nutrients and minerals. Also, the Carbone-Nitrogen Ratio (C/N) play an important role, sewage sludge has a ratio varies from 6-16, where cane bagasse has a ratio around 150, whereas the suggested optimum C/N ratio for anaerobic digestion is in the range of 20 to 30. The anaerobic co-digestion is presented as a successful methodology that combines several biodegradable organic substrates able to decrease the amount of output wastes by biodegradation, sharing processing facilities, reducing operating costs, while enabling recovery of biogas. This paper presents the study of co-digestion of sewage sludge from wastewater treatment plants as a type of organic wastes and bagasse as agriculture wastes. Laboratory-scale mesophilic and thermophilic digesters were operated with varied hydraulic retention times. Different percentage of sludge and bagasse are investigated based on the total solids (TS). Before digestion, the bagasse was subjected to grinding pretreatment and soaked in distilled water (water pretreatment). The effect of operating parameters (mixing, temperature) is investigated in order to optimize the process in the biogas production. The yield and the composition of biogas from the different experiments were evaluated and the cumulative curves were estimated. The conducted tests did show that there is a good potential to using the co-digestion of wastewater sludge and bagasse for biogas production.Keywords: co-digestion, sewage sludge, bagasse, mixing, mesophilic, thermophilic
Procedia PDF Downloads 511397 Demonstration Operation of Distributed Power Generation System Based on Carbonized Biomass Gasification
Authors: Kunio Yoshikawa, Ding Lu
Abstract:
Small-scale, distributed and low-cost biomass power generation technologies are highly required in the modern society. There are big needs for these technologies in the disaster areas of developed countries and un-electrified rural areas of developing countries. This work aims to present a technical feasibility of the portable ultra-small power generation system based on the gasification of carbonized wood pellets/briquettes. Our project is designed for enabling independent energy production from various kinds of biomass resources in the open-field. The whole process mainly consists of two processes: biomass and waste pretreatment; gasification and power generation. The first process includes carbonization, densification (briquetting or pelletization), and the second includes updraft fixed bed gasification of carbonized pellets/briquettes, syngas purification, and power generation employing an internal combustion gas engine. A combined pretreatment processes including carbonization without external energy and densification were adopted to deal with various biomass. Carbonized pellets showed a better gasification performance than carbonized briquettes and their mixture. The 100-hour continuous operation results indicated that pelletization/briquetting of carbonized fuel realized the stable operation of an updraft gasifier if there were no blocking issues caused by the accumulation of tar. The cold gas efficiency and the carbon conversion during carbonized wood pellets gasification was about 49.2% and 70.5% with the air equivalence ratio value of around 0.32, and the corresponding overall efficiency of the gas engine was 20.3% during the stable stage. Moreover, the maximum output power was 21 kW at the air flow rate of 40 Nm³·h⁻¹. Therefore, the comprehensive system covering biomass carbonization, densification, gasification, syngas purification, and engine system is feasible for portable, ultra-small power generation. This work has been supported by Innovative Science and Technology Initiative for Security (Ministry of Defence, Japan).Keywords: biomass carbonization, densification, distributed power generation, gasification
Procedia PDF Downloads 154396 Contrasting Infrastructure Sharing and Resource Substitution Synergies Business Models
Authors: Robin Molinier
Abstract:
Industrial symbiosis (I.S) rely on two modes of cooperation that are infrastructure sharing and resource substitution to obtain economic and environmental benefits. The former consists in the intensification of use of an asset while the latter is based on the use of waste, fatal energy (and utilities) as alternatives to standard inputs. Both modes, in fact, rely on the shift from a business-as-usual functioning towards an alternative production system structure so that in a business point of view the distinction is not clear. In order to investigate the way those cooperation modes can be distinguished, we consider the stakeholders' interplay in the business model structure regarding their resources and requirements. For infrastructure sharing (following economic engineering literature) the cost function of capacity induces economies of scale so that demand pooling reduces global expanses. Grassroot investment sizing decision and the ex-post pricing strongly depends on the design optimization phase for capacity sizing whereas ex-post operational cost sharing minimizing budgets are less dependent upon production rates. Value is then mainly design driven. For resource substitution, synergies value stems from availability and is at risk regarding both supplier and user load profiles and market prices of the standard input. Baseline input purchasing cost reduction is thus more driven by the operational phase of the symbiosis and must be analyzed within the whole sourcing policy (including diversification strategies and expensive back-up replacement). Moreover, while resource substitution involves a chain of intermediate processors to match quality requirements, the infrastructure model relies on a single operator whose competencies allow to produce non-rival goods. Transaction costs appear higher in resource substitution synergies due to the high level of customization which induces asset specificity, and non-homogeneity following transaction costs economics arguments.Keywords: business model, capacity, sourcing, synergies
Procedia PDF Downloads 173395 The Current Situation of Veterinary Services and a Reform for Enhancing the Veterinary Services in Developing Countries
Authors: Sufian Abdo Jilo
Abstract:
Veterinary services conserve and maintain animal life and improve the living conditions of human beings through improving rural livelihoods and feeding; veterinary services also address global health crises by preventing risks such as emerging pandemic diseases, antimicrobial resistance, contamination of foods, and environmental health problems at their origin. The purpose of this policy brief is to analyze the way veterinary organizations provide services and to propose an optimal organization for veterinary services in developing countries. The current situation of veterinary institutions in developing countries can't counter the challenge related to animal health and productivity. As a result, reorganization, amalgamation, merging, and consolidation of veterinary health services (veterinary clinics, slaughterhouses, quarantine, and veterinary markets) together with the construction of closer veterinary service facilities and the construction of common areas will help institutions to strengthen cooperation among different veterinarians, which is the first steps for the implementation of a One Health platform and multidisciplinary activities. The improvement and reorganization of the veterinary services institutions will also help the veterinary clinics easily obtain various medical chemicals such as blood and rumen from abattoirs, enhance the surveillance of livestock diseases, enable the community to buy healthy animals from the animal market, and help to reduce economic waste. The services can be performed by a small number of veterinarians through a model of specific areas common to all veterinary services. This model improves the skills and knowledge of veterinarians in all aspects of veterinary medicine and saves students and researchers time. Communities or customers can save time by getting all veterinary services at once. It saves the budget on purchasing medical equipment and medicines at each location and avoids expiration dates on medicines. This model is the latest solution to the global health crisis and should be implemented in the near future to combat the emergence and reemergence of new pathogenic microorganisms.Keywords: abattoir, developing countries, reform, service, veterinary
Procedia PDF Downloads 83394 Optimizing Sustainable Graphene Production: Extraction of Graphite from Spent Primary and Secondary Batteries for Advanced Material Synthesis
Authors: Pratima Kumari, Sukha Ranjan Samadder
Abstract:
This research aims to contribute to the sustainable production of graphene materials by exploring the extraction of graphite from spent primary and secondary batteries. The increasing demand for graphene materials, a versatile and high-performance material, necessitates environmentally friendly methods for its synthesis. The process involves a well-planned methodology, beginning with the gathering and categorization of batteries, followed by the disassembly and careful removal of graphite from anode structures. The use of environmentally friendly solvents and mechanical techniques ensures an efficient and eco-friendly extraction of graphite. Advanced approaches such as the modified Hummers' method and chemical reduction process are utilized for the synthesis of graphene materials, with a focus on optimizing parameters. Various analytical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy were employed to validate the quality and structure of the produced graphene materials. The major findings of this study reveal the successful implementation of the methodology, leading to the production of high-quality graphene materials suitable for advanced material applications. Thorough characterization using various advanced techniques validates the structural integrity and purity of the graphene. The economic viability of the process is demonstrated through a comprehensive economic analysis, highlighting the potential for large-scale production. This research contributes to the field of sustainable production of graphene materials by offering a systematic methodology that efficiently transforms spent batteries into valuable graphene resources. Furthermore, the findings not only showcase the potential for upcycling electronic waste but also address the pressing need for environmentally conscious processes in advanced material synthesis.Keywords: spent primary batteries, spent secondary batteries, graphite extraction, advanced material synthesis, circular economy approach
Procedia PDF Downloads 51393 An Evaluation of the Influence of Corn Cob Ash on the Strength Parameters of Lateritic SoiLs
Authors: O. A. Apampa, Y. A. Jimoh
Abstract:
The paper reports the investigation of Corn Cob Ash as a chemical stabilizing agent for laterite soils. Corn cob feedstock was obtained from Maya, a rural community in the derived savannah agro-ecological zone of South-Western Nigeria and burnt to ashes of pozzolanic quality. Reddish brown silty clayey sand material characterized as AASHTO A-2-6(3) lateritic material was obtained from a borrow pit in Abeokuta and subjected to strength characterization tests according to BS 1377: 2000. The soil was subsequently mixed with CCA in varying percentages of 0-7.5% at 1.5% intervals. The influence of CCA stabilized soil was determined for the Atterberg limits, compaction characteristics, CBR and the unconfined compression strength. The tests were repeated on laterite cement-soil mixture in order to establish a basis for comparison. The result shows a similarity in the compaction characteristics of soil-cement and soil-CCA. With increasing addition of binder from 1.5% to 7.5%, Maximum Dry Density progressively declined while the OMC steadily increased. For the CBR, the maximum positive impact was observed at 1.5% CCA addition at a value of 85% compared to the control value of 65% for the cement stabilization, but declined steadily thereafter with increasing addition of CCA, while that of soil-cement continued to increase with increasing addition of cement beyond 1.5% though at a relatively slow rate. Similar behavior was observed in the UCS values for the soil-CCA mix, increasing from a control value of 0.4 MN/m2 to 1.0 MN/m2 at 1.5% CCA and declining thereafter, while that for soil-cement continued to increase with increasing cement addition, but at a slower rate. This paper demonstrates that CCA is effective for chemical stabilization of a typical Nigerian AASHTO A-2-6 lateritic soil at maximum stabilizer content limit of 1.5% and therefore recommends its use as a way of finding further application for agricultural waste products and achievement of environmental sustainability in line with the ideals of the millennium development goals because of the economic and technical feasibility of the processing of the cobs from corn.Keywords: corn cob ash, pozzolan, cement, laterite, stabilizing agent, cation exchange capacity
Procedia PDF Downloads 295392 Sources and Potential Ecological Risks of Heavy Metals in the Sediment Samples From Coastal Area in Ondo, Southwest Nigeria
Authors: Ogundele Lasun Tunde, Ayeku Oluwagbemiga Patrick
Abstract:
Heavy metals are released into the sediments in aquatic environment from both natural and anthropogenic sources and they are considered as worldwide issue due to their deleterious ecological risks and food chain disruption. In this study, sediments samples were collected at three major sites (Awoye, Abereke and Ayetoro) along Ondo coastal area using VanVeen grab sampler. The concentrations of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn were determined by employing Atomic Absorption Spectroscopy (AAS). The combined concentrations data were subjected to Positive Matrix Factorization (PMF) receptor approach for source identification and apportionment. The probable risks that might be posed by heavy metals in the sediment were estimated by potential and integrated ecological risks indices. Among the measured heavy metals, Fe had the average concentrations of 20.38 ± 2.86, 23.56 ± 4.16 and 25.32 ± 4.83 lg/g at Abereke, Awoye and Ayetoro sites, respectively. The PMF resulted in identification of four sources of heavy metals in the sediments. The resolved sources and their percentage contributions were oil exploration (39%), industrial waste/sludge (35%), detrital process (18%) and Mn-sources (8%). Oil exploration activities and industrial wastes are the major sources that contribute heavy metals into the coastal sediments. The major pollutants that posed ecological risks to the local aquatic ecosystem are As, Pb, Cr and Cd (40 B Ei ≤ 80) classifying the sites as moderate risk. The integrate risks values of Awoye, Abereke and Ayetoro are 231.2, 234.0 and 236.4, respectively suggesting that the study areas had a moderate ecological risk. The study showed the suitability of PMF receptor model for source identification of heavy metals in the sediments. Also, the intensive anthropogenic activities and natural sources could largely discharge heavy metals into the study area, which may increase the heavy metal contents of the sediments and further contribute to the associated ecological risk, thus affecting the local aquatic ecosystem.Keywords: positive matrix factorization, sediments, heavy metals, sources, ecological risks
Procedia PDF Downloads 20391 Investigation of Produced and Ground Water Contamination of Al Wahat Area South-Eastern Part of Sirt Basin, Libya
Authors: Khalifa Abdunaser, Salem Eljawashi
Abstract:
Study area is threatened by numerous petroleum activities. The most important risk is associated with dramatic dangers of misuse and oil and gas pollutions, such as significant volumes of produced water, which refers to waste water generated during the production of oil and natural gas and disposed on the surface surrounded oil and gas fields. This work concerns the impact of oil exploration and production activities on the physical and environment fate of the area, focusing on the investigation and observation of crude oil migration as toxic fluid. Its penetration in groundwater resulted from the produced water impacted by oilfield operations disposed to the earth surface in Al Wahat area. Describing the areal distribution of the dominant groundwater quality constituents has been conducted to identify the major hydro-geochemical processes that affect the quality of water and to evaluate the relations between rock types and groundwater flow to the quality and geochemistry of water in Post-Eocene aquifer. The chemical and physical characteristics of produced water, where it is produced, and its potential impacts on the environment and on oil and gas operations have been discussed. Field work survey was conducted to identify and locate a large number of monitoring wells previously drilled throughout the study area. Groundwater samples were systematically collected in order to detect the fate of spills resulting from the various activities at the oil fields in the study area. Spatial distribution maps of the water quality parameters were built using Kriging methods of interpolation in ArcMap software. Thematic maps were generated using GIS and remote sensing techniques, which were applied to include all these data layers as an active database for the area for the purpose of identifying hot spots and prioritizing locations based on their environmental conditions as well as for monitoring plans.Keywords: Sirt Basin, produced water, Al Wahat area, Ground water
Procedia PDF Downloads 142390 Identifying the Challenges of Implementing Nationwide E-Government Services in Underdeveloped Countries: Sudan as a Case Study
Authors: Mohamed Abdalla Khalil Mahmoud, Omnia Haidar Suliman
Abstract:
Information and Communication technologies have revolutionized the way services are developed and offered to customers and have achieved evident success in a variety of vital sectors and widely contributed to the growth and resilience of the economy worldwide. Consequently, governments, especially of developing countries, have turned their attention to examine possible ways to utilize contemporary technology advances to offer essential governmental services to citizens, especially in areas where government agencies are not present. This paper investigates the challenges that impede governments of developing countries to provide basic services to its constituents nationwide. Sudan, as a case study, has taken major steps to provide essential governmental services via electronic channels. However, these services are still not widely used by the citizens, resulting in waste of financial and human resources and efforts that could have been invested more appropriately. This paper examines the challenges that hinder the Sudan’s government in their pursuit of availing its services via electronic channels. Different categories of e-government challenges, such as organizational, technological, social and, demographic, and financial and economic, have been explored in order to pinpoint the major challenges. A structured questionnaire is used to survey the target population of e-government professionals and executives who have direct involvement in the implementation of this nationwide endeavor in Sudan. The survey has successfully identified the main challenges that have high impact on the government’s effort to offer its services via electronic channels, such as Lack of coordination between public and private sectors and Lack of the benefits recognition of the e-government program. The findings of this paper can be used as a solid foundation for improving the way governmental services are offered to citizens in Sudan, resulting in a successful investment of financial and human resources and benefiting the targeted customers of all types.Keywords: citizen, digital, e-channels, public sector, Sudan, technology
Procedia PDF Downloads 71389 Improved Clothing Durability as a Lifespan Extension Strategy: A Framework for Measuring Clothing Durability
Authors: Kate E Morris, Mark Sumner, Mark Taylor, Amanda Joynes, Yue Guo
Abstract:
Garment durability, which encompasses physical and emotional factors, has been identified as a critical ingredient in producing clothing with increased lifespans, battling overconsumption, and subsequently tackling the catastrophic effects of climate change. Eco-design for Sustainable Products Regulation (ESPR) and Extended Producer Responsibility (EPR) schemes have been suggested and will be implemented across Europe and the UK which might require brands to declare a garment’s durability credentials to be able to sell in that market. There is currently no consistent method of measuring the overall durability of a garment. Measuring the physical durability of garments is difficult and current assessment methods lack objectivity and reliability or don’t reflect the complex nature of durability for different garment categories. This study presents a novel and reproducible methodology for testing and ranking the absolute durability of 5 commercially available garment types, Formal Trousers, Casual Trousers, Denim Jeans, Casual Leggings and Underwear. A total of 112 garments from 21 UK brands were assessed. Due to variations in end use, different factors were considered across the different garment categories when evaluating durability. A physical testing protocol was created, tailored to each category, to dictate the necessary test results needed to measure the absolute durability of the garments. Multiple durability factors were used to modulate the ranking as opposed to previous studies which only reported on single factors to evaluate durability. The garments in this study were donated by the signatories of the Waste Resource Action Programme’s (WRAP) Textile 2030 initiative as part of their strategy to reduce the environmental impact of UK fashion. This methodology presents a consistent system for brands and policymakers to follow to measure and rank various garment type’s physical durability. Furthermore, with such a methodology, the durability of garments can be measured and new standards for improving durability can be created to enhance utilisation and improve the sustainability of the clothing on the market.Keywords: circularity, durability, garment testing, ranking
Procedia PDF Downloads 34388 Ecolodging as an Answer for Sustainable Development and Successful Resource Management: The Case of North West Coast in Alexandria
Authors: I. Elrouby
Abstract:
The continued growth of tourism in the future relies on maintaining a clean environment by achieving sustainable development. The erosion and degradation of beaches, the deterioration of coastal water quality, visual pollution of coastlines by massive developments, all this has contributed heavily to the loss of the natural attractiveness for tourism. In light of this, promoting the concept of sustainable coastal development is becoming a central goal for governments and private sector. An ecolodge is a small hotel or guesthouse that incorporates local architectural, cultural and natural characteristics, promotes environmental conservation through minimizing the use of waste and energy and produces social and economic benefits for local communities. Egypt has some scattered attempts in some areas like Sinai in the field of ecolodging. This research tends to investigate the potentials of the North West Coast (NWC) in Alexandria as a new candidate for ecolodging investments. The area is full of primitive natural and man-made resources. These, if used in an environmental-friendly way could achieve cost reductions as a result of successful resource management for investors on the one hand, and coastal preservation on the other hand. In-depth interviews will be conducted with stakeholders in the tourism sector to examine their opinion about the potentials of the research area for ecolodging developments. The candidates will be also asked to rate the importance of the availability of certain environmental aspects in such establishments such as the uses of resources that originate from local communities, uses of natural power sources, uses of an environmental-friendly sewage disposal, forbidding the use of materials of endangered species and enhancing cultural heritage conservation. The results show that the area is full of potentials that could be effectively used for ecolodging investments. This if efficiently used could attract ecotourism as a supplementary type of tourism that could be promoted in Alexandria aside cultural, recreational and religious tourism.Keywords: Alexandria, ecolodging, ecotourism, sustainability
Procedia PDF Downloads 198387 Determination of the Volatile Organic Compounds, Antioxidant and Antimicrobial Properties of Microwave-Assisted Green Extracted Ficus Carica Linn Leaves
Authors: Pelin Yilmaz, Gizemnur Yildiz Uysal, Elcin Demirhan, Belma Ozbek
Abstract:
The edible fig plant, Ficus carica Linn, belongs to the Moraceae family, and the leaves are mainly considered agricultural waste after harvesting. It has been demonstrated in the literature that fig leaves contain appealing properties such as high vitamins, fiber, amino acids, organic acids, and phenolic or flavonoid content. The extraction of these valuable products has gained importance. Microwave-assisted extraction (MAE) is a method using microwave energy to heat the solvents, thereby transferring the bioactive compounds from the sample to the solvent. The main advantage of the MAE is the rapid extraction of bioactive compounds. In the present study, the MAE was applied to extract the bioactive compounds from Ficus carica L. leaves, and the effect of microwave power (180-900 W), extraction time (60-180 s), and solvent to sample amount (mL/g) (10-30) on the antioxidant property of the leaves. Then, the volatile organic component profile was determined at the specified extraction point. Additionally, antimicrobial studies were carried out to determine the minimum inhibitory concentration of the microwave-extracted leaves. As a result, according to the data obtained from the experimental studies, the highest antimicrobial properties were obtained under the process parameters such as 540 W, 180 s, and 20 mL/g concentration. The volatile organic compound profile showed that isobergapten, which belongs to the furanocoumarins family exhibiting anticancer, antioxidant, and antimicrobial activity besides promoting bone health, was the main compound. Acknowledgments: This work has been supported by Yildiz Technical University Scientific Research Projects Coordination Unit under project number FBA-2021-4409. The authors would like to acknowledge the financial support from Tubitak 1515 - Frontier R&D Laboratory Support Programme.Keywords: Ficus carica Linn leaves, volatile organic component, GC-MS, microwave extraction, isobergapten, antimicrobial
Procedia PDF Downloads 79386 Evaluation of Microwave-Assisted Pretreatment for Spent Coffee Grounds
Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal
Abstract:
Waste materials from a wide range of agro-industrial processes may be used as substrates for microbial growth, and subsequently the production of a range of high value products and bioenergy. In addition, utilization of these agro-residues in bioprocesses has the dual advantage of providing alternative substrates, as well as solving their disposal problems. Spent coffee grounds (SCG) are a by-product (45%) of coffee processing. SCG is a lignocellulosic material, which is composed mainly of cellulose, hemicelluloses, and lignin. Thus, a pretreatment process is required to facilitate an efficient enzymatic hydrolysis of such carbohydrates. In this context, microwave pretreatment of lignocellulosic biomass without the addition of harsh chemicals represents a green technology. Moreover, microwave treatment has a high heating efficiency and is easy to implement. Thus, microwave pretreatment of SCG without adding of harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, microwave pretreatment experiments were conducted on SCG at varying power levels (100, 250, 440, 600, and 1000 W) for 60 s. By increasing microwave power to a certain level (which vary by varying biomass), reducing sugar increases, then reducing sugar from biomass start to decrease with microwave power increase beyond this level. Microwave pretreatment of SCG at 60s followed by enzymatic hydrolysis resulted in total reducing sugars of 91.6 ± 7.0 mg/g of biomass (at microwave power of 100 w). Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose using microwave was found to be an effective and energy efficient technology to improve saccharification and glucose yield. Energy performance will be evaluated for the microwave pretreatment, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol and other high value products.Keywords: lignocellulose, microwave, pretreatment, spent coffee grounds
Procedia PDF Downloads 418385 Clinical Advice Services: Using Lean Chassis to Optimize Nurse-Driven Telephonic Triage of After-Hour Calls from Patients
Authors: Eric Lee G. Escobedo-Wu, Nidhi Rohatgi, Fouzel Dhebar
Abstract:
It is challenging for patients to navigate through healthcare systems after-hours. This leads to delays in care, patient/provider dissatisfaction, inappropriate resource utilization, readmissions, and higher costs. It is important to provide patients and providers with effective clinical decision-making tools to allow seamless connectivity and coordinated care. In August 2015, patient-centric Stanford Health Care established Clinical Advice Services (CAS) to provide clinical decision support after-hours. CAS is founded on key Lean principles: Value stream mapping, empathy mapping, waste walk, takt time calculations, standard work, plan-do-check-act cycles, and active daily management. At CAS, Clinical Assistants take the initial call and manage all non-clinical calls (e.g., appointments, directions, general information). If the patient has a clinical symptom, the CAS nurses take the call and utilize standardized clinical algorithms to triage the patient to home, clinic, urgent care, emergency department, or 911. Nurses may also contact the on-call physician based on the clinical algorithm for further direction and consultation. Since August 2015, CAS has managed 228,990 calls from 26 clinical specialties. Reporting is built into the electronic health record for analysis and data collection. 65.3% of the after-hours calls are clinically related. Average clinical algorithm adherence rate has been 92%. An average of 9% of calls was escalated by CAS nurses to the physician on call. An average of 5% of patients was triaged to the Emergency Department by CAS. Key learnings indicate that a seamless connectivity vision, cascading, multidisciplinary ownership of the problem, and synergistic enterprise improvements have contributed to this success while striving for continuous improvement.Keywords: after hours phone calls, clinical advice services, nurse triage, Stanford Health Care
Procedia PDF Downloads 174384 Nanopriming Potential of Metal Nanoparticles against Internally Seed Borne Pathogen Ustilago triciti
Authors: Anjali Sidhu, Anju Bala, Amit Kumar
Abstract:
Metal nanoparticles have the potential to revolutionize the agriculture owing to sizzling interdisciplinary nano-technological application domain. Numerous patents and products incorporating engineered nanoparticles (NPs) entered into agro-applications with the collective goal to promote proficiency as well as sustainability with lower input and generating meager waste than conventional products and approaches. Loose smut of wheat caused by Ustilago segetum tritici is an internally seed-borne pathogen. It is dormant in the seed unless the seed germinates and its symptoms are expressed at the reproductive stage of the plant only. Various seed treatment agents are recommended for this disease but due to the inappropriate methods of seed treatments used by farmers, each and every seed may not get treated, and the infected seeds escape the fungicidal action. The antimicrobial potential and small size of nanoparticles made them the material of choice as they could enter each seed and restrict the pathogen inside the seed due to the availability of more number of nanoparticles per unit volume of the nanoformulations. Nanoparticles of diverse nature known for their in vitro antimicrobial activity viz. ZnO, MgO, CuS and AgNPs were synthesized, surface modified and characterized by traditional methods. They were applied on infected wheat seeds which were then grown in pot conditions, and their mycelium was tracked in the shoot and leaf region of the seedlings by microscopic staining techniques. Mixed responses of inhibition of this internal mycelium were observed. The time and method of application concluded to be critical for application, which was optimised in the present work. The results implicated that there should be field trails to get final fate of these pot trails up to commercial level. The success of their field trials could be interpreted as a revolution to replace high dose organic fungicides of high residue behaviour.Keywords: metal nanoparticles, nanopriming, seed borne pathogen, Ustilago segetum tritici
Procedia PDF Downloads 142