Search results for: ceramic waste powder
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3817

Search results for: ceramic waste powder

817 Public Environmental Investment Analysis of Japan

Authors: K. Y. Chen, H. Chua, C. W. Kan

Abstract:

Japan is a well-developed country but the environmental issues are still a hot issue. In this study, we will analyse how the environmental investment affects the sustainable development in Japan. This paper will first describe the environmental policy of Japan and the effort input by the Japan government. Then, we will collect the yearly environmental data and also information about the environmental investment. Based on the data collected, we try to figure out the relationship between environmental investment and sustainable development in Japan. In addition, we will analyse the SWOT of environmental investment in Japan. Based on the economic information collected, Japan established a sound material-cycle society through changes in business and life styles. A comprehensive legal system for this kind of society was established in Japan. In addition, other supporting measures, such as financial measures, utilization of economic instruments, implementation of research and promotion of education and science and technology, help Japan to cope with the recent environmental challenges. Japan’s excellent environmental technologies changed its socioeconomic system. They are at the highest global standards. This can be reflected by the number of patents registered in Japan which has been on the steady growth. Country by country comparison in the application for patents on environmental technologies also indicates that Japan ranks high in such areas as atmospheric pollution and water quality management, solid waste management and renewable energy. This is a result of the large expenditure invested on research and development.

Keywords: Japan, environmental investment, sustainable development, analysis

Procedia PDF Downloads 259
816 Retrospective Analysis of 142 Cases of Incision Infection Complicated with Sternal Osteomyelitis after Cardiac Surgery Treated by Activated PRP Gel Filling

Authors: Daifeng Hao, Guang Feng, Jingfeng Zhao, Tao Li, Xiaoye Tuo

Abstract:

Objective: To retrospectively analyze the clinical characteristics of incision infection with sternal osteomyelitis sinus tract after cardiac surgery and the operation method and therapeutic effect of filling and repairing with activated PRP gel. Methods: From March 2011 to October 2022, 142 cases of incision infection after cardiac surgery with sternal osteomyelitis sinus were retrospectively analyzed, and the causes of poor wound healing after surgery, wound characteristics, perioperative wound management were summarized. Treatment during operation, collection and storage process of autologous PRP before debridement surgery, PRP filling repair and activation method after debridement surgery, effect of anticoagulant drugs on surgery, postoperative complications and average wound healing time, etc.. Results: Among the cases in this group, 53.3% underwent coronary artery bypass grafting, 36.8% underwent artificial heart valve replacement, 8.2% underwent aortic artificial vessel replacement, and 1.7% underwent allogeneic heart transplantation. The main causes of poor incision healing were suture reaction, fat liquefaction, osteoporosis, diabetes, and metal allergy in sequence. The wound is characterized by an infected sinus tract. Before the operation, 100-150ml of PRP with 4 times the physiological concentration was collected separately with a blood component separation device. After sinus debridement, PRP was perfused to fill the bony defect in the middle of the sternum, activated with thrombin freeze-dried powder and calcium gluconate injection to form a gel, and the outer skin and subcutaneous tissue were sutured freely. 62.9% of patients discontinued warfarin during the perioperative period, and 37.1% of patients maintained warfarin treatment. There was no significant difference in the incidence of postoperative wound hematoma. The average postoperative wound healing time was 12.9±4.7 days, and there was no obvious postoperative complication. Conclusions: Application of activated PRP gel to fill incision infection with sternal osteomyelitis sinus after cardiac surgery has a less surgical injury and satisfactory and stable curative effect. It can completely replace the previously used pectoralis major muscle flap transplantation operation scheme.

Keywords: platelet-rich plasma, negative-pressure wound therapy, sternal osteomyelitis, cardiac surgery

Procedia PDF Downloads 72
815 Enhanced Photocatalytic Activities of TiO2/Ag2O Heterojunction Nanotubes Arrays Obtained by Electrochemical Method

Authors: Magdalena Diaka, Paweł Mazierski, Joanna Żebrowska, Michał Winiarski, Tomasz Klimczuk, Adriana Zaleska-Medynska

Abstract:

During the last years, TiO2 nanotubes have been widely studied due to their unique highly ordered array structure, unidirectional charge transfer and higher specific surface area compared to conventional TiO2 powder. These photoactive materials, in the form of thin layer, can be activated by low powered and low cost irradiation sources (such as LEDs) to remove VOCs, microorganism and to deodorize air streams. This is possible due to their directly growth on a support material and high surface area, which guarantee enhanced photon absorption together with an extensive adsorption of reactant molecules on the photocatalyst surface. TiO2 nanotubes exhibit also lots of other attractive properties, such as potential enhancement of electron percolation pathways, light conversion, and ion diffusion at the semiconductor-electrolyte interface. Pure TiO2 nanotubes were previously used to remove organic compounds from the gas phase as well as in water splitting reaction. The major factors limiting the use of TiO2 nanotubes, which have not been fully overcome, are their relatively large band gap (3-3,2 eV) and high recombination rate of photogenerated electron–hole pairs. Many different strategies were proposed to solve this problem, however titania nanostructures containing incorporated metal oxides like Ag2O shows very promising, new optical and photocatalytic properties. Unfortunately, there is still very limited number of reports regarding application of TiO2/MxOy nanostructures. In the present work, we prepared TiO2/Ag2O nanotubes obtained by anodization of Ti-Ag alloys containing 5, 10 and 15 wt. % Ag. Photocatalysts prepared in this way were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), luminescence spectroscopy and UV-Vis spectroscopy. The activities of new TiO2/Ag2O were examined by photocatalytic degradation of toluene in gas phase reaction and phenol in aqueous phase using 1000 W Xenon lamp (Oriel) and light emitting diodes (LED) as a irradiation sources. Additionally efficiency of bacteria (Pseudomonas aeruginosa) removal from the gas phase was estimated. The number of surviving bacteria was determined by the serial twofold dilution microtiter plate method, in Tryptic Soy Broth medium (TSB, GibcoBRL).

Keywords: photocatalysis, antibacterial properties, titania nanotubes, new TiO2/MxOy nanostructures

Procedia PDF Downloads 288
814 Application of Electrochemically Prepared PPy/MWCNT:MnO2 Nano-Composite Film in Microbial Fuel Cells for Sustainable Power Generation

Authors: Rajeev jain, D. C. Tiwari, Praveena Mishra

Abstract:

Nano-composite of polypyrrole/multiwalled carbon nanotubes:mangenese oxide (PPy/MWCNT:MnO2) was electrochemically deposited on the surface of carbon cloth (CC). The nano-composite was structurally characterized by FTIR, SEM, TEM and UV-Vis studies. Nano-composite was also characterized by cyclic voltammetry (CV), current voltage measurements (I-V) and the optical band gaps of film were evaluated from UV-Vis absorption studies. The PPy/MWCNT:MnO2 nano-composite was used as anode in microbial fuel cell (MFC) for sewage waste water treatment, power and coulombic efficiency measurement. The prepared electrode showed good electrical conductivity (0.1185 S m-1). This was also supported by band gap measurements (direct 0.8 eV, indirect 1.3 eV). The obtained maximum power density was 1125.4 mW m-2, highest chemical oxygen demand (COD) removal efficiency was 93% and the maximum coulombic efficiency was 59%. For the first time PPy/MWCNT:MnO2 nano-composite for MFC prepared from nano-composite electrode having the potential for the use in MFC with good stability and better adhesion of microbes is being reported. The SEM images confirm the growth and development of microbe’s colony.

Keywords: carbon cloth, electro-polymerization, functionalization, microbial fuel cells, multi walled carbon nanotubes, polypyrrole

Procedia PDF Downloads 262
813 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade

Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim

Abstract:

Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.

Keywords: building envelope, machine learning, perforated metal, multi-factor optimization, façade

Procedia PDF Downloads 216
812 Formulation of Aggregates Based on Dredged Sand and Sediments

Authors: Nor-Edine Abriak, Ilyas Ennahal, Abdeljalil Zri, Mahfoud Benzerzour

Abstract:

Nord Pas de Calais is one of the French regions that records a large volume of dredged sediment in harbors and waterways. To ensure navigation within ports and waterways, harbor and river managers are forced to find solutions to remove sediment that contamination levels exceed levels established by regulations. Therefore, this non- submersible sediment must be managed on land and will be subject to the waste regulation. In this paper, some examples of concrete achievements and experiments of reusing dredged sediment in civil engineering and sector will be illustrated. These achievements are alternative solutions to sediment landfilling and guarantee the reuse of this material in a logic of circular economy and ecological transition. It permits to preserve the natural resources increasingly scarce and resolve issues related to the accumulation of sediments in the harbor basins, rivers, dams, and lakes, etc. Examples of beneficial use of dredged material illustrated in this paper are the result of different projects reusing harbor and waterways sediments in several applications. These projects were funded under the national SEDIMATERIAUX approach. Thus the technical and environmental feasibility of the reuse of dredged sediment is demonstrated and verified; the dredged sediment reusing would meet multiple challenges of sustainable development in relation to environmental, economic, social and societal.

Keywords: circular economy, sediment, SEDIMATERIAUX, waterways

Procedia PDF Downloads 152
811 The Use of YouTube and Its Relation to Changing the Kuwaiti Children’s Social Values from Parents’ Perspectives: Field Study

Authors: Laila Alkhayat

Abstract:

In this study, the researcher explored the positive and negative effects of children watching YouTube on changing social values from the perspective of parents in Kuwait. This study also explored whether any correlation exists between changed values from watching YouTube and the following variables: relationship with a child, social situation, school level, gender, and age. The researcher collected data from 286 questionnaires distributed randomly to parents in Kuwait. The results of the study show that parents face many disadvantages when dealing with children watching YouTube, such as children spending too much time in front of screens, inability to organize bedtime, and children’s social isolation. However, the researcher found some positives come from watching YouTube, such as learning new information, enabling children to search for new information, and introducing children to the culture of their society and other cultures around them. Moreover, this study found that boys are more likely to have negative viewing habits than girls. Given the results, this study shows that the biggest impact on social values from children watching YouTube is that they are preoccupied with watching YouTube and they waste time, which makes them feel disturbed, and this affects the value of time management and delays children’s sleeping times. This study concludes that watching YouTube simultaneously has negative and positive effects on changing social values, but it plays a negative role in changing social values of children from the parents’ perspective.

Keywords: YouTube, children, social value, social media effects

Procedia PDF Downloads 149
810 Determination of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District of South Africa Using GC-TOF-MS

Authors: Joshua N. Edokpayi, John O. Odiyo, Titus A. M. Msagati, Elizabeth O. Popoola

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are very toxic and persistent environmental contaminants. This study was undertaken to assess the concentrations and possible sources of 16 PAHs classified by the United State Environmental Protection Agency as priority pollutants in Mvudi and Nzhelele Rivers and sediments. Effluents from Thohoyandou wastewater treatment plant and Siloam waste stabilization ponds were also investigated. Diagnostic ratios were used to evaluate the possible sources of PAHs. PAHs in the water samples were extracted using 1:1 dichloromethane and n-hexane mixtures, while those in the sediment samples were extracted with 1:1 acetone and dichloromethane using ultrasonication method. The extracts were purified using SPE technique and reconstituted in n-hexane before analyses with GC-TOF-MS. The results obtained indicate the prevalence of high molecular weight PAHs in all the samples. PAHs concentrations in water and sediment samples from all the sampling sites were in the range of 13.174-26.382 mg/L and 27.10-55.93 mg/kg, respectively. Combustion of biomass was identified as the major possible source of PAHs. Effluents from wastewater treatment facilities were also considered as major anthropogenic contributions to the levels of PAHs determined in both river waters and sediments. Mvudi and Nzhelele Rivers show moderate to high contamination level of PAHs.

Keywords: polycyclic aromatic hydrocarbon, rivers, sediments, wastewater effluents

Procedia PDF Downloads 329
809 Influence of Pulverized Granite on the Mechanical and Durability Properties of Concrete

Authors: Kwabena A. Boakye, Eugene Atiemo, Trinity A. Tagbor, Delali Adjei

Abstract:

The use of mineral admixtures such as metakaolin, GGBS, fly ash, etc., in concrete is a common practice in the world. However, the only admixture available for use in the Ghanaian construction industry is calcined clay pozzolan. This research, therefore, studies the alternate use of granite dust, a by-product from stone quarrying, as a mineral admixture in concrete. Granite dust, which is usually damped as waste or as an erosion control material, was collected and pulverized to about 75µm. Some physical, chemical, and mineralogical tests were conducted on the granite dust. 5%-25% ordinary Portland cement of Class 42.5N was replaced with granite dust which was used as the main binder in the preparation of 150mm×150mm×150mm concrete cubes according to methods prescribed by BS EN 12390-2:2000. Properties such as workability, compressive strength, flexural strength, water absorption, and durability were determined. Compressive and flexural strength results indicate that granite dust could be used to replace ordinary Portland cement up to an optimum of 15% to achieve C25. Water permeability increased as the granite dust admixture content increased from 5% - 25%. Durability studies after 90 days proved that even though strength decreased as granite dust content increased, the concrete containing granite dust had better resistance to sulphate attack comparable to the reference cement. Pulverized granite can be used to partially replace ordinary Portland cement in concrete.

Keywords: admixture, granite dust, permeability, pozzolans

Procedia PDF Downloads 153
808 Defining the Turbulent Coefficients with the Effect of Atmospheric Stability in Wake of a Wind Turbine Wake

Authors: Mohammad A. Sazzad, Md M. Alam

Abstract:

Wind energy is one of the cleanest form of renewable energy. Despite wind industry is growing faster than ever there are some roadblocks towards the improvement. One of the difficulties the industry facing is insufficient knowledge about wake within the wind farms. As we know energy is generated in the lowest layer of the atmospheric boundary layer (ABL). This interaction between the wind turbine (WT) blades and wind introduces a low speed wind region which is defined as wake. This wake region shows different characteristics under each stability condition of the ABL. So, it is fundamental to know this wake region well which is defined mainly by turbulence transport and wake shear. Defining the wake recovery length and width are very crucial for wind farm to optimize the generation and reduce the waste of power to the grid. Therefore, in order to obtain the turbulent coefficients of velocity and length, this research focused on the large eddy simulation (LES) data for neutral ABL (NABL). According to turbulent theory, if we can present velocity defect and Reynolds stress in the form of local length and velocity scales, they become invariant. In our study velocity and length coefficients are 0.4867 and 0.4794 respectively which is close to the theoretical value of 0.5 for NABL. There are some invariant profiles because of the presence of thermal and wind shear power coefficients varied a little from the ideal condition.

Keywords: atmospheric boundary layer, renewable energy, turbulent coefficient, wind turbine, wake

Procedia PDF Downloads 129
807 Synthesis and Characterization of Hydroxyapatite from Biowaste for Potential Medical Application

Authors: M. D. H. Beg, John O. Akindoyo, Suriati Ghazali, Nitthiyah Jeyaratnam

Abstract:

Over the period of time, several approaches have been undertaken to mitigate the challenges associated with bone regeneration. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. The former three techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Synthetic routes remain the only feasible alternative option for treatment of bone defects. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are either expensive, complicated or environmentally unfriendly. Interestingly, extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment friendly. In this research, HA was synthesized from bio-waste: namely bovine bones through three different methods which are hydrothermal chemical processes, ultrasound assisted synthesis and ordinary calcination techniques. Structure and property analysis of the HA was carried out through different characterization techniques such as TGA, FTIR, and XRD. All the methods applied were able to produce HA with similar compositional properties to biomaterials found in human calcified tissues. Calcination process was however observed to be more efficient as it eliminated all the organic components from the produced HA. The HA synthesized is unique for its minimal cost and environmental friendliness. It is also perceived to be suitable for tissue and bone engineering applications.

Keywords: hydroxyapatite, bone, calcination, biowaste

Procedia PDF Downloads 242
806 Demulsification of Oil from Produced water Using Fibrous Coalescer

Authors: Nutcha Thianbut

Abstract:

In the petroleum drilling industry, besides oil and gas, water is also produced from petroleum production. which will have oil droplets dispersed in the water as an emulsion. Commonly referred to as produced water, most industrial water-based produced water methods use the method of pumping water back into wells or catchment areas. because it cannot be utilized further, but in the compression of water each time, the cost is quite high. And the survey found that the amount of water from the petroleum production process has increased every year. In this research, we would like to study the removal of oil in produced water by the Coalescer device using fibers from agricultural waste as an intermediary. As an alternative to reduce the cost of water management in the petroleum drilling industry. The objectives of this research are 1. To study the fiber pretreatment by chemical process for the efficiency of oil-water separation 2. To study and design the fiber-packed coalescer device to destroy the emulsion of crude oil in water. 3. To study the working conditions of coalescer devices in emulsion destruction. using a fiber medium. In this research, the experiment was divided into two parts. The first part will study the absorbency of fibers. It compares untreated fibers with chemically treated alkaline fibers that change over time as well as adjusting the amount of fiber on the absorbency of the fiber and the second part will study the separation of oil from produced water by Coalescer equipment using fiber as medium to study the optimum condition of coalescer equipment for further development and industrial application.

Keywords: produced water, fiber, surface modification, coalescer

Procedia PDF Downloads 161
805 An Exploratory Study on the Effect of a Fermented Dairy Product on Self-Reported Gut Complaints in US Recreational Athletes

Authors: Kersch-Counet C., Fransen K. H. S., Broyd M., Nyakayiru J. D. O. A., Schoemaker M. H., Mallee L. F., Bovee-Oudenhoven I. M. J.

Abstract:

Background: Around one third of people, including athletes, suffer from feelings of gut discomfort. Fermentation of dairy is a process that has been associated with products that can improve gut health. However, insight in (potential) health benefits of most fermented foods is limited to chemical analyses and in-vitro models. Objective: The aim of this open-label, single-arm explorative trial was to investigate in a real life setting the effect of consumption of a fermented whey product for 3 weeks on self-perceived physical and mental wellbeing and digestive issues in 150 US recreational athletes (20-50 years of age) with self-reported gut complaints at enrolment. Methods: Participants living at the West-Coast of the US received for 3 weeks a daily powder of 15 g of BiotisTM Fermentis to be mixed in water using a supplied shaker. Weekly questionnaires were conducted by MMR research to study the effect on physical/mental health issues and self-perceived gut complaints. Non-parametric tests (e.g., Friedman test) were used to assess statistical differences over time while the Kruskal-Wallis and Wilcoxon signed-rank tests were used for sub-groups analysis. Results: Bloating, stress and anxiety were the top 3 issues of the US recreational athletes. Satisfaction of physical wellbeing increased significantly throughout the 3-weeks of fermented whey product consumption (p<0.0005). Combined digestive issues decreased significantly after 2- and 3-weeks of product consumption, with bloating showing a significant reduction (p<0.05). There was a trend that self-reported stress levels reduced after 3 weeks and participants said to significantly feel more active, energetic, and vital (p<0.05). Subgroup analysis showed that gender and habitual protein supplement consumption were associated with specific health issues and modulated the response to the fermented dairy product. Conclusion: Daily consumption of the fermented BiotisTM Fermentis product is associated with a reduction in self-perceived gastrointestinal symptoms and improved overall wellbeing and mood state in US recreational athletes. This large nutrition and health consumer study brings valuable insights in self-reported gut complaints of recreational athletes in the US and their response to a fermented dairy product. A controlled clinical trial in a targeted population is recommended to scientifically substantiate the product effect as observed in this explorative study.

Keywords: real-life study, digestive health, fermented whey, sports

Procedia PDF Downloads 255
804 Automatic Detection of Defects in Ornamental Limestone Using Wavelets

Authors: Maria C. Proença, Marco Aniceto, Pedro N. Santos, José C. Freitas

Abstract:

A methodology based on wavelets is proposed for the automatic location and delimitation of defects in limestone plates. Natural defects include dark colored spots, crystal zones trapped in the stone, areas of abnormal contrast colors, cracks or fracture lines, and fossil patterns. Although some of these may or may not be considered as defects according to the intended use of the plate, the goal is to pair each stone with a map of defects that can be overlaid on a computer display. These layers of defects constitute a database that will allow the preliminary selection of matching tiles of a particular variety, with specific dimensions, for a requirement of N square meters, to be done on a desktop computer rather than by a two-hour search in the storage park, with human operators manipulating stone plates as large as 3 m x 2 m, weighing about one ton. Accident risks and work times are reduced, with a consequent increase in productivity. The base for the algorithm is wavelet decomposition executed in two instances of the original image, to detect both hypotheses – dark and clear defects. The existence and/or size of these defects are the gauge to classify the quality grade of the stone products. The tuning of parameters that are possible in the framework of the wavelets corresponds to different levels of accuracy in the drawing of the contours and selection of the defects size, which allows for the use of the map of defects to cut a selected stone into tiles with minimum waste, according the dimension of defects allowed.

Keywords: automatic detection, defects, fracture lines, wavelets

Procedia PDF Downloads 244
803 Theoretical and Experimental Investigation of Structural, Electrical and Photocatalytic Properties of K₀.₅Na₀.₅NbO₃ Lead- Free Ceramics Prepared via Different Synthesis Routes

Authors: Manish Saha, Manish Kumar Niranjan, Saket Asthana

Abstract:

The K₀.₅Na₀.₅NbO₃ (KNN) system has emerged as one of the most promising lead-free piezoelectric over the years. In this work, we perform a comprehensive investigation of electronic structure, lattice dynamics and dielectric/ferroelectric properties of the room temperature phase of KNN by combining ab-initio DFT-based theoretical analysis and experimental characterization. We assign the symmetry labels to KNN vibrational modes and obtain ab-initio polarized Raman spectra, Infrared (IR) reflectivity, Born-effective charge tensors, oscillator strengths etc. The computed Raman spectrum is found to agree well with the experimental spectrum. In particular, the results suggest that the mode in the range ~840-870 cm-¹ reported in the experimental studies is longitudinal optical (LO) with A_1 symmetry. The Raman mode intensities are calculated for different light polarization set-ups, which suggests the observation of different symmetry modes in different polarization set-ups. The electronic structure of KNN is investigated, and an optical absorption spectrum is obtained. Further, the performances of DFT semi-local, metal-GGA and hybrid exchange-correlations (XC) functionals, in the estimation of KNN band gaps are investigated. The KNN bandgap computed using GGA-1/2 and HSE06 hybrid functional schemes are found to be in excellant agreement with the experimental value. The COHP, electron localization function and Bader charge analysis is also performed to deduce the nature of chemical bonding in the KNN. The solid-state reaction and hydrothermal methods are used to prepare the KNN ceramics, and the effects of grain size on the physical characteristics these ceramics are examined. A comprehensive study on the impact of different synthesis techniques on the structural, electrical, and photocatalytic properties of ferroelectric ceramics KNN. The KNN-S prepared by solid-state method have significantly larger grain size as compared to that for KNN-H prepared by hydrothermal method. Furthermore, the KNN-S is found to exhibit higher dielectric, piezoelectric and ferroelectric properties as compared to KNN-H. On the other hand, the increased photocatalytic activity is observed in KNN-H as compared to KNN-S. As compared to the hydrothermal synthesis, the solid-state synthesis causes an increase in the relative dielectric permittivity (ε^') from 2394 to 3286, remnant polarization (P_r) from 15.38 to 20.41 μC/cm^², planer electromechanical coupling factor (k_p) from 0.19 to 0.28 and piezoelectric coefficient (d_33) from 88 to 125 pC/N. The KNN-S ceramics are also found to have a lower leakage current density, and higher grain resistance than KNN-H ceramic. The enhanced photocatalytic activity of KNN-H is attributed to relatively smaller particle sizes. The KNN-S and KNN-H samples are found to have degradation efficiencies of RhB solution of 20% and 65%, respectively. The experimental study highlights the importance of synthesis methods and how these can be exploited to tailor the dielectric, piezoelectric and photocatalytic properties of KNN. Overall, our study provides several bench-mark important results on KNN that have not been reported so far.

Keywords: lead-free piezoelectric, Raman intensity spectrum, electronic structure, first-principles calculations, solid state synthesis, photocatalysis, hydrothermal synthesis

Procedia PDF Downloads 41
802 Environmental Life Cycle Assessment of Two Technologic Scenario of Wind Turbine Blades Composition for an Optimized Wind Turbine Design Using the Impact 2002+ Method and Using 15 Environmental Impact Indicators

Authors: A. Jarrou, A. Iranzo, C. Nana

Abstract:

The rapid development of the onshore/offshore wind industry and the continuous, strong, and long-term support from governments have made it possible to create factories specializing in the manufacture of the different parts of wind turbines, but in the literature, Life Cycle Assessment (LCA) analyzes consider the wind turbine as a whole and do not allow the allocation of impacts to the different components of the wind turbine. Here we propose to treat each part of the wind turbine as a system in its own right. This is more in line with the current production system. Environmental Life Cycle Assessment of two technological scenarios of wind turbine blades composition for an optimized wind turbine design using the impact 2002+ method and using 15 environmental impact indicators. This article aims to assess the environmental impacts associated with 1 kg of wind turbine blades. In order to carry out a realistic and precise study, the different stages of the life cycle of a wind turbine installation are included in the study (manufacture, installation, use, maintenance, dismantling, and waste treatment). The Impact 2002+ method used makes it possible to assess 15 impact indicators (human toxicity, terrestrial and aquatic ecotoxicity, climate change, land use, etc.). Finally, a sensitivity study is carried out to analyze the different types of uncertainties in the data collected.

Keywords: life cycle assessment, wind turbine, turbine blade, environmental impact

Procedia PDF Downloads 159
801 Experimental Study to Determine the Effect of Wire Mesh Pore Size on Natural Draft Chimney Performance

Authors: Md. Mizanur Rahman, Chu Chi Ming, Mohd Suffian Bin Misaran

Abstract:

Chimney is an important part of the industries to remove waste heat from the processes side to the atmosphere. The increased demand of energy helps to restart to think about the efficiency of chimney as well as to find out a valid option to replace forced draft chimney system from industries. In this study natural draft chimney model is air flow rate; exit air temperature and pressure losses are studied through modification with wire mesh screen and compare the results with without wire mesh screen chimney model. The heat load is varies from 0.1 kW to 1kW and three different wire mesh screens that have pore size 0.15 mm2, 0.40 mm2 and 4.0 mm2 respectively are used. The experimental results show that natural draft chimney model with wire mesh screens significantly restored the flow losses compared to the system without wire mesh screen. The natural draft chimney model with 0.40 mm2 pore size wire mesh screen can minimize the draft losses better than others and able to enhance velocity about 54 % exit air temperature about 41% and pressure loss decreased by about 20%. Therefore, it can be decided that the wire mesh screens significantly minimize the draft losses in the natural draft chimney and 0.40 mm2 pore size screen will be a suitable option.

Keywords: natural draft dhimney, wire mesh screen, natural draft flow, mechanical engineering

Procedia PDF Downloads 315
800 Transport Properties of Alkali Nitrites

Authors: Y. Mateyshina, A.Ulihin, N.Uvarov

Abstract:

Electrolytes with different type of charge carrier can find widely application in different using, e.g. sensors, electrochemical equipments, batteries and others. One of important components ensuring stable functioning of the equipment is electrolyte. Electrolyte has to be characterized by high conductivity, thermal stability, and wide electrochemical window. In addition to many advantageous characteristic for liquid electrolytes, the solid state electrolytes have good mechanical stability, wide working range of temperature range. Thus search of new system of solid electrolytes with high conductivity is an actual task of solid state chemistry. Families of alkali perchlorates and nitrates have been investigated by us earlier. In literature data about transport properties of alkali nitrites are absent. Nevertheless, alkali nitrites MeNO2 (Me= Li+, Na+, K+, Rb+ and Cs+), except for the lithium salt, have high-temperature phases with crystal structure of the NaCl-type. High-temperature phases of nitrites are orientationally disordered, i.e. non-spherical anions are reoriented over several equivalents directions in the crystal lattice. Pure lithium nitrite LiNO2 is characterized by ionic conductivity near 10-4 S/cm at 180°C and more stable as compared with lithium nitrate and can be used as a component for synthesis of composite electrolytes. In this work composite solid electrolytes in the binary system LiNO2 - A (A= MgO, -Al2O3, Fe2O3, CeO2, SnO2, SiO2) were synthesized and their structural, thermodynamic and electrical properties investigated. Alkali nitrite was obtained by exchange reaction from water solutions of barium nitrite and alkali sulfate. The synthesized salt was characterized by X-ray powder diffraction technique using D8 Advance X-Ray Diffractometer with Cu K radiation. Using thermal analysis, the temperatures of dehydration and thermal decomposition of salt were determined.. The conductivity was measured using a two electrode scheme in a forevacuum (6.7 Pa) with an HP 4284A (Precision LCR meter) in a frequency range 20 Hz < ν < 1 MHz. Solid composite electrolytes LiNO2 - A A (A= MgO, -Al2O3, Fe2O3, CeO2, SnO2, SiO2) have been synthesized by mixing of preliminary dehydrated components followed by sintering at 250°C. In the series of nitrite of alkaline metals Li+-Cs+, the conductivity varies not monotonically with increasing radius of cation. The minimum conductivity is observed for KNO2; however, with further increase in the radius of cation in the series, the conductivity tends to increase. The work was supported by the Russian Foundation for Basic research, grant #14-03-31442.

Keywords: conductivity, alkali nitrites, composite electrolytes, transport properties

Procedia PDF Downloads 313
799 Effect of Waste Foundry Slag and Alccofine on Durability Properties of High Strength Concrete

Authors: Devinder Sharma, Sanjay Sharma, Ajay Goyal, Ashish Kapoor

Abstract:

The present research paper discussed the durability properties of high strength concrete (HSC) using Foundry Slag(FD) as partial substitute for fine aggregates (FA) and Alccofine (AF) in addition to portland pozzolana (PPC) cement. Specimens of Concrete M100 grade with water/binder ratio 0.239, with Foundry Slag (FD) varying from 0 to 50% and with optimum quantity of AF(15%) were casted and tested for durability properties such as Water absorption, water permeability, resistance to sulphate attack, alkali attack and nitrate attack of HSC at the age of 7, 14, 28, 56 and 90 days. Substitution of fine aggregates (FA) with up to 45% of foundry slag(FD) content and cement with 15% substitution and addition of alccofine showed an excellent resistance against durability properties at all ages but showed a decrease in these properties with 50% of FD contents. Loss of weight in concrete samples due to sulphate attack, alkali attack and nitrate attack of HSC at the age of 365 days was compared with loss in compressive strength. Correlation between loss in weight and loss in compressive strength in all the tests was found to be excellent.

Keywords: alccofine, alkali attack, foundry slag, high strength concrete, nitrate attack, water absorption, water permeability

Procedia PDF Downloads 323
798 Effect of Inclusion of Rubber on the Compaction Characteristics of Cement - MSWIFA- Clayey Soil Mixtures

Authors: Gehan Aouf, Diala Tabbal, Abd El Rahim Sabsabi, Rashad Aouf

Abstract:

The aim of this study is to show the effect of adding cement municipal solid incineration fly ash and rubber as stabilizer materials on weak soil. A detailed experimental study was conducted in order to show the viability of using these admixtures in improving the maximum dry density and optimum moisture content of the composite soil. Soil samples were prepared by adding Rubber and Cement to municipal solid waste incineration fly-ash - oil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. Three different percentages of fly ash (10%, 20%, and 30%) MSWFA by total dry weight of soil and three different percentages of Portland cement (10%, 15%, and 20%) by total dry weight of the mix and 0%, 5%, 10% for Rubber by total dry weight of the mix were used to find the optimum value. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeded 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that adding Rubber to the mix Soil-MSWIFA-Cement decreases its MDD due to the low specific gravity of rubber and it affects a slight decrease in OMC because the rubber has low absorption of water.

Keywords: clayey soil, MSWIFA, proctor test, rubber

Procedia PDF Downloads 110
797 Biomimicked Nano-Structured Coating Elaboration by Soft Chemistry Route for Self-Cleaning and Antibacterial Uses

Authors: Elodie Niemiec, Philippe Champagne, Jean-Francois Blach, Philippe Moreau, Anthony Thuault, Arnaud Tricoteaux

Abstract:

Hygiene of equipment in contact with users is an important issue in the railroad industry. The numerous cleanings to eliminate bacteria and dirt cost a lot. Besides, mechanical solicitations on contact parts are observed daily. It should be interesting to elaborate on a self-cleaning and antibacterial coating with sufficient adhesion and good resistance against mechanical and chemical solicitations. Thus, a Hauts-de-France and Maubeuge Val-de-Sambre conurbation authority co-financed Ph.D. thesis has been set up since October 2017 based on anterior studies carried by the Laboratory of Ceramic Materials and Processing. To accomplish this task, a soft chemical route has been implemented to bring a lotus effect on metallic substrates. It involves nanometric liquid zinc oxide synthesis under 100°C. The originality here consists in a variation of surface texturing by modification of the synthesis time of the species in solution. This helps to adjust wettability. Nanostructured zinc oxide has been chosen because of the inherent photocatalytic effect, which can activate organic substance degradation. Two methods of heating have been compared: conventional and microwave assistance. Tested subtracts are made of stainless steel to conform to transport uses. Substrate preparation was the first step of this protocol: a meticulous cleaning of the samples is applied. The main goal of the elaboration protocol is to fix enough zinc-based seeds to make them grow during the next step as desired (nanorod shaped). To improve this adhesion, a silica gel has been formulated and optimized to ensure chemical bonding between substrate and zinc seeds. The last step consists of deposing a wide carbonated organosilane to improve the superhydrophobic property of the coating. The quasi-proportionality between the reaction time and the nanorod length will be demonstrated. Water Contact (superior to 150°) and Roll-off Angle at different steps of the process will be presented. The antibacterial effect has been proved with Escherichia Coli, Staphylococcus Aureus, and Bacillus Subtilis. The mortality rate is found to be four times superior to a non-treated substrate. Photocatalytic experiences were carried out from different dyed solutions in contact with treated samples under UV irradiation. Spectroscopic measurements allow to determinate times of degradation according to the zinc quantity available on the surface. The final coating obtained is, therefore, not a monolayer but rather a set of amorphous/crystalline/amorphous layers that have been characterized by spectroscopic ellipsometry. We will show that the thickness of the nanostructured oxide layer depends essentially on the synthesis time set in the hydrothermal growth step. A green, easy-to-process and control coating with self-cleaning and antibacterial properties has been synthesized with a satisfying surface structuration.

Keywords: antibacterial, biomimetism, soft-chemistry, zinc oxide

Procedia PDF Downloads 137
796 An Approach to Integrated Water Resources Management, a Plan for Action to Climate Change in India

Authors: H. K. Ramaraju

Abstract:

World is in deep trouble and deeper denial. Worse, the denial is now entirely on the side of action. It is well accepted that climate change is a reality. Scientists say we need to cap temperature increases at 2°C to avoid catastrophe, which means capping emissions at 450 ppm .We know global average temperatures have already increased by 0.8°C and there is enough green house gas in the atmosphere to lead to another 0.8°C increase. There is still a window of opportunity, a tiny one, to tackle the crisis. But where is the action? In the 1990’s, when the world did even not understand, let alone accept, the crises, it was more willing to move to tackle climate change. Today we are in reverse in gear. The rich world has realized it is easy to talk big, but tough to take steps to actually reduce emissions. The agreement was that these countries would reduce so that the developing World could increase. Instead, between 1990 and 2006, their carbon dioxide emissions increased by a whopping 14.5 percent, even green countries of Europe are unable to match words with action. Stop deforestation and take a 20 percent advantage in our carbon balance sheet, with out doing anything at home called REDD (reducing emissions from deforestation and forest degradation) and push for carbon capture and storage (CCS) technologies. There are warning signs elsewhere and they need to be read correctly and acted up on , if not the cases like flood –act of nature or manmade disaster. The full length paper orient in proper understanding of the issues and identifying the most appropriate course of action.

Keywords: catastrophe, deforestation, emissions, waste water

Procedia PDF Downloads 285
795 Assessment of the Performance of Fly Ash Based Geo-Polymer Concrete under Sulphate and Acid Attack

Authors: Talakokula Visalakshi

Abstract:

Concrete is the most commonly used construction material across the globe, its usage is second only to water. It is prepared using ordinary Portland cement whose production contributes to 5-8% of total carbon emission in the world. On the other hand the fly ash by product from the power plants is produced in huge quantities is termed as waste and disposed in landfills. In order to address the above issues mentioned, it is essential that other forms of binding material must be developed in place of cement to make concrete. The geo polymer concrete is one such alternative developed by Davidovits in 1980’s. Geopolymer do not form calcium-silicate hydrates for matrix formation and strength but undergo polycondensation of silica and alumina precursors to attain structural strength. Its setting mechanism depends upon polymerization rather than hydration. As a result it is able to achieve its strength in 3-5 days whereas concrete requires about a month to do the same. The objective of this research is to assess the performance of geopolymer concrete under sulphate and acid attack. The assessment is done based on the experiments conducted on geopolymer concrete. The expected outcomes include that if geopolymer concrete is more durable than normal concrete, then it could be a competitive replacement option of concrete and can lead to significant reduction of carbon foot print and have a positive impact on the environment. Fly ash based geopolymer concrete offers an opportunity to completely remove the cement content from concrete thereby making the concrete a greener and future construction material.

Keywords: fly ash, geo polymer, geopolymer concrete, construction material

Procedia PDF Downloads 483
794 A New Development Pathway And Innovative Solutions Through Food Security System

Authors: Osatuyi Kehinde Micheal

Abstract:

There is much research that has contributed to an improved understanding of the future of food security, especially during the COVID-19 pandemic. A pathway was developed by using a local community kitchen in Muizenberg in western cape province, cape town, south Africa, a case study to map out the future of food security in times of crisis. This kitchen aims to provide nutritious, affordable, plant-based meals to our community. It is also a place of diverse learning, sharing, empowering the volunteers, and growth to support the local economy and future resilience by sustaining our community kitchen for the community. This document contains an overview of the story of the community kitchen on how we create self-sustainability as a new pathway development to sustain the community and reduce Zero hunger in the regional food system. This paper describes the key elements of how we respond to covid-19 pandemic by sharing food parcels and creating 13 soup kitchens across the community to tackle the immediate response to covid-19 pandemic and agricultural systems by growing home food gardening in different homes, also having a consciousness Dry goods store to reduce Zero waste and a local currency as an innovation to reduce food crisis. Insights gained from our article and outreach and their value in how we create adaptation, transformation, and sustainability as a new development pathway to solve any future problem crisis in the food security system in our society.

Keywords: sustainability, food security, community development, adapatation, transformation

Procedia PDF Downloads 73
793 Feasibility of Chicken Feather Waste as a Renewable Resource for Textile Dyeing Processes

Authors: Belayihun Missaw

Abstract:

Cotton cationization is an emerging area that solves the environmental problems associated with the reactive dyeing of cotton. In this study, keratin hydrolysate cationizing agent from chicken feather was extracted and optimized to eliminate the usage of salt during dyeing. Cationization of cotton using the extracted keratin hydrolysate and dyeing of the cationized cotton without salt was made. The effect of extraction parametric conditions like concentration of caustic soda, temperature and time were studied on the yield of protein from chicken feather and colour strength (K/S) values, and these process conditions were optimized. The optimum extraction conditions were. 25g/l caustic soda, at 500C temperature and 105 minutes with average yield = 91.2% and 4.32 colour strength value. The effect of salt addition, pH and concentration of cationizing agent on yield colour strength was also studied and optimized. It was observed that slightly acidic condition with 4% (% owf) concentration of cationizing agent gives a better dyeability as compared to normal cotton reactive dyeing. The physical properties of cationized-dyed fabric were assessed, and the result reveals that the cationization has a similar effect as normal dyeing of cotton. The cationization of cotton with keratin extract was found to be successful and economically viable.

Keywords: cotton materials, cationization, reactive dye, keratin hydrolysate

Procedia PDF Downloads 53
792 Sustainable Balanced Scorecard for Kaizen Evaluation: Comparative Study between Egypt and Japan

Authors: Ola I. S. El Dardery, Ismail Gomaa, Adel R.M. Rayan, Ghada El Khayat, Sara H. Sabry

Abstract:

Continuous improvement activities are becoming a key factor of the success of any organization, those improvement activities include but not limited to kaizen, six sigma, lean projects, and continuous improvement projects. Kaizen is a Japanese philosophy of continuous improvement by making small incremental changes to improve an organization’s performance, reduce costs, reduce delay time, reduce waste in production, etc. This study aims at proposing a new measuring technique for kaizen activities using a Sustainable balanced scorecard structure. A survey questionnaire was developed and introduced to kaizen participants in both Egypt and Japan with the purpose of allocating key performance indicators for both kaizen process (critical success factors) and result (kaizen benefits) into the five perspectives of sustainable balanced scorecard. The study contributes to the literature by presenting a new kaizen measurement of both kaizen process and results, that will illuminate the benefits of using kaizen. Also, the presented measurement can help in the sustainability of kaizen implementation. Determining the combination of the proper kaizen measures could be used by any industry whether service or manufacturing to better measure kaizen activates. The comparison between Japanese measures, as the leaders of kaizen philosophy, and Egyptian measures will help recommending better practices of kaizen in Egypt, and contributing to the 2030 sustainable development goals.

Keywords: continuous improvements, kaizen, performance, sustainable balanced scorecard

Procedia PDF Downloads 141
791 Risk Assessment of Lead Element in Red Peppers Collected from Marketplaces in Antalya, Southern Turkey

Authors: Serpil Kilic, Ihsan Burak Cam, Murat Kilic, Timur Tongur

Abstract:

Interest in the lead (Pb) has considerably increased due to knowledge about the potential toxic effects of this element, recently. Exposure to heavy metals above the acceptable limit affects human health. Indeed, Pb is accumulated through food chains up to toxic concentrations; therefore, it can pose an adverse potential threat to human health. A sensitive and reliable method for determination of Pb element in red pepper were improved in the present study. Samples (33 red pepper products having different brands) were purchased from different markets in Turkey. The selected method validation criteria (linearity, Limit of Detection, Limit of Quantification, recovery, and trueness) demonstrated. Recovery values close to 100% showed adequate precision and accuracy for analysis. According to the results of red pepper analysis, all of the tested lead element in the samples was determined at various concentrations. A Perkin- Elmer ELAN DRC-e model ICP-MS system was used for detection of Pb. Organic red pepper was used to obtain a matrix for all method validation studies. The certified reference material, Fapas chili powder, was digested and analyzed, together with the different sample batches. Three replicates from each sample were digested and analyzed. The results of the exposure levels of the elements were discussed considering the scientific opinions of the European Food Safety Authority (EFSA), which is the European Union’s (EU) risk assessment source associated with food safety. The Target Hazard Quotient (THQ) was described by the United States Environmental Protection Agency (USEPA) for the calculation of potential health risks associated with long-term exposure to chemical pollutants. THQ value contains intake of elements, exposure frequency and duration, body weight and the oral reference dose (RfD). If the THQ value is lower than one, it means that the exposed population is assumed to be safe and 1 < THQ < 5 means that the exposed population is in a level of concern interval. In this study, the THQ of Pb was obtained as < 1. The results of THQ calculations showed that the values were below one for all the tested, meaning the samples did not pose a health risk to the local population. This work was supported by The Scientific Research Projects Coordination Unit of Akdeniz University. Project Number: FBA-2017-2494.

Keywords: lead analyses, red pepper, risk assessment, daily exposure

Procedia PDF Downloads 165
790 Design and Manufacture of Removable Nosecone Tips with Integrated Pitot Tubes for High Power Sounding Rocketry

Authors: Bjorn Kierulf, Arun Chundru

Abstract:

Over the past decade, collegiate rocketry teams have emerged across the country with various goals: space, liquid-fueled flight, etc. A critical piece of the development of knowledge within a club is the use of so-called "sounding rockets," whose goal is to take in-flight measurements that inform future rocket design. Common measurements include acceleration from inertial measurement units (IMU's), and altitude from barometers. With a properly tuned filter, these measurements can be used to find velocity, but are susceptible to noise, offset, and filter settings. Instead, velocity can be measured more directly and more instantaneously using a pitot tube, which operates by measuring the stagnation pressure. At supersonic speeds, an additional thermodynamic property is necessary to constrain the upstream state. One possibility is the stagnation temperature, measured by a thermocouple in the pitot tube. The routing of the pitot tube from the nosecone tip down to a pressure transducer is complicated by the nosecone's structure. Commercial-off-the-shelf (COTS) nosecones come with a removable metal tip (without a pitot tube). This provides the opportunity to make custom tips with integrated measurement systems without making the nosecone from scratch. The main design constraint is how the nosecone tip is held down onto the nosecone, using the tension in a threaded rod anchored to a bulkhead below. Because the threaded rod connects into a threaded hole in the center of the nosecone tip, the pitot tube follows a winding path, and the pressure fitting is off-center. Two designs will be presented in the paper, one with a curved pitot tube and a coaxial design that eliminates the need for the winding path by routing pressure through a structural tube. Additionally, three manufacturing methods will be presented for these designs: bound powder filament metal 3D printing, stereo-lithography (SLA) 3D printing, and traditional machining. These will employ three different materials, copper, steel, and proprietary resin. These manufacturing methods and materials are relatively low cost, thus accessible to student researchers. These designs and materials cover multiple use cases, based on how fast the sounding rocket is expected to travel and how important heating effects are - to measure and to avoid melting. This paper will include drawings showing key features and an overview of the design changes necessitated by the manufacture. It will also include a look at the successful use of these nosecone tips and the data they have gathered to date.

Keywords: additive manufacturing, machining, pitot tube, sounding rocketry

Procedia PDF Downloads 157
789 Recommendation of Semi Permanent Buildings for Tsunami Prone Areas

Authors: Fitri Nugraheni, Adwitya Bhaskara, N. Faried Hanafi

Abstract:

Coastal is one area that can be a place to live. Various buildings can be built in the area around the beach. Many Indonesians use beaches as housing and work, but we know that coastal areas are identical to tsunami and wind. Costs incurred due to permanent damage caused by tsunamis and wind disasters in Indonesia can be minimized by replacing permanent buildings into semi-permanent buildings. Semi-permanent buildings can be realized by using cold-formed steel as a building. Thus, the purpose of this research is to provide efficient semi-permanent building recommendations for residents around the coast. The research is done by first designing the building model by using sketch-up software, then the validation phase is done in consultation with the expert consultant of cold form steel structure. Based on the results of the interview there are several revisions on several sides of the building by adding some bracing rods on the roof, walls and floor frame. The result of this research is recommendation of semi-permanent building model, where the nature of the building; easy to disassemble and install (knockdown), tsunami-friendly (continue the tsunami load), cost and time efficient (using cold-formed-steel and prefabricated GRC), zero waste, does not require many workers (less labor). The recommended building design concept also keeps the architecture side in mind thus it remains a comfortable occupancy for the residents.

Keywords: construction method, cold-formed steel, efficiency, semi-permanent building, tsunami

Procedia PDF Downloads 282
788 Utilization of Agro-Industrial Byproducts for Bacteriocin Production Using Newly Isolated Enterococcus faecium BS13

Authors: Vandana Bali, Manab B. Bera, Parmjit S. Panesar

Abstract:

Microbial production of antimicrobials as biopreservatives is the major area of focus nowadays due to increased interest of consumers towards natural and safe preservation of ready to eat food products. The agro-industrial byproduct based medium and optimized process conditions can contribute in economical production of bacteriocins. Keeping this in view, the present investigation was carried out on agro-industrial byproducts utilization for the production of bacteriocin using Enterococcus faecium BS13 isolated from local fermented food. Different agro-industrial byproduct based carbon sources (whey, potato starch liquor, kinnow peel, deoiledrice bran and molasses), nitrogen sources (soya okra, pea pod and corn steep liquor), metal ions and surfactants were tested for optimal bacteriocin production. The effect of various process parameters such as pH, temperature, inoculum level, agitation and time were also tested on bacteriocin production. The optimized medium containing whey, supplemented with 4%corn steep liquor and polysorbate-80 displayed maximum bacteriocin activity with 2% inoculum, at pH 6.5, temperature 40oC under shaking conditions (100 rpm).

Keywords: Bacteriocin, biopreservation, corn steep liquor, Enterococcus faecium, waste utilization, whey

Procedia PDF Downloads 234