Search results for: carbon farming
701 Tales of Two Cities: 'Motor City' Detroit and 'King Cotton' Manchester: Transatlantic Transmissions and Transformations, Flows of Communications, Commercial and Cultural Connections
Authors: Dominic Sagar
Abstract:
Manchester ‘King Cotton’, the first truly industrial city of the nineteenth century, passing on the baton to Detroit ‘Motor City’, is the first truly modern city. We are exploring the tales of the two cities, their rise and fall and subsequent post-industrial decline, their transitions and transformations, whilst alongside paralleling their corresponding, commercial, cultural, industrial and even agricultural, artistic and musical transactions and connections. The paper will briefly contextualize how technologies of the industrial age and modern age have been instrumental in the development of these cities and other similar cities including New York. However, the main focus of the study will be the present and more importantly the future, how globalisation and the advancements of digital technologies and industries have shaped the cities developments from AlanTuring and the making of the first programmable computer to the effect of digitalisation and digital initiatives. Manchester now has a thriving creative digital infrastructure of Digilabs, FabLabs, MadLabs and hubs, the study will reference the Smart Project and the Manchester Digital Development Association whilst paralleling similar digital and creative industrial initiatives now starting to happen in Detroit. The paper will explore other topics including the need to allow for zones of experimentation, areas to play, think and create in order develop and instigate new initiatives and ideas of production, carrying on the tradition of influential inventions throughout the history of these key cities. Other topics will be briefly touched on, such as urban farming, citing the Biospheric foundation in Manchester and other similar projects in Detroit. However, the main thread will focus on the music industries and how they are contributing to the regeneration of cities. Musically and artistically, Manchester and Detroit have been closely connected by the flow and transmission of information and transfer of ideas via ‘cars and trains and boats and planes’ through to the new ‘super highway’. From Detroit to Manchester often via New York and Liverpool and back again, these musical and artistic connections and flows have greatly affected and influenced both cities and the advancement of technology are still connecting the cities. In summary two hugely important industrial cities, subsequently both experienced massive decline in fortunes, having had their large industrial hearts ripped out, ravaged leaving dying industrial carcasses and car crashes of despair, dereliction, desolation and post-industrial wastelands vacated by a massive exodus of the cities’ inhabitants. To examine the affinity, similarity and differences between Manchester & Detroit, from their industrial importance to their post-industrial decline and their current transmutations, transformations, transient transgressions, cities in transition; contrasting how they have dealt with these problems and how they can learn from each other. With a view to framing these topics with regard to how various communities have shaped these cities and the creative industries and design [the new cotton/car manufacturing industries] are reinventing post-industrial cities, to speculate on future development of these themes in relation to Globalisation, digitalisation and how cities can function to develop solutions to communal living in cities of the future.Keywords: cultural capital, digital developments, musical initiatives, zones of experimentation
Procedia PDF Downloads 195700 Existing International Cooperation Mechanisms and Proposals to Enhance Their Effectiveness for Marine-Based Geoengineering Governance
Authors: Aylin Mohammadalipour Tofighi
Abstract:
Marine-based geoengineering methods, proposed to mitigate climate change, operate primarily through two mechanisms: reducing atmospheric carbon dioxide levels and diminishing solar absorption by the oceans. While these approaches promise beneficial outcomes, they are fraught with environmental, legal, ethical, and political challenges, necessitating robust international governance. This paper underscores the critical role of international cooperation within the governance framework, offering a focused analysis of existing international environmental mechanisms applicable to marine-based geoengineering governance. It evaluates the efficacy and limitations of current international legal structures, including treaties and organizations, in managing marine-based geoengineering, noting significant gaps such as the absence of specific regulations, dedicated international entities, and explicit governance mechanisms such as monitoring. To rectify these problems, the paper advocates for concrete steps to bolster international cooperation. These include the formulation of dedicated marine-based geoengineering guidelines within international agreements, the establishment of specialized supervisory entities, and the promotion of transparent, global consensus-building. These recommendations aim to foster governance that is environmentally sustainable, ethically sound, and politically feasible, thereby enhancing knowledge exchange, spurring innovation, and advancing the development of marine-based geoengineering approaches. This study emphasizes the importance of collaborative approaches in managing the complexities of marine-based geoengineering, contributing significantly to the discourse on international environmental governance in the face of rapid climate and technological changes.Keywords: climate change, environmental law, international cooperation, international governance, international law, marine-based geoengineering, marine law, regulatory frameworks
Procedia PDF Downloads 74699 6 DOF Cable-Driven Haptic Robot for Rendering High Axial Force with Low Off-Axis Impedance
Authors: Naghmeh Zamani, Ashkan Pourkand, David Grow
Abstract:
This paper presents the design and mechanical model of a hybrid impedance/admittance haptic device optimized for applications, like bone drilling, spinal awl probe use, and other surgical techniques were high force is required in the tool-axial direction, and low impedance is needed in all other directions. The performance levels required cannot be satisfied by existing, off-the-shelf haptic devices. This design may allow critical improvements in simulator fidelity for surgery training. The device consists primarily of two low-mass (carbon fiber) plates with a rod passing through them. Collectively, the device provides 6 DOF. The rod slides through a bushing in the top plate and it is connected to the bottom plate with a universal joint, constrained to move in only 2 DOF, allowing axial torque display the user’s hand. The two parallel plates are actuated and located by means of four cables pulled by motors. The forward kinematic equations are derived to ensure that the plates orientation remains constant. The corresponding equations are solved using the Newton-Raphson method. The static force/torque equations are also presented. Finally, we present the predicted distribution of location error, cables velocity, cable tension, force and torque for the device. These results and preliminary hardware fabrication indicate that this design may provide a revolutionary approach for haptic display of many surgical procedures by means of an architecture that allows arbitrary workspace scaling. Scaling of the height and width can be scaled arbitrarily.Keywords: cable direct driven robot, haptics, parallel plates, bone drilling
Procedia PDF Downloads 258698 On the Qarat Kibrit Salt Dome Faulting System South of Adam, Oman: In Search of Uranium Anomalies
Authors: Alaeddin Ebrahimi, Narasimman Sundararajan, Bernhard Pracejus
Abstract:
Development of salt domes, often a rising from depths of some 10 km or more, causes an intense faulting of the surrounding host rocks (salt tectonics). The fractured rocks then present ideal space for oil that can migrate and get trapped. If such moving of hydrocarbons passes uranium-carrying rock units (e.g., shales), uranium is collected and enriched by organic carbon compounds. Brines from the salt body are also ideal carriers for oxidized uranium species and will further dislocate uranium when in contact with uranium-enriched oils. Uranium then has the potential to mineralize in the vicinity of the dome (blue halite is evidence for radiation having affected salt deposits elsewhere in the world). Based on this knowledge, the Qarat Kibrit salt dome was investigated by a well-established geophysical method like very low frequency electromagnetic (VLF-EM) along five traverses approximately 250 m in length (10 m intervals) in order to identify subsurface fault systems. In-phase and quadrature components of the VLF-EM signal were recorded at two different transmitter frequencies (24.0 and 24.9 kHz). The images of Fraser filtered response of the in-phase components indicate a conductive zone (fault) in the southeast and southwest of the study area. The Karous-Hjelt current density pseudo section delineates subsurface faults at depths between 10 and 40 m. The stacked profiles of the Fraser filtered responses brought out two plausible trends/directions of faults. However, there seems to be no evidence for uranium enrichment has been recorded in this area.Keywords: salt dome, uranium, fault, in-phase component, quadrature component, Fraser filter, Karous-Hjelt current density
Procedia PDF Downloads 240697 Surface Sterilization Retain Postharvest Quality and Shelf Life of Strawberry and Cherry Tomato during Modified Atmosphere Packaging
Authors: Ju Young Kim, Mohammad Zahirul Islam, Mahmuda Akter Mele, Su Jeong Han, Hyuk Sung Yoon, In-Lee Choi, Ho-Min Kang
Abstract:
Strawberry and tomato fruits were harvested at the red ripens maturity stage in the Republic of Korea. The fruits were dipped in fungi solution and afterwards were sterilized with sodium hypochlorite (NaOCl) and chlorine dioxide (ClO2) gas. Some fruits were dipped in 150μL/L NaOCl solution for 10 minutes, and others were treated with 5μL/L ClO2 gas for 12 hours and packed with 20,000 cc OTR (oxygen transmission rate) film, the rest were packed in 10,000 cc OTR film inserted with 5μL/L ClO2 gas. 5μL/L ClO2 gas insert treatment showed the lowest carbon dioxide and ethylene, and the highest oxygen concentration was on the final storage day (15th day) in both strawberry and tomato fruits. Tomato fruits showed the lowest fresh weight loss in 5μL/L ClO2 gas insert treatment. The visual quality as well as shelf life showed the highest in 5μL/L ClO2 gas insert treatment of both strawberry and tomato fruits. In addition, the fungal incidence of strawberry and tomato fruits were the most suppressed in 5μL/L ClO2 gas insert treatment. 5μL/L ClO2 gas insert treatment showed higher firmness and soluble solids in both strawberry and tomato fruits. So, 5μL/L ClO2 gas insert treatment may be useful to prevent the fungal incidence as well as retaining the postharvest quality, and increase the shelf life of strawberry and tomato fruits for long term storage. This study was supported by Export Promotion Technology Development Program (314027-03), IPET, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.Keywords: chlorine dioxide, ethylene, fungi, sodium hypochlorite
Procedia PDF Downloads 366696 First Principle-Based Dft and Microkinetic Simulation of Co-Conversion of Carbon Dioxide and Methane on Single Iridium Atom Doped Hematite with Surface Oxygen Defect
Authors: Kefale W. Yizengaw, Delele Worku Ayele, Jyh-Chiang Jiang
Abstract:
The catalytic co-conversion of CO₂ and CH₄ to value-added compounds has become one of the promising approaches to addressing global climate change by having valuable fossil fuels. Thedirect co-conversion of CO₂ and CH₄ to value-added compounds is attractive but tremendously challenging because of both molecules' thermodynamic stability and kinetic inertness. In the present study, a single iridium atom doped and a single oxygen atom defect hematite (110)surface model catalyst, which can comprehend direct C–O coupling based on simultaneous activation of CO2 and CH4 was studied using density functional theory plus U (DFT + U)calculations. The presence of dual active sites on the Ir/Fe₂O₃(110)-OV surface catalyst enablesCO₂ activation on the Ir site and CH₄ activation at the defect site. The electron analysis for the theco-adsorption of CO₂ and CH₄ deals with the electron redistribution on the surface and clearly shows the synergistic effect for simultaneous CO₂ and CH₄ activation on Ir/α- Fe₂O₃(110)-OVsurface. The microkinetic analysis shows that the dissociation of CH4 to CH3 * and H* plays an excellent role in the C–O coupling. The coverage analysis for the intermediate products of the microkinetic simulation results indicates that C–O coupling is the reaction limiting step. Finally, after the CH₃O* intermediate product species is produced, the radical hydrogen species spontaneously diffuse to the CH3O* intermediate product to form methanol at around 490 [K]. The present work provides mechanistic and kinetic insights into the direct C–O coupling of CO₂and CH₄, which could help design more-efficient catalysts.Keywords: co-conversion, C–O coupling, doping, oxygen vacancy, microkinetic
Procedia PDF Downloads 118695 Effect of Climate Change on Nutritional Status of Women in Nigeria
Authors: Onu Theresa Chinyere
Abstract:
The study evaluates the perceived effect of climate change on nutritional status of women in Nigeria. Five research questions and two hypotheses were formulated to guide the study. The study adopted a survey and experimental study research design. One thousand two hundred and fifty one (1,250) respondents were selected from different State in Nigeria using multistage sampling technique. The instruments used to collect data were questionnaire and personal interview on socio economic characteristics of respondents, while Anthropometric data (height and weight) were also used. The data was analyzed using t-test statistic, decided at 50% level of significance. The study found that most states in Nigeria experience high winds, warmer and frequent hot days and night over most land areas, droughts and tides during climate change events. The respondent unanimously agree that climate change causes reduction in food yields, decline in food availability/supply, negatively affecting soil quality, carbon fertilization, decreases flexibilities in technology choices to strengthen food production. The Anthropometric analysis shows that out of 1250 women sampled, 560 (44.8%) maintain normal weight, while 405 (32.40%) women were found to be underweight, since their body mass index is less that 18.5. There were few cases of obesity among the surveyed women since only 80 out of 1250 which represent 6.4% of the women were obese. Bases on the findings, the following recommendations were made-local fertilizer should be encouraged to boost foods yield especially during climate change: women should imbibe the culture of preservation or reservoir that will help in mitigating the effects of climate on food intake and nutritional status, especially during the crisis period, among others.Keywords: climate change, nutrition anthropometric analysis, obesity culture, environment and women among others
Procedia PDF Downloads 427694 Structural Damage Detection in a Steel Column-Beam Joint Using Piezoelectric Sensors
Authors: Carlos H. Cuadra, Nobuhiro Shimoi
Abstract:
Application of piezoelectric sensors to detect structural damage due to seismic action on building structures is investigated. Plate-type piezoelectric sensor was developed and proposed for this task. A film-type piezoelectric sheet was attached on a steel plate and covered by a layer of glass. A special glue is used to fix the glass. This glue is a silicone that requires the application of ultraviolet rays for its hardening. Then, the steel plate was set up at a steel column-beam joint of a test specimen that was subjected to bending moment when test specimen is subjected to monotonic load and cyclic load. The structural behavior of test specimen during cyclic loading was verified using a finite element model, and it was found good agreement between both results on load-displacement characteristics. The cross section of steel elements (beam and column) is a box section of 100 mm×100 mm with a thin of 6 mm. This steel section is specified by the Japanese Industrial Standards as carbon steel square tube for general structure (STKR400). The column and beam elements are jointed perpendicularly using a fillet welding. The resulting test specimen has a T shape. When large deformation occurs the glass plate of the sensor device cracks and at that instant, the piezoelectric material emits a voltage signal which would be the indicator of a certain level of deformation or damage. Applicability of this piezoelectric sensor to detect structural damages was verified; however, additional analysis and experimental tests are required to establish standard parameters of the sensor system.Keywords: piezoelectric sensor, static cyclic test, steel structure, seismic damages
Procedia PDF Downloads 124693 Strengthening of Reinforced Concrete Columns Using Advanced Composite Materials to Resist Earthquakes
Authors: Mohamed Osama Hassaan
Abstract:
Recent earthquakes have demonstrated the vulnerability of older reinforced concrete buildings to fail under imposed seismic loads. Accordingly, the need to strengthen existing reinforced concrete structures, mainly columns, to resist high seismic loads has increased. Conventional strengthening techniques such as using steel plates, steel angles and concrete overlay are used to achieve the required increase in strength or ductility. However, techniques using advanced composite materials are established. The column's splice zone is the most critical zone that failed under seismic loads. There are three types of splice zone failure that can be observed under seismic action, namely, Failure of the flexural plastic hinge region, shear failure and failure due to short lap splice. A lapped splice transfers the force from one bar to another through the concrete surrounding both bars. At any point along the splice, force is transferred from one bar by a bond to the surrounding concrete and also by a bond to the other bar of the pair forming the splice. The integrity of the lap splice depends on the development of adequate bond length. The R.C. columns built in seismic regions are expected to undergo a large number of inelastic deformation cycles while maintaining the overall strength and stability of the structure. This can be ensured by proper confinement of the concrete core. The last type of failure is focused in this research. There are insufficient studies that address the problem of strengthening existing reinforced concrete columns at splice zone through confinement with “advanced composite materials". Accordingly, more investigation regarding the seismic behavior of strengthened reinforced concrete columns using the new generation of composite materials such as (Carbon fiber polymer), (Glass fiber polymer), (Armiad fiber polymer).Keywords: strengthening, columns, advanced composite materials, earthquakes
Procedia PDF Downloads 78692 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.Keywords: emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi method
Procedia PDF Downloads 288691 Strategies for Tackling Climate Change: Review of Sustainability and Air-Conditioning
Authors: Tosin T. Oye, Keng Goh, Naren Gupta, Toyosi K. Oye
Abstract:
One of the most extreme difficulties confronting humankind in the twenty-first century is the consumption of energy. Non-renewable energy sources have been the fundamental energy assets for human culture. The consumption of energy sources emanating from the use of air-conditioning is still causing and has caused harm to the environment and human health. The request for energy could be double or perhaps triple in the future because of the utilization of air-conditioning systems as the worldwide population develops and emerging districts grow their economics. This has recently raised worries in sustainable development over climate change, global warming, ozone layer reduction, health issues, and possible supply problems. As a result of the improvement of way of life, air-conditioning has generally been applied. Nevertheless, environmental pollutions and health issues related with the use of air-conditioning unfolds more as often as possible. In order to diminish their level of undesirable impact on the environment, it is essential to establish suitable strategies for tackling climate change. Therefore, this paper aims to review and analyze studies in sustainability and air- conditioning and subsequently suggest strategies for combatting climate change. Future perspectives for tackling climate change are likewise suggested. The key findings revealed that it is required to establish sustainability measures to reduce the level of energy consumption and carbon emissions in a bid to effectively tackle climate change and its impact on the environment, and then raise public alertness towards the adverse impact of climate change arising from the use of air-conditioning systems. The research outcome offers valuable awareness to the general public, organizations, policymakers, and the government in making future municipal zones sustainable and more climate resilient.Keywords: air-conditioning, climate change, environment, human health, sustainability
Procedia PDF Downloads 129690 Genetically Engineered Crops: Solution for Biotic and Abiotic Stresses in Crop Production
Authors: Deepak Loura
Abstract:
Production and productivity of several crops in the country continue to be adversely affected by biotic (e.g., Insect-pests and diseases) and abiotic (e.g., water temperature and salinity) stresses. Over-dependence on pesticides and other chemicals is economically non-viable for the resource-poor farmers of our country. Further, pesticides can potentially affect human and environmental safety. While traditional breeding techniques and proper- management strategies continue to play a vital role in crop improvement, we need to judiciously use biotechnology approaches for the development of genetically modified crops addressing critical problems in the improvement of crop plants for sustainable agriculture. Modern biotechnology can help to increase crop production, reduce farming costs, and improve food quality and the safety of the environment. Genetic engineering is a new technology which allows plant breeders to produce plants with new gene combinations by genetic transformation of crop plants for improvement of agronomic traits. Advances in recombinant DNA technology have made it possible to have genes between widely divergent species to develop genetically modified or genetically engineered plants. Plant genetic engineering provides the strength to harness useful genes and alleles from indigenous microorganisms to enrich the gene pool for developing genetically modified (GM) crops that will have inbuilt (inherent) resistance to insect pests, diseases, and abiotic stresses. Plant biotechnology has made significant contributions in the past 20 years in the development of genetically engineered or genetically modified crops with multiple benefits. A variety of traits have been introduced in genetically engineered crops which include (i) herbicide resistance. (ii) pest resistance, (iii) viral resistance, (iv) slow ripening of fruits and vegetables, (v) fungal and bacterial resistance, (vi) abiotic stress tolerance (drought, salinity, temperature, flooding, etc.). (vii) quality improvement (starch, protein, and oil), (viii) value addition (vitamins, micro, and macro elements), (ix) pharmaceutical and therapeutic proteins, and (x) edible vaccines, etc. Multiple genes in transgenic crops can be useful in developing durable disease resistance and a broad insect-control spectrum and could lead to potential cost-saving advantages for farmers. The development of transgenic to produce high-value pharmaceuticals and the edible vaccine is also under progress, which requires much more research and development work before commercially viable products will be available. In addition, molecular-aided selection (MAS) is now routinely used to enhance the speed and precision of plant breeding. Newer technologies need to be developed and deployed for enhancing and sustaining agricultural productivity. There is a need to optimize the use of biotechnology in conjunction with conventional technologies to achieve higher productivity with fewer resources. Therefore, genetic modification/ engineering of crop plants assumes greater importance, which demands the development and adoption of newer technology for the genetic improvement of crops for increasing crop productivity.Keywords: biotechnology, plant genetic engineering, genetically modified, biotic, abiotic, disease resistance
Procedia PDF Downloads 72689 Metabolic and Phylogenetic Profiling of Rhizobium leguminosarum Strains Isolated from NZ Soils of Varying pH
Authors: Anish Shah, Steve A. Wakelin, Derrick Moot, Aurélie Laugraud, Hayley J. Ridgway
Abstract:
A mixed pasture system of ryegrass-clover is used in New Zealand, where clovers are generally inoculated with commercially available strains of rhizobia. The community of rhizobia living in the soil and the way in which they interact with the plant are affected by different biotic and abiotic factors. In general, bacterial richness and diversity in soil varies by soil pH. pH also affects cell physiology and acts as a master variable that controls the wider soil physiochemical conditions such as P availability, Al release and micronutrient availability. As such, pH can have both primary and secondary effects on soil biology and processes. The aim of this work was to investigate the effect of soil pH on the genetic diversity and metabolic profile of Rhizobium leguminosarum strains nodulating clover. Soils were collected from 12 farms across New Zealand which had a pH(water) range of between 4.9 and 7.5, with four acidic (pH 4.9 – 5.5), four ‘neutral’ (5.8 – 6.1) and four alkaline (6.5 – 7.5) soils. Bacteria were recovered from nodules of Trifolium repens (white clover) and T. subterraneum (subterranean clover) grown in the soils. The strains were cultured and screened against a range of pH-amended media to demonstrate whether they were adapted to pH levels similar to their native soils. The strains which showed high relative growth at a given pH (~20% of those isolated) were selected for metabolic and taxonomic profiling. The Omnilog (Biolog Inc., Hayward, CA) phenotype array was used to perform assays on carbon (C) utilisation for selected strains. DNA was extracted from the strains which had differing C utilisation profiles and PCR products for both forward and reverse primers were sequenced for the following genes: 16S rRNA, recA, nodC, nodD and nifH (symbiotic).Keywords: bacterial diversity, clover, metabolic and taxonomic profiling, pH adaptation, rhizobia
Procedia PDF Downloads 260688 Novel Bioinspired Design to Capture Smoky CO2 by Reactive Absorption with Aqueous Scrubber
Authors: J. E. O. Hernandez
Abstract:
In the next 20 years, energy production by burning fuels will increase and so will the atmospheric concentration of CO2 and its well-known threats to life on Earth. The technologies available for capturing CO2 are still dubious and this keeps fostering an interest in bio-inspired approaches. The leading one is the application of carbonic anhydrase (CA) –a superfast biocatalyst able to convert up to one million molecules of CO2 into carbonates in water. However, natural CA underperforms when applied to real smoky CO2 in chimneys and, so far, the efforts to create superior CAs in the lab rely on screening methods running under pristine conditions at the micro level, which are far from resembling those in chimneys. For the evolution of man-made enzymes, selection rather than screening would be ideal but this is challenging because of the need for a suitable artificial environment that is also sustainable for our society. Herein we present the stepwise design and construction of a bioprocess (from bench-scale to semi-pilot) for evolutionary selection experiments. In this bioprocess, reaction and adsorption took place simultaneously at atmospheric pressure in a spray tower. The scrubbing solution was fed countercurrently by reusing municipal pressure and it was mainly prepared with water, carbonic anhydrase and calcium chloride. This bioprocess allowed for the enzymatic carbonation of smoky CO2; the reuse of process water and the recovery of solid carbonates without cooling of smoke, pretreatments, solvent amines and compression of CO2. The average yield of solid carbonates was 0.54 g min-1 or 12-fold the amount produced in serum bottles at lab bench scale. This bioprocess could be used as a tailor-made environment for driving the selection of superior CAs. The bioprocess and its match CA could be sustainably used to reduce global warming by CO2 emissions from exhausts.Keywords: biological carbon capture and sequestration, carbonic anhydrase, directed evolution, global warming
Procedia PDF Downloads 193687 The Influence of Microcapsulated Phase Change Materials on Thermal Performance of Geopolymer Concrete
Authors: Vinh Duy Cao, Shima Pilehvar, Anna M. Szczotok, Anna-Lena Kjøniksen
Abstract:
The total energy consumption is dramatically increasing on over the world, especially for building energy consumption where a significant proportion of energy is used for heating and cooling purposes. One of the solutions to reduce the energy consumption for the building is to improve construction techniques and enhance material technology. Recently, microcapsulated phase change materials (MPCM) with high energy storage capacity within the phase transition temperature of the materials is a potential method to conserve and save energy. A new composite materials with high energy storage capacity by mixing MPCM into concrete for passive building technology is the promising candidate to reduce the energy consumption. One of the most untilized building materials for mixing with MPCM is Portland cement concrete. However, the emission of carbon dioxide (CO2) due to producing cement which plays the important role in the global warming is the main drawback of PCC. Accordingly, an environmentally friendly building material, geopolymer, which is synthesized by the reaction between the industrial waste material (aluminosilicate) and a strong alkali activator, is a potential materials to mixing with MPCM. Especially, the effect of MPCM on the thermal and mechanical properties of geopolymer concrete (GPC) is very limited. In this study, high thermal energy storage capacity materials were fabricated by mixing MPCM into geopolymer concrete. This article would investigate the effect of MPCM concentration on thermal and mechanical properties of GPC. The target is to balance the effect of MPCM on improving the thermal performance and maintaining the compressive strength of the geopolymer concrete at an acceptable level for building application.Keywords: microencapsulated phase change materials, geopolymer concrete, energy storage capacity, thermal performance
Procedia PDF Downloads 309686 Multi-Criteria Optimal Management Strategy for in-situ Bioremediation of LNAPL Contaminated Aquifer Using Particle Swarm Optimization
Authors: Deepak Kumar, Jahangeer, Brijesh Kumar Yadav, Shashi Mathur
Abstract:
In-situ remediation is a technique which can remediate either surface or groundwater at the site of contamination. In the present study, simulation optimization approach has been used to develop management strategy for remediating LNAPL (Light Non-Aqueous Phase Liquid) contaminated aquifers. Benzene, toluene, ethyl benzene and xylene are the main component of LNAPL contaminant. Collectively, these contaminants are known as BTEX. In in-situ bioremediation process, a set of injection and extraction wells are installed. Injection wells supply oxygen and other nutrient which convert BTEX into carbon dioxide and water with the help of indigenous soil bacteria. On the other hand, extraction wells check the movement of plume along downstream. In this study, optimal design of the system has been done using PSO (Particle Swarm Optimization) algorithm. A comprehensive management strategy for pumping of injection and extraction wells has been done to attain a maximum allowable concentration of 5 ppm and 4.5 ppm. The management strategy comprises determination of pumping rates, the total pumping volume and the total running cost incurred for each potential injection and extraction well. The results indicate a high pumping rate for injection wells during the initial management period since it facilitates the availability of oxygen and other nutrients necessary for biodegradation, however it is low during the third year on account of sufficient oxygen availability. This is because the contaminant is assumed to have biodegraded by the end of the third year when the concentration drops to a permissible level.Keywords: groundwater, in-situ bioremediation, light non-aqueous phase liquid, BTEX, particle swarm optimization
Procedia PDF Downloads 445685 Inhouse Inhibitor for Mitigating Corrosion in the Algerian Oil and Gas Industry
Authors: Hadjer Didouh, Mohamed Hadj Meliani, Izzeddine Sameut Bouhaik
Abstract:
As global demand for natural gas intensifies, Algeria is increasing its production to meet this rising need, placing significant strain on the nation's extensive pipeline infrastructure. Sonatrach, Algeria's national oil and gas company, faces persistent challenges from metal corrosion, particularly microbiologically influenced corrosion (MIC), leading to substantial economic losses. This study investigates the corrosion-inhibiting properties of Calotropis procera extracts, known as karanka, as a sustainable alternative to conventional inhibitors, which often pose environmental risks. The Calotropis procera extracts were evaluated for their efficacy on carbon steel API 5L X52 through electrochemical techniques, including potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), under simulated operational conditions at varying concentrations, particularly at 10%, and elevated temperatures up to 60°C. The results demonstrated remarkable inhibition efficiency, achieving 96.73% at 60°C, attributed to the formation of a stable protective film on the metal surface that suppressed anodic and cathodic corrosion reactions. Scanning electron microscopy (SEM) confirmed the stability and adherence of these protective films, while EIS analysis indicated a significant increase in charge transfer resistance, highlighting the extract's effectiveness in enhancing corrosion resistance. The abundant availability of Calotropis procera in Algeria and its low-cost extraction processes present a promising opportunity for sustainable biocorrosion management strategies in the oil and gas industry, reinforcing the potential of plant-based extracts as viable alternatives to synthetic inhibitors for environmentally friendly corrosion control.Keywords: corrosion inhibition, calotropis procera, microbiologically influenced corrosion, eco-friendly inhibitor
Procedia PDF Downloads 28684 Thai Cane Farmers' Responses to Sugar Policy Reforms: An Intentions Survey
Authors: Savita Tangwongkit, Chittur S Srinivasan, Philip J. Jones
Abstract:
Thailand has become the world’s fourth largest sugarcane producer and second largest sugar exporter. While there have been a number of drivers of this growth, the primary driver has been wide-ranging government support measures. Recently, the Thai government has emphasized the need for policy reform as part of a broader industry restructuring to bring the sector up-to-date with the current and future developments in the international sugar market. Because of the sectors historical dependence on government support, any such reform is likely to have a very significant impact on the fortunes of Thai cane farmers. This study explores the impact of three policy scenarios, representing a spectrum of policy approaches, on Thai cane producers. These reform scenarios were designed in consultation with policy makers and academics working in the cane sector. Scenario 1 captures the current ‘government proposal’ for policy reform. This scenario removes certain domestic production subsidies but seeks to maintain as much support as is permissible under current WTO rules. The second scenario, ‘protectionism’, maintains the current internal market producer supports, but otherwise complies with international (WTO) commitments. Third, the ‘libertarian scenario’ removes all production support and market interventions, trade and domestic consumption distortions. Most important driver of producer behaviour in all of the scenarios is the producer price of cane. Cane price is obviously highest under the protectionism scenario, followed by government proposal and libertarian scenarios, respectively. Likely producer responses to these three policy scenarios was determined by means of a large-scale survey of cane farmers. The sample was stratified by size group and quotas filled by size group and region. One scenario was presented to each of three sub-samples, consisting of approx.150 farmers. Total sample size was 462 farms. Data was collected by face-to-face interview between June and August 2019. There was a marked difference in farmer response to the three scenarios. Farmers in the ‘Protectionism’ scenario, which maintains the highest cane price and those who farm larger cane areas are more likely to continue cane farming. The libertarian scenario is likely to result in the greatest losses in terms of cane production volume broadly double that of the ‘protectionism’ scenario, primarily due to farmers quitting cane production altogether. Over half of loss cane production volume comes from medium-size farm, i.e. the largest and smallest producers are the most resilient. This result is likely due to the fact that the medium size group are large enough to require hired labour but lack the economies of scale of the largest farms. Over all size groups the farms most heavily specialized in cane production, i.e. those devoting 26-50% of arable land to cane, are also the most vulnerable, with 70% of all farmers quitting cane production coming from this group. This investigation suggests that cane price is the most significant determinant of farmer behaviour. Also, that where scenarios drive significantly lower cane price, policy makers should target support towards mid-sized producers, with policies that encourage efficiency gains and diversification into alternative agricultural crops.Keywords: farmer intentions, farm survey, policy reform, Thai cane production
Procedia PDF Downloads 111683 Modeling of a Pilot Installation for the Recovery of Residual Sludge from Olive Oil Extraction
Authors: Riad Benelmir, Muhammad Shoaib Ahmed Khan
Abstract:
The socio-economic importance of the olive oil production is significant in the Mediterranean region, both in terms of wealth and tradition. However, the extraction of olive oil generates huge quantities of wastes that may have a great impact on land and water environment because of their high phytotoxicity. Especially olive mill wastewater (OMWW) is one of the major environmental pollutants in olive oil industry. This work projects to design a smart and sustainable integrated thermochemical catalytic processes of residues from olive mills by hydrothermal carbonization (HTC) of olive mill wastewater (OMWW) and fast pyrolysis of olive mill wastewater sludge (OMWS). The byproducts resulting from OMWW-HTC treatment are a solid phase enriched in carbon, called biochar and a liquid phase (residual water with less dissolved organic and phenolic compounds). HTC biochar can be tested as a fuel in combustion systems and will also be utilized in high-value applications, such as soil bio-fertilizer and as catalyst or/and catalyst support. The HTC residual water is characterized, treated and used in soil irrigation since the organic and the toxic compounds will be reduced under the permitted limits. This project’s concept includes also the conversion of OMWS to a green diesel through a catalytic pyrolysis process. The green diesel is then used as biofuel in an internal combustion engine (IC-Engine) for automotive application to be used for clean transportation. In this work, a theoretical study is considered for the use of heat from the pyrolysis non-condensable gases in a sorption-refrigeration machine for pyrolysis gases cooling and condensation of bio-oil vapors.Keywords: biomass, olive oil extraction, adsorption cooling, pyrolisis
Procedia PDF Downloads 92682 The Potential of Sown Pastures as Feedstock for Biofuels in Brazil
Authors: Danilo G. De Quadros
Abstract:
Biofuels are a priority in the renewable energy agenda. The utilization of tropical grasses to ethanol production is a real opportunity to Brazil reaches the world’s leadership in biofuels production because there are 100 million hectares of sown pastures, which represent 20% of all land and 80% of agricultural areas. Basically, nowadays tropical grasses are used to raise livestock. The results obtained in this research could bring tremendous advance not only to national technology and economy but also to improve social and environmental aspects. Thus, the objective of this work was to estimate, through well-established international models, the potential of biofuels production using sown tropical pastures as feedstocks and to compare the results with sugarcane ethanol, considering state-of-art of conversion technology, advantages and limitations factors. There were used data from national and international literature about forage yield and biochemical conversion yield. Some scenarios were studied to evaluate potential advantages and limitations for cellulosic ethanol production, since non-food feedstock appeal to conversion strategies, passing through harvest, densification, logistics, environmental impacts (carbon and water cycles, nutrient recycling and biodiversity), and social aspects. If Brazil used only 1% of sown pastures to ethanol production by biochemical pathway, with average dry matter yield of 15 metric tons per hectare per year (there are results of 40 tons), resulted annually in 721 billion liters, that represents 10 times more than sugarcane ethanol projected by the Government in 2030. However, more research is necessary to take the results to commercial scale with competitive costs, considering many strategies and methods applied in ethanol production using cellulosic feedstock.Keywords: biofuels, biochemical pathway, cellulosic ethanol, sustainability
Procedia PDF Downloads 263681 The Effect of Photovoltaic Integrated Shading Devices on the Energy Performance of Apartment Buildings in a Mediterranean Climate
Authors: Jenan Abu Qadourah
Abstract:
With the depletion of traditional fossil resources and the growing human population, it is now more important than ever to reduce our energy usage and harmful emissions. In the Mediterranean region, the intense solar radiation contributes to summertime overheating, which raises energy costs and building carbon footprints, alternatively making it suitable for the installation of solar energy systems. In urban settings, where multi-story structures predominate and roof space is limited, photovoltaic integrated shading devices (PVSD) are a clean solution for building designers. However, incorporating photovoltaic (PV) systems into a building's envelope is a complex procedure that, if not executed correctly, might result in the PV system failing. As a result, potential PVSD design solutions must be assessed based on their overall energy performance from the project's early design stage. Therefore, this paper aims to investigate and compare the possible impact of various PVSDs on the energy performance of new apartments in the Mediterranean region, with a focus on Amman, Jordan. To achieve the research aim, computer simulations were performed to assess and compare the energy performance of different PVSD configurations. Furthermore, an energy index was developed by taking into account all energy aspects, including the building's primary energy demand and the PVSD systems' net energy production. According to the findings, the PVSD system can meet 12% to 43% of the apartment building's electricity needs. By highlighting the potential interest in PVSD systems, this study aids the building designer in producing more energy-efficient buildings and encourages building owners to install PV systems on the façade of their buildings.Keywords: photovoltaic integrated shading device, solar energy, architecture, energy performance, simulation, overall energy index, Jordan
Procedia PDF Downloads 84680 A Descriptive Study on Micro Living and Its Importance over Large Houses by Understanding Various Scenarios and Case Studies
Authors: Belal Neazi
Abstract:
'Larger Houses Consume More Resources’ – both in construction and during operation. The most important aspect of smaller homes is that it uses less electricity and fuel for construction and maintenance. Here, an urban interpretation of the contemporary minimal existence movement is explained. In an attempt to restrict urban decay and to encourage inner-city renewal, the Tiny House principles are interpreted as alternative ways of dwelling in urban neighbourhoods. These tiny houses are usually pretty different from each other in interior planning, but almost similar in size. The disadvantage of large homes came up when people were asked to vacate as they were not able to pay the massive amount of mortgages. This made them reconsider their housing situation and discover the ideas of minimalism and the general rising inclination in environmental awareness that serve as the basis for the tiny house movement. One of the largest benefits of inhabiting a tiny house is the decrease in carbon footprint. Also, to increase social behaviour and freedom. It’s better for the environmental concern, financial concerns, and desire for more time and freedom. Examples of the tiny house village which are sustaining homeless population and the use of different reclaimed materials for the construction of these tiny houses are explained in the paper. It is proposed in the paper, that these houses will reflect the diversity while proposing an alternative model for the rehabilitation of decaying row-homes and the renewal of fading communities. The core objective is to design small or micro spaces for the economically backward people of the place and increase their social behaviour and freedom. Also, it’s better for the environmental concern, financial concerns, and desire for more time and freedom.Keywords: city renewal, environmental concern, micro-living, tiny house
Procedia PDF Downloads 183679 On Board Measurement of Real Exhaust Emission of Light-Duty Vehicles in Algeria
Authors: R. Kerbachi, S. Chikhi, M. Boughedaoui
Abstract:
The study presents an analysis of the Algerian vehicle fleet and resultant emissions. The emission measurement of air pollutants emitted by road transportation (CO, THC, NOX and CO2) was conducted on 17 light duty vehicles in real traffic. This sample is representative of the Algerian light vehicles in terms of fuel quality (gasoline, diesel and liquefied petroleum gas) and the technology quality (injection system and emission control). The experimental measurement methodology of unit emission of vehicles in real traffic situation is based on the use of the mini-Constant Volume Sampler for gas sampling and a set of gas analyzers for CO2, CO, NOx and THC, with an instrumentation to measure kinematics, gas temperature and pressure. The apparatus is also equipped with data logging instrument and data transfer. The results were compared with the database of the European light vehicles (Artemis). It was shown that the technological injection liquefied petroleum gas (LPG) has significant impact on air pollutants emission. Therefore, with the exception of nitrogen oxide compounds, uncatalyzed LPG vehicles are more effective in reducing emissions unit of air pollutants compared to uncatalyzed gasoline vehicles. LPG performance seems to be lower under real driving conditions than expected on chassis dynamometer. On the other hand, the results show that uncatalyzed gasoline vehicles emit high levels of carbon monoxide, and nitrogen oxides. Overall, and in the absence of standards in Algeria, unit emissions are much higher than Euro 3. The enforcement of pollutant emission standard in developing countries is an important step towards introducing cleaner technology and reducing vehicular emissions.Keywords: on-board measurements of unit emissions of CO, HC, NOx and CO2, light vehicles, mini-CVS, LPG-fuel, artemis, Algeria
Procedia PDF Downloads 276678 CO2 Emission and Cost Optimization of Reinforced Concrete Frame Designed by Performance Based Design Approach
Authors: Jin Woo Hwang, Byung Kwan Oh, Yousok Kim, Hyo Seon Park
Abstract:
As greenhouse effect has been recognized as serious environmental problem of the world, interests in carbon dioxide (CO2) emission which comprises major part of greenhouse gas (GHG) emissions have been increased recently. Since construction industry takes a relatively large portion of total CO2 emissions of the world, extensive studies about reducing CO2 emissions in construction and operation of building have been carried out after the 2000s. Also, performance based design (PBD) methodology based on nonlinear analysis has been robustly developed after Northridge Earthquake in 1994 to assure and assess seismic performance of building more exactly because structural engineers recognized that prescriptive code based design approach cannot address inelastic earthquake responses directly and assure performance of building exactly. Although CO2 emissions and PBD approach are recent rising issues on construction industry and structural engineering, there were few or no researches considering these two issues simultaneously. Thus, the objective of this study is to minimize the CO2 emissions and cost of building designed by PBD approach in structural design stage considering structural materials. 4 story and 4 span reinforced concrete building optimally designed to minimize CO2 emissions and cost of building and to satisfy specific seismic performance (collapse prevention in maximum considered earthquake) of building satisfying prescriptive code regulations using non-dominated sorting genetic algorithm-II (NSGA-II). Optimized design result showed that minimized CO2 emissions and cost of building were acquired satisfying specific seismic performance. Therefore, the methodology proposed in this paper can be used to reduce both CO2 emissions and cost of building designed by PBD approach.Keywords: CO2 emissions, performance based design, optimization, sustainable design
Procedia PDF Downloads 407677 Relation between Electrical Properties and Application of Chitosan Nanocomposites
Authors: Evgen Prokhorov, Gabriel Luna-Barcenas
Abstract:
The polysaccharide chitosan (CS) is an attractive biopolymer for the stabilization of several nanoparticles in acidic aqueous media. This is due in part to the presence of abundant primary NH2 and OH groups which may lead to steric or chemical stabilization. Applications of most CS nanocomposites are based upon the interaction of high surface area nanoparticles (NPs) with different substance. Therefore, agglomeration of NPs leads to decreasing effective surface area such that it may decrease the efficiency of nanocomposites. The aim of this work is to measure nanocomposite’s electrical conductivity phenomena that will allow one to formulate optimal concentrations of conductivity NPs in CS-based nanocomposites. Additionally, by comparing the efficiency of such nanocomposites, one can guide applications in the biomedical (antibacterial properties and tissue regeneration) and sensor fields (detection of copper and nitrate ions in aqueous solutions). It was shown that the best antibacterial (CS-AgNPs, CS-AgNPs-carbon nanotubes) and would healing properties (CS-AuNPs) are observed in nanocomposites with concentrations of NPs near the percolation threshold. In this regard, the best detection limit in potentiometric and impedimetric sensors for detection of copper ions (using CS-AuNPs membrane) and nitrate ions (using CS-clay membrane) in aqueous solutions have been observed for membranes with concentrations of NPs near percolation threshold. It is well known that at the percolation concentration of NPs an abrupt increasing of conductivity is observed due to the presence of physical contacts between NPs; above this concentration, agglomeration of NPs takes place such that a decrease in the effective surface and performance of nanocomposite appear. The obtained relationship between electrical percolation threshold and performance of polymer nanocomposites with conductivity NPs is important for the design and optimization of polymer-based nanocomposites for different applications.Keywords: chitosan, conductivity nanoparticles, percolation threshold, polymer nanocomposites
Procedia PDF Downloads 212676 The Role of Semi Open Spaces on Exploitation of Wind-Driven Ventilation
Authors: Paria Saadatjoo
Abstract:
Given that HVAC systems are the main sources of carbon dioxide producers, developing ways to reduce dependence on these systems and making use of natural resources is too important to achieve environmentally friendly buildings. A major part of building potential in terms of using natural energy resources depends on its physical features. So architectural decisions at the first step of the design process can influence the building's energy efficiency significantly. Implementation of semi-open spaces into solid apartment blocks inspired by the concept of courtyard in ancient buildings as a passive cooling strategy is currently enjoying great popularity. However, the analysis of these features and their effect on wind behavior at initial design steps is a difficult task for architects. The main objective of this research was to investigate the influence of semi-open to closed space ratio on airflow patterns in and around midrise buildings and introduce the best ratio in terms of harnessing natural ventilation. The main strategy of this paper was semi-experimental, and the research methodology was descriptive statistics. At the first step, by changing the terrace area, 6 models with various open to closed space ratios were created. These forms were then transferred to CFD software to calculate the primary indicators of natural ventilation potentials such as wind force coefficient, air flow rate, age of air distribution, etc. Investigations indicated that modifying the terrace area and, in other words, the open to closed space ratio influenced the wind force coefficient, airflow rate, and age of air distribution.Keywords: natural ventilation, wind, midrise, open space, energy
Procedia PDF Downloads 170675 The Role of Fluid Catalytic Cracking in Process Optimisation for Petroleum Refineries
Authors: Chinwendu R. Nnabalu, Gioia Falcone, Imma Bortone
Abstract:
Petroleum refining is a chemical process in which the raw material (crude oil) is converted to finished commercial products for end users. The fluid catalytic cracking (FCC) unit is a key asset in refineries, requiring optimised processes in the context of engineering design. Following the first stage of separation of crude oil in a distillation tower, an additional 40 per cent quantity is attainable in the gasoline pool with further conversion of the downgraded product of crude oil (residue from the distillation tower) using a catalyst in the FCC process. Effective removal of sulphur oxides, nitrogen oxides, carbon and heavy metals from FCC gasoline requires greater separation efficiency and involves an enormous environmental significance. The FCC unit is primarily a reactor and regeneration system which employs cyclone systems for separation. Catalyst losses in FCC cyclones lead to high particulate matter emission on the regenerator side and fines carryover into the product on the reactor side. This paper aims at demonstrating the importance of FCC unit design criteria in terms of technical performance and compliance with environmental legislation. A systematic review of state-of-the-art FCC technology was carried out, identifying its key technical challenges and sources of emissions. Case studies of petroleum refineries in Nigeria were assessed against selected global case studies. The review highlights the need for further modelling investigations to help improve FCC design to more effectively meet product specification requirements while complying with stricter environmental legislation.Keywords: design, emission, fluid catalytic cracking, petroleum refineries
Procedia PDF Downloads 137674 Intelligent Crop Circle: A Blockchain-Driven, IoT-Based, AI-Powered Sustainable Agriculture System
Authors: Mishak Rahul, Naveen Kumar, Bharath Kumar
Abstract:
Conceived as a high-end engine to revolutionise sustainable agri-food production, the intelligent crop circle (ICC) aims to incorporate the Internet of Things (IoT), blockchain technology and artificial intelligence (AI) to bolster resource efficiency and prevent waste, increase the volume of production and bring about sustainable solutions with long-term ecosystem conservation as the guiding principle. The operating principle of the ICC relies on bringing together multidisciplinary bottom-up collaborations between producers, researchers and consumers. Key elements of the framework include IoT-based smart sensors for sensing soil moisture, temperature, humidity, nutrient and air quality, which provide short-interval and timely data; blockchain technology for data storage on a private chain, which maintains data integrity, traceability and transparency; and AI-based predictive analysis, which actively predicts resource utilisation, plant growth and environment. This data and AI insights are built into the ICC platform, which uses the resulting DSS (Decision Support System) outlined as help in decision making, delivered through an easy-touse mobile app or web-based interface. Farmers are assumed to use such a decision-making aid behind the power of the logic informed by the data pool. Building on existing data available in the farm management systems, the ICC platform is easily interoperable with other IoT devices. ICC facilitates connections and information sharing in real-time between users, including farmers, researchers and industrial partners, enabling them to cooperate in farming innovation and knowledge exchange. Moreover, ICC supports sustainable practice in agriculture by integrating gamification techniques to stimulate farm adopters, deploying VR technologies to model and visualise 3D farm environments and farm conditions, framing the field scenarios using VR headsets and Real-Time 3D engines, and leveraging edge technologies to facilitate secure and fast communication and collaboration between users involved. And through allowing blockchain-based marketplaces, ICC offers traceability from farm to fork – that is: from producer to consumer. It empowers informed decision-making through tailor-made recommendations generated by means of AI-driven analysis and technology democratisation, enabling small-scale and resource-limited farmers to get their voice heard. It connects with traditional knowledge, brings together multi-stakeholder interactions as well as establishes a participatory ecosystem to incentivise continuous growth and development towards more sustainable agro-ecological food systems. This integrated approach leverages the power of emerging technologies to provide sustainable solutions for a resilient food system, ensuring sustainable agriculture worldwide.Keywords: blockchain, internet of things, artificial intelligence, decision support system, virtual reality, gamification, traceability, sustainable agriculture
Procedia PDF Downloads 45673 Advanced Phosphorus-Containing Polymer Materials towards Eco-Friendly Flame Retardant Epoxy Thermosets
Authors: Ionela-Daniela Carja, Diana Serbezeanu, Tachita Vlad-Bubulac, Corneliu Hamciuc
Abstract:
Nowadays, epoxy materials are extensively used in ever more areas and under ever more demanding environmental conditions due to their remarkable combination of properties, light weight and ease of processing. However, these materials greatly increase the fire risk due to their flammability and possible release of toxic by-products as a result of their chemical composition which consists mainly from carbon and hydrogen atoms. Therefore, improving the fire retardant behaviour to prevent the loss of life and property is of particular concern among government regulatory bodies, consumers and manufacturers alike. Modification of epoxy resins with organophosphorus compounds, as reactive flame retardants or additives, is the key to achieving non-flammable advanced epoxy materials. Herein, a detailed characterization of fire behaviour for a series of phosphorus-containing epoxy thermosets is reported. A carefully designed phosphorus flame retardant additive was simply blended with a bifunctional bisphenol-A based epoxy resin. Further thermal cross-linking in the presence of various aminic hardeners led to eco-friendly flame retardant epoxy resins. The type of hardener, concentration of flame retardant additive, compatibility between the components of the mixture, char formation and morphology, thermal stability, flame retardant mechanisms were investigated. It was found that even a very low content of phosphorus introduced into the epoxy matrix increased the limiting oxygen index value to about 30%. In addition, the peak of the heat release rate value decreased up to 45% as compared to the one of the neat epoxy system. The main flame retardant mechanism was the condensed-phase one as revealed by SEM and XPS measurements.Keywords: condensed-phase mechanism, eco-friendly phosphorus flame retardant, epoxy resin, thermal stability
Procedia PDF Downloads 312672 Finite Element Analysis of Resonance Frequency Shift of Laminated Composite Beam
Authors: Cheng Yang Kwa, Yoke Rung Wong
Abstract:
Laminated composite materials are widely employed in automotive, aerospace, and other industries. These materials provide distinct benefits due to their high specific strength, high specific modulus, and ability to be customized for a specific function. However, delamination of laminated composite materials is one of the main defects which can occur during manufacturing, regular operations, or maintenance. Delamination can bring about considerable internal damage, unobservable by visual check, that causes significant loss in strength and stability, leading to composite structure catastrophic failure. Structural health monitoring (SHM) is known to be the automated method for monitoring and evaluating the condition of a monitored object. There are several ways to conduct SHM in aerospace. One of the effective methods is to monitor the natural frequency shift of structure due to the presence of defect. This study investigated the mechanical resonance frequency shift of a multi-layer composite cantilever beam due to interlaminar delamination. ANSYS Workbench® was used to create a 4-plies laminated composite cantilever finite element model with [90/0]s fiber setting. Epoxy Carbon UD (230GPA) Prepreg was chosen, and the thickness was 2.5mm for each ply. The natural frequencies of the finite element model with various degree of delamination were simulated based on modal analysis and then validated by using literature. It was shown that the model without delamination had natural frequency of 40.412 Hz, which was 1.55% different from the calculated result (41.050 Hz). Thereafter, the various degree of delamination was mimicked by changing the frictional conditions at the middle ply-to-ply interface. The results suggested that delamination in the laminated composite cantilever induced a change in its stiffness which alters its mechanical resonance frequency.Keywords: structural health monitoring, NDT, cantilever, laminate
Procedia PDF Downloads 101