Search results for: prediction fatigue life
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9896

Search results for: prediction fatigue life

9626 Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models

Authors: Rodrigo Aguiar, Adelino Ferreira

Abstract:

Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety.

Keywords: machine learning, artificial intelligence, frequency of accidents, road safety

Procedia PDF Downloads 93
9625 Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces

Authors: Martin Alexander Eder, Sergei Semenov

Abstract:

Many glass-epoxy composite structures, such as large utility wind turbine rotor blades (WTBs), comprise of adhesive joints with typically thick bond lines used to connect the different components during assembly. Performance optimization of rotor blades to increase power output by simultaneously maintaining high stiffness-to-low-mass ratios entails intricate geometries in conjunction with complex anisotropic material behavior. Consequently, adhesive joints in WTBs are subject to multiaxial stress states with significant stress gradients depending on the local joint geometry. Moreover, the dynamic aero-elastic interaction of the WTB with the airflow generates non-proportional, variable amplitude stress histories in the material. Empiricism shows that a prominent failure type in WTBs is high cycle fatigue failure of adhesive bond line interfaces, which in fact over time developed into a design driver as WTB sizes increase rapidly. Structural optimization employed at an early design stage, therefore, sets high demands on computationally efficient interface fatigue models capable of predicting the critical locations prone for interface failure. The numerical stress-based interface fatigue model presented in this work uses the Drucker-Prager criterion to compute three different damage indices corresponding to the two interface shear tractions and the outward normal traction. The two-parameter Drucker-Prager model was chosen because of its ability to consider shear strength enhancement under compression and shear strength reduction under tension. The governing interface damage index is taken as the maximum of the triple. The damage indices are computed through the well-known linear Palmgren-Miner rule after separate rain flow-counting of the equivalent shear stress history and the equivalent pure normal stress history. The equivalent stress signals are obtained by self-similar scaling of the Drucker-Prager surface whose shape is defined by the uniaxial tensile strength and the shear strength such that it intersects with the stress point at every time step. This approach implicitly assumes that the damage caused by the prevailing multiaxial stress state is the same as the damage caused by an amplified equivalent uniaxial stress state in the three interface directions. The model was implemented as Python plug-in for the commercially available finite element code Abaqus for its use with solid elements. The model was used to predict the interface damage of an adhesively bonded, tapered glass-epoxy composite cantilever I-beam tested by LM Wind Power under constant amplitude compression-compression tip load in the high cycle fatigue regime. Results show that the model was able to predict the location of debonding in the adhesive interface between the webfoot and the cap. Moreover, with a set of two different constant life diagrams namely in shear and tension, it was possible to predict both the fatigue lifetime and the failure mode of the sub-component with reasonable accuracy. It can be concluded that the fidelity, robustness and computational efficiency of the proposed model make it especially suitable for rapid fatigue damage screening of large 3D finite element models subject to complex dynamic load histories.

Keywords: adhesive, fatigue, interface, multiaxial stress

Procedia PDF Downloads 173
9624 A Self-Directed Home Yoga Program for Women with Breast Cancer during Chemotherapy

Authors: Hiroko Komatsu, Kaori Yagasaki

Abstract:

Background: Cancer-related cognitive impairment is a common problem seen in cancer patients undergoing chemotherapy. Physical activity may show beneficial effects on the cognitive function in such patients. Therefore, we have developed a self-directed home yoga program for cancer patients with cognitive symptoms during chemotherapy. This program involves a DVD presenting a combination of yoga courses based on patient preferences to be practiced at home. This study was performed to examine the feasibility of this program. In addition, we also examined changes in cognitive function and quality of life (QOL) in these patients participating in the program. Methods: This prospective feasibility study was conducted in a 500-bed general hospital in Tokyo, Japan. The study population consisted of breast cancer patients undergoing chemotherapy as the initial therapy. This feasibility study used a convenience sample with estimation of recruitment rate in a single facility with the availability of trained nurses and physicians to ensure safe yoga intervention. The aim of the intervention program was to improve cognitive function by means of both physical and mental activation via yoga, consisting of physical practice, breathing exercises, and meditation. Information on the yoga program was provided as a booklet, with an instructor-guided group yoga class during the orientation, and a self-directed home yoga program on DVD with yoga logs. Results: The recruitment rate was 44.7%, and the study population consisted of 18 women with a mean age of 43.9 years. This study showed high rates of retention, adherence, and acceptability of the yoga program. Improvements were only observed in the cognitive aspects of fatigue, and there were serious adverse events during the program. Conclusion: The self-directed home yoga program discussed here was both feasible and safe for breast cancer patients showing cognitive symptoms during chemotherapy. The patients also rated the program as useful, interesting, and satisfactory. Participation in the program was associated with improvements in cognitive fatigue but not cognitive function.

Keywords: yoga, cognition, breast cancer, chemotherapy, quality of life

Procedia PDF Downloads 260
9623 A Study of Behavioral Phenomena Using an Artificial Neural Network

Authors: Yudhajit Datta

Abstract:

Will is a phenomenon that has puzzled humanity for a long time. It is a belief that Will Power of an individual affects the success achieved by an individual in life. It is thought that a person endowed with great will power can overcome even the most crippling setbacks of life while a person with a weak will cannot make the most of life even the greatest assets. Behavioral aspects of the human experience such as will are rarely subjected to quantitative study owing to the numerous uncontrollable parameters involved. This work is an attempt to subject the phenomena of will to the test of an artificial neural network. The claim being tested is that will power of an individual largely determines success achieved in life. In the study, an attempt is made to incorporate the behavioral phenomenon of will into a computational model using data pertaining to the success of individuals obtained from an experiment. A neural network is to be trained using data based upon part of the model, and subsequently used to make predictions regarding will corresponding to data points of success. If the prediction is in agreement with the model values, the model is to be retained as a candidate. Ultimately, the best-fit model from among the many different candidates is to be selected, and used for studying the correlation between success and will.

Keywords: will power, will, success, apathy factor, random factor, characteristic function, life story

Procedia PDF Downloads 382
9622 Intelligent Driver Safety System Using Fatigue Detection

Authors: Samra Naz, Aneeqa Ahmed, Qurat-ul-ain Mubarak, Irum Nausheen

Abstract:

Driver safety systems protect driver from accidents by sensing signs of drowsiness. The paper proposes a technique which can detect the signs of drowsiness and make corresponding decisions to make the driver alert. This paper presents a technique in which the driver will be continuously monitored by a camera and his eyes, head and mouth movements will be observed. If the drowsiness signs are detected on the basis of these three movements under the predefined criteria, driver will be declared as sleepy and he will get alert with the help of alarms. Three robust techniques of drowsiness detection are combined together to make a robust system that can prevent form accident.

Keywords: drowsiness, eye closure, fatigue detection, yawn detection

Procedia PDF Downloads 298
9621 The Contribution of Hip Strategy in Dynamic Postural Control in Recurrent Ankle Sprain

Authors: Radwa El Shorbagy, Alaa El Din Balbaa, Khaled Ayad, Waleed Reda

Abstract:

Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: to determine the contribution of proximal hip strategy to dynamic postural control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic System. Dynamic postural control was measured before and after fatigue by the Biodex Balance System Results: Repeated measures MANOVA was used to compare between and within group differences, In group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p= 0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p= 0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to relay more on the hip strategy. This means that those patients depend on a top to down instead of down to top strategy clinical relevance: patients with recurrent ankle sprain less efficient in maintaining the dynamic postural control due to the change in motor strategies. Indicating that health care providers and rehabilitation specialists should treat CAI as a global/central and not just as a simple local or peripheral injury.

Keywords: ankle sprain, fatigue hip muscles, dynamic balance

Procedia PDF Downloads 304
9620 Intelligent Earthquake Prediction System Based On Neural Network

Authors: Emad Amar, Tawfik Khattab, Fatma Zada

Abstract:

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information of Earthquake Existed throughout history & Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

Keywords: BP neural network, prediction, RBF neural network, earthquake

Procedia PDF Downloads 499
9619 Hybrid Wavelet-Adaptive Neuro-Fuzzy Inference System Model for a Greenhouse Energy Demand Prediction

Authors: Azzedine Hamza, Chouaib Chakour, Messaoud Ramdani

Abstract:

Energy demand prediction plays a crucial role in achieving next-generation power systems for agricultural greenhouses. As a result, high prediction quality is required for efficient smart grid management and therefore low-cost energy consumption. The aim of this paper is to investigate the effectiveness of a hybrid data-driven model in day-ahead energy demand prediction. The proposed model consists of Discrete Wavelet Transform (DWT), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DWT is employed to decompose the original signal in a set of subseries and then an ANFIS is used to generate the forecast for each subseries. The proposed hybrid method (DWT-ANFIS) was evaluated using a greenhouse energy demand data for a week and compared with ANFIS. The performances of the different models were evaluated by comparing the corresponding values of Mean Absolute Percentage Error (MAPE). It was demonstrated that discret wavelet transform can improve agricultural greenhouse energy demand modeling.

Keywords: wavelet transform, ANFIS, energy consumption prediction, greenhouse

Procedia PDF Downloads 92
9618 Predicting Destination Station Based on Public Transit Passenger Profiling

Authors: Xuyang Song, Jun Yin

Abstract:

The smart card has been an extremely universal tool in public transit. It collects a large amount of data on buses, urban railway transit, and ferries and provides possibilities for passenger profiling. This paper combines offline analysis of passenger profiling and real-time prediction to propose a method that can accurately predict the destination station in real-time when passengers tag on. Firstly, this article constructs a static database of user travel characteristics after identifying passenger travel patterns based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The dual travel passenger habits are identified: OD travel habits and D station travel habits. Then a rapid real-time prediction algorithm based on Transit Passenger Profiling is proposed, which can predict the destination of in-board passengers. This article combines offline learning with online prediction, providing a technical foundation for real-time passenger flow prediction, monitoring and simulation, and short-term passenger behavior and demand prediction. This technology facilitates the efficient and real-time acquisition of passengers' travel destinations and demand. The last, an actual case was simulated and demonstrated feasibility and efficiency.

Keywords: travel behavior, destination prediction, public transit, passenger profiling

Procedia PDF Downloads 23
9617 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting

Authors: Yiannis G. Smirlis

Abstract:

The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.

Keywords: data envelopment analysis, interval DEA, efficiency classification, efficiency prediction

Procedia PDF Downloads 166
9616 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods

Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo

Abstract:

The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.

Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines

Procedia PDF Downloads 623
9615 Hydrogen Induced Fatigue Crack Growth in Pipeline Steel API 5L X65: A Combined Experimental and Modelling Approach

Authors: H. M. Ferreira, H. Cockings, D. F. Gordon

Abstract:

Climate change is driving a transition in the energy sector, with low-carbon energy sources such as hydrogen (H2) emerging as an alternative to fossil fuels. However, the successful implementation of a hydrogen economy requires an expansion of hydrogen production, transportation and storage capacity. The costs associated with this transition are high but can be partly mitigated by adapting the current oil and natural gas networks, such as pipeline, an important component of the hydrogen infrastructure, to transport pure or blended hydrogen. Steel pipelines are designed to withstand fatigue, one of the most common causes of pipeline failure. However, it is well established that some materials, such as steel, can fail prematurely in service when exposed to hydrogen-rich environments. Therefore, it is imperative to evaluate how defects (e.g. inclusions, dents, and pre-existing cracks) will interact with hydrogen under cyclic loading and, ultimately, to what extent hydrogen induced failure will limit the service conditions of steel pipelines. This presentation will explore how the exposure of API 5L X65 to a hydrogen-rich environment and cyclic loads will influence its susceptibility to hydrogen induced failure. That evaluation will be performed by a combination of several techniques such as hydrogen permeation testing (ISO 17081:2014), fatigue crack growth (FCG) testing (ISO 12108:2018 and AFGROW modelling), combined with microstructural and fractographic analysis. The development of a FCG test setup coupled with an electrochemical cell will be discussed, along with the advantages and challenges of measuring crack growth rates in electrolytic hydrogen environments. A detailed assessment of several electrolytic charging conditions will also be presented, using hydrogen permeation testing as a method to correlate the different charging settings to equivalent hydrogen concentrations and effective diffusivity coefficients, not only on the base material but also on the heat affected zone and weld of the pipelines. The experimental work is being complemented with AFGROW, a useful FCG modelling software that has helped inform testing parameters and which will also be developed to ultimately help industry experts perform structural integrity analysis and remnant life characterisation of pipeline steels under representative conditions. The results from this research will allow to conclude if there is an acceleration of the crack growth rate of API 5L X65 under the influence of a hydrogen-rich environment, an important aspect that needs to be rectified instandards and codes of practice on pipeline integrity evaluation and maintenance.

Keywords: AFGROW, electrolytic hydrogen charging, fatigue crack growth, hydrogen, pipeline, steel

Procedia PDF Downloads 108
9614 Nonlinear Estimation Model for Rail Track Deterioration

Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami

Abstract:

Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.

Keywords: ANFIS, MGT, prediction modeling, rail track degradation

Procedia PDF Downloads 338
9613 Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach

Authors: Vijay Kr. Yadav, Nilam Rathi

Abstract:

Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set.

Keywords: back-propagation, diabetes mellitus, fuzzy inference system, neuro-fuzzy

Procedia PDF Downloads 261
9612 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer

Authors: Ravinder Bahl, Jamini Sharma

Abstract:

The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.

Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning

Procedia PDF Downloads 361
9611 Dynamic vs. Static Bankruptcy Prediction Models: A Dynamic Performance Evaluation Framework

Authors: Mohammad Mahdi Mousavi

Abstract:

Bankruptcy prediction models have been implemented for continuous evaluation and monitoring of firms. With the huge number of bankruptcy models, an extensive number of studies have focused on answering the question that which of these models are superior in performance. In practice, one of the drawbacks of existing comparative studies is that the relative assessment of alternative bankruptcy models remains an exercise that is mono-criterion in nature. Further, a very restricted number of criteria and measure have been applied to compare the performance of competing bankruptcy prediction models. In this research, we overcome these methodological gaps through implementing an extensive range of criteria and measures for comparison between dynamic and static bankruptcy models, and through proposing a multi-criteria framework to compare the relative performance of bankruptcy models in forecasting firm distress for UK firms.

Keywords: bankruptcy prediction, data envelopment analysis, performance criteria, performance measures

Procedia PDF Downloads 250
9610 Prediction of Extreme Precipitation in East Asia Using Complex Network

Authors: Feng Guolin, Gong Zhiqiang

Abstract:

In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia.

Keywords: synchronization, climate network, prediction, rainfall

Procedia PDF Downloads 447
9609 Attitude and Perception of Multiple Sclerosis Patients toward Exercise

Authors: Ali Fuad Ashour

Abstract:

Introduction: Contrary to the common belief that physical training for multiple sclerosis (MS) patients might exacerbate fatigue and provoke other symptoms of the illness, it is now widely accepted that exercise can be actually beneficial in terms of activities of daily living, reduced fatigue, and improved quality of life. The aim of this study was to assess the attitude of MS patients toward exercise. Methodology: 112 MS patients who were recruited from the local community participated in this study. We utilised a self-developed questionnaire targeting attitudes and perceptions of MS patients towards physical exercise. The questionnaire was piloted and tested for validity and reliability. Results: Before being diagnosed with MS, 49.9% of our MS patients’ respondents used to engage in different types of physical activities and sports, namely aerobics/walking (35.3%), stretching exercise (18.7%), and strengthening exercise (11.4%). After being diagnosed with MS, 40.8% of our sample showed determination to remain physically active. The interest in sports activities was consistent after the diagnoses with MS and included aerobics/walking (33.8%), stretching exercise (22.6%), and strengthening exercise (19.7%). Discussion: The Kuwaiti respondents thought that lack of encouragement was the main reason for them not exercise. Aptly put, if they try to exercise, they will be discouraged by the loved ones lest the worse happens. On the other side, British patients are generally aware of the benefits of physical and mental health-promoting activities; they can seek help from a wide range of professionals and are more actively involved in the management of their condition. It is therefore important that the benefits of physical activity are promoted among MS patients, and that attitude towards MS and MS patients is changed through education.

Keywords: perception, multiple sclerosis, exercise, physical training

Procedia PDF Downloads 162
9608 Analyzing the Causes Behind Gas Turbine Blade Failure: A Comprehensive Case Study

Authors: Med. A. Djeridane, M. Ferhat, H. A. Benhorma, O. Bouledroua

Abstract:

This research is dedicated to exploring the failure of a turbine blade within a gas transportation plant, with a primary focus on conducting a comprehensive examination through advanced metallurgical and mechanical analyses of the identified failed blade. Crafted from the nickel superalloy Inconel IN738LC, the turbine engine had accumulated approximately 61,000 operational hours before the blades failed, causing severe damage to the transportation plant and necessitating a prolonged shutdown. The investigative procedure commenced with an in-depth visual inspection of the blade surfaces, succeeded by fractography analysis of the fracture surfaces, microstructural investigations, chemical analysis, and hardness measurements. The findings unveiled distinctive fatigue marks on the fracture surface. Critical microstructural changes were identified as a consequence of the blade's operation at high temperatures. The investigation determined that the crack initiation resulted from coating damage at the leading edge, subsequently propagating through fatigue. Ultimately, due to a reduction in cross-sectional area, the fracture was completed. This comprehensive analysis sheds light on the intricate factors contributing to turbine blade failure and offers valuable insights for enhancing operational reliability in similar environments.

Keywords: gas turbine, blade failure, TCP phases, fatigue, quantitative analysis

Procedia PDF Downloads 65
9607 External Validation of Risk Prediction Score for Candidemia in Critically Ill Patients: A Retrospective Observational Study

Authors: Nurul Mazni Abdullah, Saw Kian Cheah, Raha Abdul Rahman, Qurratu 'Aini Musthafa

Abstract:

Purpose: Candidemia was associated with high mortality in critically ill patients. Early candidemia prediction is imperative for preemptive antifungal treatment. This study aimed to externally validate the candidemia risk prediction scores by Jameran et al. (2021) by identifying risk factors of acute kidney injury, renal replacement therapy, parenteral nutrition, and multifocal candida colonization. Methods: This single-center, retrospective observational study included all critically ill patients admitted to the intensive care unit (ICU) in a tertiary referral center from January 2018 to December 2023. The study evaluated the candidemia risk prediction score performance by analyzing the occurrence of candidemia within the study period. Patients’ demographic characteristics, comorbidities, SOFA scores, and ICU outcomes were analyzed. Patients who were diagnosed with candidemia before ICU admission were excluded. Results: A total of 500 patients were analyzed with 2 dropouts due to incomplete data. Validation analysis showed that the candidemia risk prediction score has a sensitivity of 75.00% (95% CI: 59.66-86.81), specificity of 65.35% (95% CI: 60.78-69.72), positive predictive value of 17.28, and negative predictive value of 96.44. The incidence of candidemia was 8.86% with no significant differences in the demographic and comorbidities except higher SOFA scoring in the candidemia group. The candidemia group showed significantly longer ICU and hospital LOS and higher ICU and in-hospital mortality. Conclusion: This study concluded the candidemia risk prediction score by Jameran et al (2021) had good sensitivity and a high negative prediction value.

Keywords: candidemia, intensive care, clinical prediction rule, incidence

Procedia PDF Downloads 26
9606 Representation Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction

Procedia PDF Downloads 434
9605 Measurement of the Dynamic Modulus of Elasticity of Cylindrical Concrete Specimens Used for the Cyclic Indirect Tensile Test

Authors: Paul G. Bolz, Paul G. Lindner, Frohmut Wellner, Christian Schulze, Joern Huebelt

Abstract:

Concrete, as a result of its use as a construction material, is not only subject to static loads but is also exposed to variables, time-variant, and oscillating stresses. In order to ensure the suitability of construction materials for resisting these cyclic stresses, different test methods are used for the systematic fatiguing of specimens, like the cyclic indirect tensile test. A procedure is presented that allows the estimation of the degradation of cylindrical concrete specimens during the cyclic indirect tensile test by measuring the dynamic modulus of elasticity in different states of the specimens’ fatigue process. Two methods are used in addition to the cyclic indirect tensile test in order to examine the dynamic modulus of elasticity of cylindrical concrete specimens. One of the methods is based on the analysis of eigenfrequencies, whilst the other one uses ultrasonic pulse measurements to estimate the material properties. A comparison between the dynamic moduli obtained using the three methods that operate in different frequency ranges shows good agreement. The concrete specimens’ fatigue process can therefore be monitored effectively and reliably.

Keywords: concrete, cyclic indirect tensile test, degradation, dynamic modulus of elasticity, eigenfrequency, fatigue, natural frequency, ultrasonic, ultrasound, Young’s modulus

Procedia PDF Downloads 177
9604 The Influence of Caregivers’ Preparedness and Role Burden on Quality of Life among Stroke Patients

Authors: Yeaji Seok, Myung Kyung Lee

Abstract:

Background: Even if patients survive after a stroke, stroke patients may experience disability in mobility, sensation, cognition, and speech and language. Stroke patients require rehabilitation for functional recovery and daily life for a considerable time. During rehabilitation, the role of caregivers is important. However, the stroke patients’ quality of life may deteriorate due to family caregivers’ non-preparedness and increased role burden. Purpose: To investigate the prediction of caregivers' preparedness and role burden on stroke patients’ quality of life. Methods: The target population was stroke patients who were hospitalized for rehabilitation and their family care providers. A total of 153 patient-family caregiver dyads were recruited from June to August 2021. Data were collected from self-reported questionnaires and analyzed using descriptive statistics, t-tests, chi-squared test, one-way analysis of variance, Pearson’s correlation coefficients, and multiple regression with SPSS statistics 28 programs. Results: Family caregivers’ preparedness affected stroke patients’ mobility (β = .20, p < 0.05) and character (β = -.084, p < 0.05) and production activities (β = -.197, p < 0.05) in quality of life. The role burden of family caregivers affected language skills (β = .310, p<0.05), visual functions (β=-.357, p < 0.05), thinking skills (β = 0.443, p = 0.05), mood conditions (β = 0.565, p < 0.001), family roles (β = -0.361, p < 0.001), and social roles (β = -0.304, p < 0.001), while the caregivers’ burden of performing self-protection negatively affected patients’ social roles (β = .180, p=.048). In addition, caregivers’ role burden of personal life sacrifice affected patients’ mobility (β = .311, p < 0.05), self-care (β =.232, p < 0.05) and energy (β = .239, p < 0.05). Conclusion: This study indicated that family caregivers' preparedness and role burden affected stroke patients’ quality of life. The results of this study suggested that intervention to improve family caregivers’ preparedness and to reduce role burden should be required for quality of life in stroke patients.

Keywords: quality of life, preparedness, role burden, caregivers, stroke

Procedia PDF Downloads 216
9603 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks

Procedia PDF Downloads 150
9602 Analysis of Waiting Time and Drivers Fatigue at Manual Toll Plaza and Suggestion of an Automated Toll Tax Collection System

Authors: Muhammad Dawood Idrees, Maria Hafeez, Arsalan Ansari

Abstract:

Toll tax collection is the earliest method of tax collection and revenue generation. This revenue is utilized for the development of roads networks, maintenance, and connecting to roads and highways across the country. Pakistan is one of the biggest countries, covers a wide area of land, roads networks, and motorways are important source of connecting cities. Every day millions of people use motorways, and they have to stop at toll plazas to pay toll tax as majority of toll plazas are manually collecting toll tax. The purpose of this study is to calculate the waiting time of vehicles at Karachi Hyderabad (M-9) motorway. As Karachi is the biggest city of Pakistan and hundreds of thousands of people use this route to approach other cities. Currently, toll tax collection is manual system which is a major cause for long time waiting at toll plaza. This study calculates the waiting time of vehicles, fuel consumed in waiting time, manpower employed at toll plaza as all process is manual, and it also leads to mental and physical fatigue of driver. All wastages of sources are also calculated, and a most feasible automatic toll tax collection system is proposed which is not only beneficial to reduce waiting time but also beneficial in reduction of fuel, reduction of manpower employed, and reduction in physical and mental fatigue. A cost comparison in terms of wastages is also shown between manual and automatic toll tax collection system (E-Z Pass). Results of this study reveal that, if automatic tool collection system is implemented at Karachi to Hyderabad motorway (M-9), there will be a significance reduction in waiting time of vehicles, which leads to reduction of fuel consumption, environmental pollution, mental and physical fatigue of driver. All these reductions are also calculated in terms of money (Pakistani rupees) and it is obtained that millions of rupees can be saved by using automatic tool collection system which will lead to improve the economy of country.

Keywords: toll tax collection, waiting time, wastages, driver fatigue

Procedia PDF Downloads 155
9601 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 93
9600 A Prediction Method for Large-Size Event Occurrences in the Sandpile Model

Authors: S. Channgam, A. Sae-Tang, T. Termsaithong

Abstract:

In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions.

Keywords: Bak-Tang-Wiesenfeld sandpile model, cross-correlation, avalanches, prediction method

Procedia PDF Downloads 385
9599 Prediction of Bodyweight of Cattle by Artificial Neural Networks Using Digital Images

Authors: Yalçın Bozkurt

Abstract:

Prediction models were developed for accurate prediction of bodyweight (BW) by using Digital Images of beef cattle body dimensions by Artificial Neural Networks (ANN). For this purpose, the animal data were collected at a private slaughter house and the digital images and the weights of each live animal were taken just before they were slaughtered and the body dimensions such as digital wither height (DJWH), digital body length (DJBL), digital body depth (DJBD), digital hip width (DJHW), digital hip height (DJHH) and digital pin bone length (DJPL) were determined from the images, using the data with 1069 observations for each traits. Then, prediction models were developed by ANN. Digital body measurements were analysed by ANN for body prediction and R2 values of DJBL, DJWH, DJHW, DJBD, DJHH and DJPL were approximately 94.32, 91.31, 80.70, 83.61, 89.45 and 70.56 % respectively. It can be concluded that in management situations where BW cannot be measured it can be predicted accurately by measuring DJBL and DJWH alone or both DJBD and even DJHH and different models may be needed to predict BW in different feeding and environmental conditions and breeds

Keywords: artificial neural networks, bodyweight, cattle, digital body measurements

Procedia PDF Downloads 376
9598 Lifetime Assessment for Test Strips of POCT Device through Accelerated Degradation Test

Authors: Jinyoung Choi, Sunmook Lee

Abstract:

In general, single parameter, i.e. temperature, as an accelerating parameter is used to assess the accelerated stability of Point-of-Care Testing (POCT) diagnostic devices. However, humidity also plays an important role in deteriorating the strip performance since major components of test strips are proteins such as enzymes. 4 different Temp./Humi. Conditions were used to assess the lifetime of strips. Degradation of test strips were studied through the accelerated stability test and the lifetime was assessed using commercial POCT products. The life distribution of strips, which were obtained by monitoring the failure time of test strip under each stress condition, revealed that the weibull distribution was the most proper distribution describing the life distribution of strips used in the present study. Equal shape parameters were calculated to be 0.9395 and 0.9132 for low and high concentrations, respectively. The lifetime prediction was made by adopting Peck Eq. Model for Stress-Life relationship, and the B10 life was calculated to be 70.09 and 46.65 hrs for low and high concentrations, respectively.

Keywords: accelerated degradation, diagnostic device, lifetime assessment, POCT

Procedia PDF Downloads 418
9597 Determining the Effect of Tdcs in Pain and Quality of Life in Patients with Fibromyalgia

Authors: Farid Rezaei, Zahra Reza Soltani, Behrouz Tavana, Afsaneh Dadarkhah, Masoume Bahrami Asl, S. Alireza Mirghasemi

Abstract:

Introduction: Fibromyalgia is a syndrome comprised of a group of symptoms. The primary symptom of fibromyalgia is pain propagation is associated by Secondary symptoms include fatigue, cognitive disorders, sleep disorders and hypersensitivity to painful stimuli. Recent studies have shown that there is a direct relationship between fibromyalgia and certain changes in brain activity. Aim: The aim of this study is determining the effect of tDCS in pain and quality of life in patients with fibromyalgia. Method: 68 patients with fibromyalgia who had inclusion criterias were randomly divided into two groups of case and control. Groups were matched in terms of gender, age, education, duration of pain and PMS. Patient groups treated with tDCS device manufacture by Enraf company made in Netherlands (M1 anodal stimulation, 2 mA constant current, 20 minutes, for 10 sessions (3 days a week)). Also the protocol was done for control group, in sham mode of tDCS device that had no current, for 10 sessions of 20 minutes. Before treatment, immediately after the end of 10 sessions treatment (short-term) and 10 week later (long-term effect), pain intensity questionnaires (VAS) and quality of life in fibromyalgia patients questionnaire was completed by the patient. Results: Pain intensity were significantly lower in the treatment group than the sham group 2 weeks and 10 weeks after treatment than before treatment (P < 0.001). Although the quality of life of patients 2 weeks after treatment showed no significant change, but ten weeks after treatment were more than sham group (P < 0.0001). Conclusion: Our results suggest that tDCS is a safe and effective in treating fibromyalgia patients and an important effect in reducing pain and increasing quality of their life.

Keywords: fibromyalgia, tDCS, quality of life, VAS score

Procedia PDF Downloads 344