Search results for: anaerobic metabolism
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 774

Search results for: anaerobic metabolism

504 Unzipping the Stress Response Genes in Moringa oleifera Lam. through Transcriptomics

Authors: Vivian A. Panes, Raymond John S. Rebong, Miel Q. Diaz

Abstract:

Moringa oleifera Lam. is known mainly for its high nutritional value and medicinal properties contributing to its popular reputation as a 'miracle plant' in the tropical climates where it usually grows. The main objective of this study is to discover the genes and gene products involved in abiotic stress-induced activity that may impact the M. oleifera Lam. mature seeds as well as their corresponding functions. In this study, RNA-sequencing and de novo transcriptome assembly were performed using two assemblers, Trinity and Oases, which produced 177,417 and 120,818 contigs respectively. These transcripts were then subjected to various bioinformatics tools such as Blast2GO, UniProt, KEGG, and COG for gene annotation and the analysis of relevant metabolic pathways. Furthermore, FPKM analysis was performed to identify gene expression levels. The sequences were filtered according to the 'response to stress' GO term since this study dealt with stress response. Clustered Orthologous Groups (COG) showed that the highest frequencies of stress response gene functions were those of cytoskeleton which make up approximately 14% and 23% of stress-related sequences under Trinity and Oases respectively, recombination, repair and replication at 11% and 14% respectively, carbohydrate transport and metabolism at 23% and 9% respectively and defense mechanisms 16% and 12% respectively. KEGG pathway analysis determined the most abundant stress-response genes in the phenylpropanoid biosynthesis at counts of 187 and 166 pathways for Oases and Trinity respectively, purine metabolism at 123 and 230 pathways, and biosynthesis of antibiotics at 105 and 102. Unique and cumulative GO term counts revealed that majority of the stress response genes belonged to the category of cellular response to stress at cumulative counts of 1,487 to 2,187 for Oases and Trinity respectively, defense response at 754 and 1,255, and response to heat at 213 and 208, response to water deprivation at 229 and 228, and oxidative stress at 508 and 488. Lastly, FPKM was used to determine the levels of expression of each stress response gene. The most upregulated gene encodes for thiamine thiazole synthase chloroplastic-like enzyme which plays a significant role in DNA damage tolerance. Data analysis implies that M. oleifera stress response genes are directed towards the effects of climate change more than other stresses indicating the potential of M. oleifera for cultivation in harsh environments because it is resistant to climate change, pathogens, and foreign invaders.

Keywords: stress response, genes, Moringa oleifera, transcriptomics

Procedia PDF Downloads 121
503 Scaling-Down an Agricultural Waste Biogas Plant Fermenter

Authors: Matheus Pessoa, Matthias Kraume

Abstract:

Scale-Down rules in process engineering help us to improve and develop Industrial scale parameters into lab scale. Several scale-down rules available in the literature like Impeller Power Number, Agitation device Power Input, Substrate Tip Speed, Reynolds Number and Cavern Development were investigated in order to stipulate the rotational speed to operate an 11 L working volume lab-scale bioreactor within industrial process parameters. Herein, xanthan gum was used as a fluid with a representative viscosity of a hypothetical biogas plant, with H/D = 1 and central agitation, fermentation broth using sewage sludge and sugar beet pulp as substrate. The results showed that the cavern development strategy was the best method for establishing a rotational speed for the bioreactor operation, while the other rules presented values out of reality for this article proposes.

Keywords: anaerobic digestion, cavern development, scale down rules, xanthan gum

Procedia PDF Downloads 455
502 Quantification of Methane Emissions from Solid Waste in Oman Using IPCC Default Methodology

Authors: Wajeeha A. Qazi, Mohammed-Hasham Azam, Umais A. Mehmood, Ghithaa A. Al-Mufragi, Noor-Alhuda Alrawahi, Mohammed F. M. Abushammala

Abstract:

Municipal Solid Waste (MSW) disposed in landfill sites decompose under anaerobic conditions and produce gases which mainly contain carbon dioxide (CO₂) and methane (CH₄). Methane has the potential of causing global warming 25 times more than CO₂, and can potentially affect human life and environment. Thus, this research aims to determine MSW generation and the annual CH₄ emissions from the generated waste in Oman over the years 1971-2030. The estimation of total waste generation was performed using existing models, while the CH₄ emissions estimation was performed using the intergovernmental panel on climate change (IPCC) default method. It is found that total MSW generation in Oman might be reached 3,089 Gg in the year 2030, which approximately produced 85 Gg of CH₄ emissions in the year 2030.

Keywords: methane, emissions, landfills, solid waste

Procedia PDF Downloads 481
501 Rasagiline Improves Metabolic Function and Reduces Tissue Injury in the Substantia Nigra in Parkinson's Disease: A Longitudinal In-Vivo Advanced MRI Study

Authors: Omar Khan, Shana Krstevska, Edwin George, Veronica Gorden, Fen Bao, Christina Caon, NP-C, Carla Santiago, Imad Zak, Navid Seraji-Bozorgzad

Abstract:

Objective: To quantify cellular injury in the substantia nigra (SN) in patients with Parkinson's disease (PD) and to examine the effect of rasagiline of tissue injury in the SN in patients with PD. Background: N-acetylaspartate (NAA) quantified with MRS is a reliable marker of neuronal metabolic function. Fractional anisotropy (FA) and mean diffusivity (MD) obtained with DTI, characterize tissue alignment and integrity. Rasagline, has been shown to exert anti-apototic effect. We applied these advanced MRI techniques to examine: (i) the effect of rasagiline on cellular injury and metabolism in patients with early PD, and (ii) longitudinal changes seen over time in PD. Methods: We conducted a prospective longitudinal study in patients with mild PD, naive to dopaminergic treatment. The imaging protocol included multi-voxel proton-MRS and DTI of the SN, acquired on a 3T scanner. Scans were performed at baseline and month 3, during which the patient was on no treatment. At that point, rasagiline 1 mg orally daily was initiated and MRI scans are were obtained at 6 and 12 months after starting rasagiline. The primary objective was to compare changes during the 3-month period of “no treatment” to the changes observed “on treatment” with rasagiline at month 12. Age-matched healthy controls were also imaged. Image analysis was performed blinded to treatment allocation and period. Results: 25 patients were enrolled in this study. Compared to the period of “no treatment”, there was significant increase in the NAA “on treatment” period (-3.04 % vs +10.95 %, p= 0.0006). Compared to the period of “no treatment”, there was significant increase in following 12 month in the FA “on treatment” (-4.8% vs +15.3%, p<0.0001). The MD increased during “no treatment” and decreased in “on treatment” (+2.8% vs -7.5%, p=0.0056). Further analysis and clinical correlation are ongoing. Conclusions: Advanced MRI techniques quantifying cellular injury in the SN in PD is a feasible approach to investigate dopaminergic neuronal injury and could be developed as an outcome in exploratory studies. Rasagiline appears to have a stabilizing effect on dopaminergic cell loss and metabolism in the SN in PD, that warrants further investigation in long-term studies.

Keywords: substantia nigra, Parkinson's disease, MRI, neuronal loss, biomarker

Procedia PDF Downloads 296
500 Biogas Separation, Alcohol Amine Solutions

Authors: Jingxiao Liang, David Rooneyman

Abstract:

Biogas, which is a valuable renewable energy source, can be produced by anaerobic fermentation of agricultural waste, manure, municipal waste, plant material, sewage, green waste, or food waste. It is composed of methane (CH4) and carbon dioxide (CO2) but also contains significant quantities of undesirable compounds such as hydrogen sulfide (H2S), ammonia (NH3), and siloxanes. Since typical raw biogas contains 25–45% CO2, The requirements for biogas quality depend on its further application. Before biogas is being used more efficiently, CO2 should be removed. One of the existing options for biogas separation technologies is based on chemical absorbents, in particular, mono-, di- and tri-alcohol amine solutions. Such amine solutions have been applied as highly efficient CO2 capturing agents. The benchmark in this experiment is N-methyldiethanolamine (MDEA) with piperazine (PZ) as an activator, from CO2 absorption Isotherm curve, optimization conditions are collected, such as activator percentage, temperature etc. This experiment makes new alcohol amines, which could have the same CO2 absorbing ability as activated MDEA, using glycidol as one of reactant, the result is quite satisfying.

Keywords: biogas, CO2, MDEA, separation

Procedia PDF Downloads 596
499 Molecular Insights into the 5α-Reductase Inhibitors: Quantitative Structure Activity Relationship, Pre-Absorption, Distribution, Metabolism, and Excretion and Docking Studies

Authors: Richa Dhingra, Monika, Manav Malhotra, Tilak Raj Bhardwaj, Neelima Dhingra

Abstract:

5-Alpha-reductases (5AR), a membrane bound, NADPH dependent enzyme and convert male hormone testosterone (T) into more potent androgen dihydrotestosterone (DHT). DHT is the required for the development and function of male sex organs, but its overproduction has been found to be associated with physiological conditions like Benign Prostatic Hyperplasia (BPH). Thus the inhibition of 5ARs could be a key target for the treatment of BPH. In present study, 2D and 3D Quantitative Structure Activity Relationship (QSAR) pharmacophore models have been generated for 5AR based on known inhibitory concentration (IC₅₀) values with extensive validations. The four featured 2D pharmacophore based PLS model correlated the topological interactions (–OH group connected with one single bond) (SsOHE-index); semi-empirical (Quadrupole2) and physicochemical descriptors (Mol. wt, Bromines Count, Chlorines Count) with 5AR inhibitory activity, and has the highest correlation coefficient (r² = 0.98, q² =0.84; F = 57.87, pred r² = 0.88). Internal and external validation was carried out using test and proposed set of compounds. The contribution plot of electrostatic field effects and steric interactions generated by 3D-QSAR showed interesting results in terms of internal and external predictability. The well validated 2D Partial Least Squares (PLS) and 3D k-nearest neighbour (kNN) models were used to search novel 5AR inhibitors with different chemical scaffold. To gain more insights into the molecular mechanism of action of these steroidal derivatives, molecular docking and in silico absorption, distribution, metabolism, and excretion (ADME) studies were also performed. Studies have revealed the hydrophobic and hydrogen bonding of the ligand with residues Alanine (ALA) 63A, Threonine (THR) 60A, and Arginine (ARG) 456A of 4AT0 protein at the hinge region. The results of QSAR, molecular docking, in silico ADME studies provide guideline and mechanistic scope for the identification of more potent 5-Alpha-reductase inhibitors (5ARI).

Keywords: 5α-reductase inhibitor, benign prostatic hyperplasia, ligands, molecular docking, QSAR

Procedia PDF Downloads 139
498 Bacterial Diversity in Vaginal Microbiota in Patients with Different Levels of Cervical Lesions Related to Human Papillomavirus Infection

Authors: Michelle S. Pereira, Analice C. Azevedo, Julliane D. Medeiros, Ana Claudia S. Martins, Didier S. Castellano-Filho, Claudio G. Diniz, Vania L. Silva

Abstract:

Vaginal microbiota is a complex ecosystem, composed by aerobic and anaerobic bacteria, living in a dynamic equilibrium. Lactobacillus spp. are predominant in vaginal ecosystem, and factors such as immunity and hormonal variations may lead to disruptions, resulting in proliferation of opportunistic pathogens. Bacterial vaginosis (BV) is a polymicrobial syndrome, caused by an increasing of anaerobic bacteria replacing Lactobacillus spp. Microorganisms such as Gardnerella vaginalis, Mycoplasma hominis, Mobiluncus spp., and Atopobium vaginae can be found in BV, which may also be associated to other infections such as by Human Papillomavirus (HPV). HPV is highly prevalent in sexually active women, and is considered a risk factor for development of cervical cancer. As long as few data is available on vaginal microbiota of women with HPV-associated cervical lesions, our objectives were to evaluate the diversity in vaginal ecosystem in these women. To all patients, clinical and socio-demographic data were collected after gynecological examination. This study was approved by the Ethics Committee from Federal University of Juiz de Fora, Minas Gerais, Brazil. Vaginal secretion and cervical scraping were collected. Gram-stained smears were evaluated to establish Nugent score for BV determination. Viral and bacterial DNA obtained was used as template for HPV genotyping (PCR) and bacterial fingerprint (REP-PCR). In total 31 patients were included (mean age 35 and 93.6% sexually active). The Nugent score showed that 38.7% were BV. From the medical records, Pap smear tests showed that 32.3% had low grade squamous epithelial lesion (LSIL), 29% had high grade squamous epithelial lesion (HSIL), 25.8% had atypical squamous cells of undetermined significance (ASC-US) and 12.9% with atypical squamous cells that would not exclude high-grade lesion (ASC-H). All participants were HPV+. HPV-16 was the most frequent (87.1%), followed by HPV-18 (61.3%). HPV-31, HPV-52 and HPV-58 were also detected. Coinfection HPV-16/HPV-18 was observed in 75%. In the 18-30 age group, HPV-16 was detected in 40%, and HPV-16/HPV-18 coinfection in 35%. HPV-16 was associated to 30% of ASC-H and 20% of HSIL patients. BV was observed in 50% of HPV-16+ participants and in 45% of HPV-16/HPV-18+. Fingerprints of bacterial communities showed clusters with low similarity suggesting high heterogeneity in vaginal microbiota within the sampled group. Overall, the data is worrisome once cervical-cancer highly risk-associated HPV-types were identified. The high microbial diversity observed may be related to the different levels of cellular lesions, and different physiological conditions of the participants (age, social behavior, education). Further prospective studies are needed to better address correlations and BV and microbial imbalance in vaginal ecosystems which would be related to the different cellular lesions in women with HPV infections. Supported by FAPEMIG, CNPq, CAPES, PPGCBIO/UFJF.

Keywords: human papillomavirus, bacterial vaginosis, bacterial diversity, cervical cancer

Procedia PDF Downloads 169
497 Selective Fermentations of Monosaccharides by Osmotolerant Yeast Cultures

Authors: Elizabeth Loza-Valerdi, Victor Pardiñas-Rios, Arnulfo Pluma-Pluma, Andres Breton-Toral, Julio Cercado-Jaramillo

Abstract:

The purification processes for mixtures of isomeric monosaccharides using industrial chromatographic methods poses a serious technical challenge. Mixtures of 2 or 3 monosaccharides are difficult to separate by strictly physical or chemical techniques. Differential fermentation by microbial cultures is an increasingly interesting way of selective enrichment in a particular kind of monosaccharides when a mixture of them is present in the solution, and only one has economical value. Osmotolerant yeast cultures provide an interesting source of biocatalysts for the selective catabolism of monosaccharides in media containing high concentrations of total soluble sugars. A collection of 398 yeast strains has been obtained using endemic and unique sources of fruit juices, industrial syrups, honey, and other high sugar content substrates, either natural or man made, products and by-products from Mexico. The osmotolerance of the strains was assessed by plate assay both in glucose (20-40-60%w/w). Strains were classified according to their osmotolerance in low, medium or highly tolerant to high glucose concentrations. The purified cultures were tested by their ability to growth in a solid plate media or liquid media of Yeas Nitrogen Base (YNB), added with specific monosaccharides as sole carbon source (glucose, galactose, lactose and fructose). Selected strains were subsequently tested in fermentation experiments with mixtures of two monosaccharides (galactose/glucose and glucose/fructose). Their ability to grow and selectively catabolize one monosaccharide was evaluated. Growth, fermentation activity and products of metabolism were determined by plate counts, CO2 production, turbidity and chromatographic analysis by HPLC. Selective catabolism of one monosaccharide in liquid media containing two monosaccharides was confirmed for 8 strains. Ion Exchange chromatographic processes were used in production of high fructose or galactose syrup. Laboratory scale processes for the production of fructose or galactose enriched syrups is now feasible, with important applications in food (like high fructose syrup as edulcorant) and fermentation technology (for GOS production).

Keywords: osmotolerant yeasts, selective metabolism, fructose syrup, GOS

Procedia PDF Downloads 429
496 Phytoremediation of Heavy Metals by Phragmites Australis at Oeud Meboudja Annaba Algeria

Authors: Kleche Myriam, Ziane Nadia, Berrebbah Houria, Djebar Mohammed Reda

Abstract:

The Phytoremediation has now become a necessity. Thus, in our work, we are interested in the biological wastewater treatment of Oued Meboudja. The physicochemical analysis of water after treatment showed a significant reduction of suspended matter, COD and BOD5 and rate of metals in roots for example iron and zinc. We also highlighted some significant changes in biometric and physiological parameters such as increasing the number of roots and increased respiratory metabolism through the oxygen consumption in isolated roots of Phragmites australis, placed in a polluted environment.

Keywords: phragmites australis, roots, phytoremediation, iron, zinc

Procedia PDF Downloads 465
495 Liquid Waste Management in Cluster Development

Authors: Abheyjit Singh, Kulwant Singh

Abstract:

There is a gradual depletion of the water table in the earth's crust, and it is required to converse and reduce the scarcity of water. This is only done by rainwater harvesting, recycling of water and by judicially consumption/utilization of water and adopting unique treatment measures. Domestic waste is generated in residential areas, commercial settings, and institutions. Waste, in general, is unwanted, undesirable, and nevertheless an inevitable and inherent product of social, economic, and cultural life. In a cluster, a need-based system is formed where the project is designed for systematic analysis, collection of sewage from the cluster, treating it and then recycling it for multifarious work. The liquid waste may consist of Sanitary sewage/ Domestic waste, Industrial waste, Storm waste, or Mixed Waste. The sewage contains both suspended and dissolved particles, and the total amount of organic material is related to the strength of the sewage. The untreated domestic sanitary sewage has a BOD (Biochemical Oxygen Demand) of 200 mg/l. TSS (Total Suspended Solids) about 240 mg/l. Industrial Waste may have BOD and TSS values much higher than those of sanitary sewage. Another type of impurities of wastewater is plant nutrients, especially when there are compounds of nitrogen N phosphorus P in the sewage; raw sanitary contains approx. 35 mg/l Nitrogen and 10 mg/l of Phosphorus. Finally, the pathogen in the waste is expected to be proportional to the concentration of facial coliform bacteria. The coliform concentration in raw sanitary sewage is roughly 1 billion per liter. The system of sewage disposal technique has been universally applied to all conditions, which are the nature of soil formation, Availability of land, Quantity of Sewage to be disposed of, The degree of treatment and the relative cost of disposal technique. The adopted Thappar Model (India) has the following designed parameters consisting of a Screen Chamber, a Digestion Tank, a Skimming Tank, a Stabilization Tank, an Oxidation Pond and a Water Storage Pond. The screening Chamber is used to remove plastic and other solids, The Digestion Tank is designed as an anaerobic tank having a retention period of 8 hours, The Skimming Tank has an outlet that is kept 1 meter below the surface anaerobic condition at the bottom and also help in organic solid remover, Stabilization Tank is designed as primary settling tank, Oxidation Pond is a facultative pond having a depth of 1.5 meter, Storage Pond is designed as per the requirement. The cost of the Thappar model is Rs. 185 Lakh per 3,000 to 4,000 population, and the Area required is 1.5 Acre. The complete structure will linning as per the requirement. The annual maintenance will be Rs. 5 lakh per year. The project is useful for water conservation, silage water for irrigation, decrease of BOD and there will be no longer damage to community assets and economic loss to the farmer community by inundation. There will be a healthy and clean environment in the community.

Keywords: collection, treatment, utilization, economic

Procedia PDF Downloads 47
494 Ultrastructural Characterization of Lipid Droplets of Rat Hepatocytes after Whole Body 60-Cobalt Gamma Radiation

Authors: Ivna Mororó, Lise P. Labéjof, Stephanie Ribeiro, Kely Almeida

Abstract:

Lipid droplets (LDs) are normally presented in greater or lesser number in the cytoplasm of almost all eukaryotic and some prokaryotic cells. They are independent organelles composed of a lipid ester core and a surface phospholipid monolayer. As a lipid storage form, they provide an available source of energy for the cell. Recently it was demonstrated that they play an important role in other many cellular processes. Among the many unresolved questions about them, it is not even known how LDs is formed, how lipids are recruited to LDs and how they interact with the other organelles. Excess fat in the organism is pathological and often associated with the development of some genetic, hormonal or behavioral diseases. The formation and accumulation of lipid droplets in the cytoplasm can be increased by exogenous physical or chemical agents. It is well known that ionizing radiation affects lipid metabolism resulting in increased lipogenesis in cells, but the details of this process are unknown. To better understand the mode of formation of LDs in liver cells, we investigate their ultrastructural morphology after irradiation. For that, Wistar rats were exposed to whole body gamma radiation from 60-cobalt at various single doses. Samples of the livers were processed for analysis under a conventional transmission electron microscope. We found that when compared to controls, morphological changes in liver cells were evident at the higher doses of radiation used. It was detected a great number of lipid droplets of different sizes and homogeneous content and some of them merged each other. In some cells, it was observed diffused LDs, not limited by a monolayer of phospholipids. This finding suggests that the phospholipid monolayer of the LDs was disrupted by ionizing radiation exposure that promotes lipid peroxydation of endo membranes. Thus the absence of the phospholipid monolayer may prevent the realization of some cellular activities as follow: - lipid exocytosis which requires the merging of LDs membrane with the plasma membrane; - the interaction of LDs with other membrane-bound organelles such as the endoplasmic reticulum (ER), the golgi and mitochondria and; - lipolysis of lipid esters contained in the LDs which requires the presence of enzymes located in membrane-bound organelles as ER. All these impediments can contribute to lipid accumulation in the cytoplasm and the development of diseases such as liver steatosis, cirrhosis and cancer.

Keywords: radiobiology, hepatocytes, lipid metabolism, transmission electron microscopy

Procedia PDF Downloads 293
493 Study of Polycyclic Aromatic Hydrocarbons Biodegradation by Bacterial Isolated from Contaminated Soils

Authors: Z. Abdessemed, N. Messaâdia, M. Houhamdi

Abstract:

The PAH (Polycyclic Aromatic Hydrocarbons) represent a persistent source of pollution for oil field soils. Their degradation, essentially dominated by the aerobic bacterial and fungal flora, exhibits certain aspects for remediation of these soils microbial oxygenases have, as their substrates, a large range of PAH. The variety and the performance of these enzymes allow the initiation of the biodegradation of any PAH through many different metabolic pathways. These pathways are very important for the recycling of the PAH in the biosphere, where substances supposed indigestible by living organisms are rapidly transformed into simples compounds, directly assimilated by the intermediate metabolism of other microorganisms.

Keywords: polycyclic aromatic hydrocarbons, microbial oxygenases, biodegradation, metabolic pathways

Procedia PDF Downloads 256
492 Thermo-Hydro-Mechanical Modeling of Landfill Behavior

Authors: Mahtab Delfan Azari, Ali Noorzad, Ahmadreza Mahboubi Ardakani

Abstract:

Municipal solid waste landfills have relatively high temperature which is caused by anaerobic and aerobic degradation. The temperature that is produced is almost 40-70°C. Since this temperature will remain for many years, considering it for studying landfill behavior and its soil is so important. By considering the temperature of landfill, the obtained results will become more logical and more realistic. Vertical displacement and differential settlement are two important values which are studied here. Differential displacements could expand cracks in liner and cover. If cracks appear in the liner, the leachate and gases will propagate to media and hence should be noticed carefully. The present research is focused on the thermo-hydro-mechanical modeling of landfill with finite element method. First, the heat transfer of the landfill is modeled and the temperature is estimated. Then, the results of thermo-hydro-mechanical results are presented to investigate landfill behavior more accurately.

Keywords: finite element method, heat transfer, landfill behavior, thermo-hydro-mechanical modeling

Procedia PDF Downloads 324
491 Electron Density Discrepancy Analysis of Energy Metabolism Coenzymes

Authors: Alan Luo, Hunter N. B. Moseley

Abstract:

Many macromolecular structure entries in the Protein Data Bank (PDB) have a range of regional (localized) quality issues, be it derived from x-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or other experimental approaches. However, most PDB entries are judged by global quality metrics like R-factor, R-free, and resolution for x-ray crystallography or backbone phi-psi distribution statistics and average restraint violations for NMR. Regional quality is often ignored when PDB entries are re-used for a variety of structurally based analyses. The binding of ligands, especially ligands involved in energy metabolism, is of particular interest in many structurally focused protein studies. Using a regional quality metric that provides chemically interpretable information from electron density maps, a significant number of outliers in regional structural quality was detected across x-ray crystallographic PDB entries for proteins bound to biochemically critical ligands. In this study, a series of analyses was performed to evaluate both specific and general potential factors that could promote these outliers. In particular, these potential factors were the minimum distance to a metal ion, the minimum distance to a crystal contact, and the isotropic atomic b-factor. To evaluate these potential factors, Fisher’s exact tests were performed, using regional quality criteria of outlier (top 1%, 2.5%, 5%, or 10%) versus non-outlier compared to a potential factor metric above versus below a certain outlier cutoff. The results revealed a consistent general effect from region-specific normalized b-factors but no specific effect from metal ion contact distances and only a very weak effect from crystal contact distance as compared to the b-factor results. These findings indicate that no single specific potential factor explains a majority of the outlier ligand-bound regions, implying that human error is likely as important as these other factors. Thus, all factors, including human error, should be considered when regions of low structural quality are detected. Also, the downstream re-use of protein structures for studying ligand-bound conformations should screen the regional quality of the binding sites. Doing so prevents misinterpretation due to the presence of structural uncertainty or flaws in regions of interest.

Keywords: biomacromolecular structure, coenzyme, electron density discrepancy analysis, x-ray crystallography

Procedia PDF Downloads 99
490 Early Formation of Adipocere in Subtropical Climate

Authors: Asit K. Sikary, O. P. Murty

Abstract:

Adipocere formation is a modification of the process of putrefaction. It consists mainly of saturated fatty acids, formed by the post-mortem hydrolysis and hydrogenation of body fats with the help of bacterial enzymes in the presence of warmth, moisture and anaerobic bacteria. In temperate climate, it takes weeks to develop while in India it starts to begin within 4-5 days. In this study, we have collected cases with adipocere formation, which were from the South Delhi region (average room temperature 27-390C) and autopsied at our centre. Details of the circumstances of the death, cause and time of death, surrounding environment and demographic profile of the deceased were taken into account. Total 16 cases were included in this study. Adipocere formation was predominantly present over cheeks, shoulder, breast, flanks, buttocks, and thighs. Out of 16, 11 cases were found in a dry atmosphere, 5 cases were brought from the water. There were 5 cases in which adipocere formation was seen in less than 2 days, and among them, in 1 case, as early as one day. This study showed that adipocere formation can be seen as early as 1 day in a hot and humid environment.

Keywords: adipocere, drowning, hanging, humid environment, strangulation, subtropical climate

Procedia PDF Downloads 397
489 Acute Effects of Exogenous Hormone Treatments on Postprandial Acylation Stimulating Protein Levels in Ovariectomized Rats After a Fat Load

Authors: Bashair Al Riyami

Abstract:

Background: Acylation stimulating protein (ASP) is a small basic protein that was isolated based on its function as a potent lipogenic factor. The role of ASP in lipid metabolism has been described in numerous studies. Several association studies suggest that ASP may play a prominent role in female fat metabolism and distribution. Progesterone is established as a female lipogenic hormone, however the mechanisms by which progesterone exert its effects are not fully understood. AIM: Since ASP is an established potent lipogenic factor with a known mechanism of action, in this study we aim to investigate acute effects of different hormone treatments on ASP levels in vivo after a fat load. Methods: This is a longitudinal study including 24 female wister rats that were randomly divided into 4 groups including controls (n=6). The rats were ovariectomized, and fourteen days later the fasting rats were injected subcutaneously with a single dose of different hormone treatments (progesterone, estrogen and testosterone). An hour later, olive was administered by oral gavage, and plasma blood samples were collected at several time points after oil administration for ASP and triglyceride measurements. Area under the curve (TG-AUC) was calculated to represent TG clearance Results: RM-ANCOVA and post-analysis showed that only the progesterone treated group had a significant postprandial ASP increase at two hours compared to basal levels and to the controls (439.8± 62.4 vs 253.45± 59.03 ug/ml), P= 0.04. Interestingly, increased postprandial ASP levels coordinated negatively with corresponding TG levels and TG-AUC across the postprandial period most apparent in the progesterone and testosterone treated groups that behaved in an opposite manner. ASP levels were 3-fold higher in the progesterone compared to the testosterone treated group, whereas TG-AUC was significantly lower in the progesterone treated group compared to the testosterone treated group. Conclusion: These findings suggest that progesterone treatment enhances ASP production and TG clearance in a simultaneous manner. The strong association of postprandial ASP levels and TG clearance in the progesterone treated group support the notion of a stimulatory role for progesterone on ASP mediated TG clearance. This is the first functional study to demonstrate a cause-effect relationship between hormone treatment and ASP levels in vivo. These findings are promising and may contribute to further understanding the mechanism of progesterone function as a female lipogenic hormone through enhancing ASP production and plasma levels.

Keywords: ASP, lipids, sex hormones, wister rats

Procedia PDF Downloads 319
488 Differential Proteomics Expression in Purple Rice Supplemented Type 2 Diabetic Rats’ Skeletal Muscle

Authors: Ei Ei Hlaing, Narissara Lailerd, Sittiruk Roytrakul, Pichapat Piamrojanaphat

Abstract:

Type 2 diabetes is one of the most common metabolic diseases all over the world. The pathogenesis of type 2 diabetes is not the only dysfunction of pancreatic beta cells but also insulin resistance in muscle, liver and adipose tissue. High levels of circulating free fatty acids, an increased lipid content of muscle cells, impaired insulin-mediated glucose uptake and diminished mitochondrial functioning are pathophysiological hallmarks of diabetic skeletal muscles. Purple rice (Oryza sativa L. indica) has been shown to have antidiabetic effects. However, the underlying mechanism(s) of antidiabetic activity of purple rice is still unraveled. In this research, to explore in-depth cellular mechanism(s), proteomic profile of purple rice supplemented type 2 diabetic rats’ skeletal muscle were analyzed contract with non-supplemented rats. Diabetic rats were induced high-fat diet combined with streptozotocin injection. By using one- dimensional gel electrophoresis (1-DE) and LC-MS/MS quantitative proteomic method, we analyzed proteomic profiles in skeletal muscle of normal rats, normal rats with purple rice supplementation, type 2 diabetic rats, and type 2 diabetic rats with purple rice supplementation. Total 2676 polypeptide expressions were identified. Among them, 24 peptides were only expressed in type 2 diabetic rats, and 24 peptides were unique peptides in type 2 diabetic rats with purple rice supplementation. Acetyl CoA carboxylase 1 (ACACA) found as unique protein in type 2 diabetic rats which is the major enzyme in lipid synthesis and metabolism. Interestingly, DNA damage response protein, heterogeneous nuclear ribonucleoprotein K [Mus musculus] (Hnrnpk), was upregulated in type 2 diabetic rats’ skeletal muscle. Meanwhile, unique proteins of type 2 diabetic rats with purple rice supplementation (bone morphogenetic 7 protein preproprotein, BMP7; and forkhead box protein NX4, Foxn4) involved with muscle cells growth through the regulation of TGF-β/Smad signaling network. Moreover, BMP7 may effect on insulin signaling through the downstream signaling of protein kinase B (Akt) which acts in protein synthesis, glucose uptake, and glycogen synthesis. In conclusion, our study supports that type 2 diabetes impairs muscular lipid metabolism. In addition, purple rice might recover the muscle cells growth and insulin signaling.

Keywords: proteomics, purple rice bran, skeletal muscle, type 2 diabetic rats

Procedia PDF Downloads 226
487 Comprehensive Longitudinal Multi-omic Profiling in Weight Gain and Insulin Resistance

Authors: Christine Y. Yeh, Brian D. Piening, Sarah M. Totten, Kimberly Kukurba, Wenyu Zhou, Kevin P. F. Contrepois, Gucci J. Gu, Sharon Pitteri, Michael Snyder

Abstract:

Three million deaths worldwide are attributed to obesity. However, the biomolecular mechanisms that describe the link between adiposity and subsequent disease states are poorly understood. Insulin resistance characterizes approximately half of obese individuals and is a major cause of obesity-mediated diseases such as Type II diabetes, hypertension and other cardiovascular diseases. This study makes use of longitudinal quantitative and high-throughput multi-omics (genomics, epigenomics, transcriptomics, glycoproteomics etc.) methodologies on blood samples to develop multigenic and multi-analyte signatures associated with weight gain and insulin resistance. Participants of this study underwent a 30-day period of weight gain via excessive caloric intake followed by a 60-day period of restricted dieting and return to baseline weight. Blood samples were taken at three different time points per patient: baseline, peak-weight and post weight loss. Patients were characterized as either insulin resistant (IR) or insulin sensitive (IS) before having their samples processed via longitudinal multi-omic technologies. This comparative study revealed a wealth of biomolecular changes associated with weight gain after using methods in machine learning, clustering, network analysis etc. Pathways of interest included those involved in lipid remodeling, acute inflammatory response and glucose metabolism. Some of these biomolecules returned to baseline levels as the patient returned to normal weight whilst some remained elevated. IR patients exhibited key differences in inflammatory response regulation in comparison to IS patients at all time points. These signatures suggest differential metabolism and inflammatory pathways between IR and IS patients. Biomolecular differences associated with weight gain and insulin resistance were identified on various levels: in gene expression, epigenetic change, transcriptional regulation and glycosylation. This study was not only able to contribute to new biology that could be of use in preventing or predicting obesity-mediated diseases, but also matured novel biomedical informatics technologies to produce and process data on many comprehensive omics levels.

Keywords: insulin resistance, multi-omics, next generation sequencing, proteogenomics, type ii diabetes

Procedia PDF Downloads 400
486 Associations among Fetuin A, Cortisol and Thyroid Hormones in Children with Morbid Obesity and Metabolic Syndrome

Authors: Mustafa Metin Donma, Orkide Donma

Abstract:

Obesity is a disease with an ever-increasing prevalence throughout the world. The metabolic network associated with obesity is very complicated. In metabolic syndrome (MetS), it becomes even more difficult to understand. Within this context, hormones, cytokines, and many others participate in this complex matrix. The collaboration among all of these parameters is a matter of great wonder. Cortisol, as a stress hormone, is closely associated with obesity. Thyroid hormones are involved in the regulation of energy as well as glucose metabolism with all of its associates. Fetuin A is known for years; however, the involvement of this parameter in obesity discussions is rather new. Recently, it has been defined as one of the new generation markers of obesity. In this study, the aim was to introduce complex interactions among all to be able to make clear comparisons, at least for a part of this complicated matter. Morbid obese (MO) children participated in the study. Two groups with 46 MO children and 43 with MetS were constituted. All children included in the study were above 99th age- and sex-adjusted body mass index (BMI) percentiles according to World Health Organization criteria. Forty-three morbid obese children in the second group had also MetS components. Informed consent forms were filled by the parents of the participants. The institutional ethics committee has given approval for the study protocol. Data as well as the findings of the study were evaluated from a statistical point of view. Two groups were matched for their age and gender compositions. Significantly higher body mass index (BMI), waist circumference, thyrotropin, and insulin values were observed in the MetS group. Triiodothyronine concentrations did not differ between the groups. Elevated levels for thyroxin, cortisol, and fetuin-A were detected in the MetS group compared to the first group (p > 0.05). In MO MetS- group, cortisol was correlated with thyroxin and fetuin-A (p < 0.05). In the MO MetS+ group, none of these correlations were present. Instead, a correlation between cortisol and thyrotropin was found (p < 0.05). In conclusion, findings have shown that cortisol was the key player in severely obese children. The association of this hormone with the participants of thyroid hormone metabolism was quite important. The lack of association with fetuin A in the morbid obese MetS+ group has suggested the possible interference of MetS components in the behavior of this new generation obesity marker. The most remarkable finding of the study was the unique correlation between cortisol and thyrotropin in the morbid obese MetS+ group, suggesting that thyrotropin may serve as a target along with cortisol in the morbid obese MetS+ group. This association may deserve specific attention during the development of remedies against MetS in the pediatric population.

Keywords: children, cortisol, fetuin A, morbid obesity, thyrotropin

Procedia PDF Downloads 156
485 Potential Impacts of Maternal Nutrition and Selection for Residual Feed Intake on Metabolism and Fertility Parameters in Angus Bulls

Authors: Aidin Foroutan, David S. Wishart, Leluo L. Guan, Carolyn Fitzsimmons

Abstract:

Maximizing efficiency and growth potential of beef cattle requires not only genetic selection (i.e. residual feed intake (RFI)) but also adequate nutrition throughout all stages of growth and development. Nutrient restriction during gestation has been shown to negatively affect post-natal growth and development as well as fertility of the offspring. This, when combined with RFI may affect progeny traits. This study aims to investigate the impact of selection for divergent genetic potential for RFI and maternal nutrition during early- to mid-gestation, on bull calf traits such as fertility and muscle development using multiple ‘omics’ approaches. Comparisons were made between High-diet vs. Low-diet and between High-RFI vs. Low-RFI animals. An epigenetics experiment on semen samples identified 891 biomarkers associated with growth and development. A gene expression study on Longissimus thoracis muscle, semimembranosus muscle, liver, and testis identified 4 genes associated with muscle development and immunity of which Myocyte enhancer factor 2A [MEF2A; induces myogenesis and control muscle differentiation] was the only differentially expressed gene identified in all four tissues. An initial metabolomics experiment on serum samples using nuclear magnetic resonance (NMR) identified 4 metabolite biomarkers related to energy and protein metabolism. Once all the biomarkers are identified, bioinformatics approaches will be used to create a database covering all the ‘omics’ data collected from this project. This database will be broadened by adding other information obtained from relevant literature reviews. Association analyses with these data sets will be performed to reveal key biological pathways affected by RFI and maternal nutrition. Through these association studies between the genome and metabolome, it is expected that candidate biomarker genes and metabolites for feed efficiency, fertility, and/or muscle development are identified. If these gene/metabolite biomarkers are validated in a larger animal population, they could potentially be used in breeding programs to select superior animals. It is also expected that this work will lead to the development of an online tool that could be used to predict future traits of interest in an animal given its measurable ‘omics’ traits.

Keywords: biomarker, maternal nutrition, omics, residual feed intake

Procedia PDF Downloads 166
484 Investigation of Biogas from Slaughterhouse and Dairy Farm Waste

Authors: Saadelnour Abdueljabbar Adam

Abstract:

Wastes from slaughterhouses in most towns in Sudan are often poorly managed and sometimes discharged into adjoining streams due to poor implementation of standards, thus causing environmental and public health hazards and also there is a large amount of manure from dairy farms. This paper presents a solution of organic waste from cow dairy farms and slaughterhouse. We present the findings of experimental investigation of biogas production using cow manure, blood and rumen content were mixed at three proportions :72.3%, 61%, 39% manure, 6%, 8.5%, 22% blood; and 21.7%, 30.5%, 39% rumen content in volume for bio-digester 1,2,3 respectively. This paper analyses the quantitative and qualitative composition of biogas: gas content, and the concentration of methane. The highest biogas output 0.116L/g dry matter from bio-digester1 together with a high-quality biogas of 85% methane Was from the mixture of cow manure with blood and rumen content were mixed at 72.3%manure, 6%blood and 21.7%rumen content which is useful for combustion and energy production. While bio-digester 2 and 3 gave 0.012L/g dry matter and 0.013L/g dry matter respectively with the weak concentration of methane (50%).

Keywords: anaerobic digestion, bio-digester, blood, cow manure, rumen content

Procedia PDF Downloads 536
483 Biohydrogen Production from Starch Residues

Authors: Francielo Vendruscolo

Abstract:

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogen-deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Keywords: biofuel, dark fermentation, starch residues, food waste

Procedia PDF Downloads 366
482 Improving the Ability of Constructed Wetlands to Treat Acid Mine Drainage

Authors: Chigbo Emmanuel Ikechukwu

Abstract:

Constructed wetlands are seen as a potential means of ameliorating the poor quality water that derives from coal and gold mining operations. However, the processes whereby a wetland environment is able to improve water quality are not well understood and techniques for optimising their performance poorly developed. A parameter that may be manipulated in order to improve the treatment capacity of a wetland is the substrate in which the aquatic plants are rooted. This substrate can provide an environment wherein sulphate reducing bacteria, which contribute to the removal of contaminants from the water, are able to flourish. The bacteria require an energy source which is largely provided by carbon in the substrate. This paper discusses the form in which carbon is most suitable for the bacteria and describes the results of a series of experiments in which different materials were used as substrate. Synthetic acid mine drainage was passed through an anaerobic bioreactor that contained either compost or cow manure. The effluent water quality was monitored with respect to time and the effect of the substrate composition discussed.

Keywords: constructed wetland, bacteria, carbon, acid mine drainage, sulphate

Procedia PDF Downloads 416
481 Mechanical Properties of Organic Polymer and Exfoliated Graphite Reinforced Bacteria Cellulose Paper

Authors: T. Thompson, E. F. Zegeye

Abstract:

Bacterial Cellulose (BC) is a structural organic compound produced in the anaerobic process. This material can be a useful eco-friendly substitute for commercial textiles that are used in industries today. BC is easily and sustainably produced and has the capabilities to be used as a replacement in textiles. However, BC is extremely fragile when it completely dries. This research was conducted to improve the mechanical properties of the BC by reinforcing with an organic polymer and exfoliated graphite (EG). The BC films were grown over a period of weeks in a green tea and kombucha solution at 30 °C, then cleaned and added to an enhancing solution. The enhancing solutions were a mixture of 2.5 wt% polymer and 2.5 wt% latex solution, a 5 wt% polymer solution, a 0.20 wt% graphite solution and were each allowed to sit in a furnace for 48 h at 50 °C. Tensile test samples were prepared and tested until fracture at a strain rate of 8 mm/min. From the research with the addition of a 5 wt% polymer solution, the flexibility of the BC has significantly improved with the maximum strain significantly larger than that of the base sample. The addition of EG has also increased the modulus of elasticity of the BC by about 25%.

Keywords: bacterial cellulose, exfoliated graphite, kombucha scoby, tensile test

Procedia PDF Downloads 95
480 Ultrasound Disintegration as a Potential Method for the Pre-Treatment of Virginia Fanpetals (Sida hermaphrodita) Biomass before Methane Fermentation Process

Authors: Marcin Dębowski, Marcin Zieliński, Mirosław Krzemieniewski

Abstract:

As methane fermentation is a complex series of successive biochemical transformations, its subsequent stages are determined, to a various extent, by physical and chemical factors. A specific state of equilibrium is being settled in the functioning fermentation system between environmental conditions and the rate of biochemical reactions and products of successive transformations. In the case of physical factors that influence the effectiveness of methane fermentation transformations, the key significance is ascribed to temperature and intensity of biomass agitation. Among the chemical factors, significant are pH value, type, and availability of the culture medium (to put it simply: the C/N ratio) as well as the presence of toxic substances. One of the important elements which influence the effectiveness of methane fermentation is the pre-treatment of organic substrates and the mode in which the organic matter is made available to anaerobes. Out of all known and described methods for organic substrate pre-treatment before methane fermentation process, the ultrasound disintegration is one of the most interesting technologies. Investigations undertaken on the ultrasound field and the use of installations operating on the existing systems result principally from very wide and universal technological possibilities offered by the sonication process. This physical factor may induce deep physicochemical changes in ultrasonicated substrates that are highly beneficial from the viewpoint of methane fermentation processes. In this case, special role is ascribed to disintegration of biomass that is further subjected to methane fermentation. Once cell walls are damaged, cytoplasm and cellular enzymes are released. The released substances – either in dissolved or colloidal form – are immediately available to anaerobic bacteria for biodegradation. To ensure the maximal release of organic matter from dead biomass cells, disintegration processes are aimed to achieve particle size below 50 μm. It has been demonstrated in many research works and in systems operating in the technical scale that immediately after substrate supersonication the content of organic matter (characterized by COD, BOD5 and TOC indices) was increasing in the dissolved phase of sedimentation water. This phenomenon points to the immediate sonolysis of solid substances contained in the biomass and to the release of cell material, and consequently to the intensification of the hydrolytic phase of fermentation. It results in a significant reduction of fermentation time and increased effectiveness of production of gaseous metabolites of anaerobic bacteria. Because disintegration of Virginia fanpetals biomass via ultrasounds applied in order to intensify its conversion is a novel technique, it is often underestimated by exploiters of agri-biogas works. It has, however, many advantages that have a direct impact on its technological and economical superiority over thus far applied methods of biomass conversion. As for now, ultrasound disintegrators for biomass conversion are not produced on the mass-scale, but by specialized groups in scientific or R&D centers. Therefore, their quality and effectiveness are to a large extent determined by their manufacturers’ knowledge and skills in the fields of acoustics and electronic engineering.

Keywords: ultrasound disintegration, biomass, methane fermentation, biogas, Virginia fanpetals

Procedia PDF Downloads 340
479 Sustainable Treatment of Vegetable Oil Industry Wastewaters by Xanthomonas campestris

Authors: Bojana Ž. Bajić, Siniša N. Dodić, Vladimir S. Puškaš, Jelena M. Dodić

Abstract:

Increasing industrialization as a response to the demands of the consumer society greatly exploits resources and generates large amounts of waste effluents in addition to the desired product. This means it is a priority to implement technologies with the maximum utilization of raw materials and energy, minimum generation of waste effluents and/or their recycling (secondary use). Considering the process conditions and the nature of the raw materials used by the vegetable oil industry, its wastewaters can be used as substrates for the biotechnological production which requires large amounts of water. This way the waste effluents of one branch of industry become raw materials for another branch which produces a new product while reducing wastewater pollution and thereby reducing negative environmental impacts. Vegetable oil production generates wastewaters during the process of rinsing oils and fats which contain mainly fatty acid pollutants. The vegetable oil industry generates large amounts of waste effluents, especially in the processes of degumming, deacidification, deodorization and neutralization. Wastewaters from the vegetable oil industry are generated during the whole year in significant amounts, based on the capacity of the vegetable oil production. There are no known alternative applications for these wastewaters as raw materials for the production of marketable products. Since the literature has no data on the potential negative impact of fatty acids on the metabolism of the bacterium Xanthomonas campestris, these wastewaters were considered as potential raw materials for the biotechnological production of xanthan. In this research, vegetable oil industry wastewaters were used as the basis for the cultivation media for xanthan production with Xanthomonas campestris ATCC 13951. Examining the process of biosynthesis of xanthan on vegetable oil industry wastewaters as the basis for the cultivation media was performed to obtain insight into the possibility of its use in the aforementioned biotechnological process. Additionally, it was important to experimentally determine the absence of substances that have an inhibitory effect on the metabolism of the production microorganism. Xanthan content, rheological parameters of the cultivation media, carbon conversion into xanthan and conversions of the most significant nutrients for biosynthesis (carbon, nitrogen and phosphorus sources) were determined as indicators of the success of biosynthesis. The obtained results show that biotechnological production of the biopolymer xanthan by bacterium Xanthomonas campestris on vegetable oil industry wastewaters based cultivation media simultaneously provides preservation of the environment and economic benefits which is a sustainable solution to the problem of wastewater treatment.

Keywords: biotechnology, sustainable bioprocess, vegetable oil industry wastewaters, Xanthomonas campestris

Procedia PDF Downloads 125
478 Moving Towards Zero Waste in a UK Local Authority Area: Challenges to the Introduction of Separate Food Waste Collections

Authors: C. Cole, M. Osmani, A. Wheatley, M. Quddus

Abstract:

EU and UK Government targets for minimising and recycling household waste has led the responsible authorities to research the alternatives to landfill. In the work reported here the local waste collection authority (Charnwood Borough Council) has adopted the aspirational strategy of becoming a “Zero Waste Borough” to lead the drive for public participation. The work concludes that the separate collection of food waste would be needed to meet the two regulatory standards on recycling and biologically active wastes. An analysis of a neighbouring Authority (Newcastle-Under-Lyne Borough Council (NBC), a similar sized local authority that has a successful weekly food waste collection service was undertaken. Results indicate that the main challenges for Charnwood Borough Council would be gaining householder co-operation, the extra costs of collection and organising alternative treatment. The analysis also demonstrated that there was potential offset value via anaerobic digestion for CBC to overcome these difficulties and improve its recycling performance.

Keywords: England, food waste collections, household waste, local authority

Procedia PDF Downloads 388
477 Breath Ethanol Imaging System Using Real Time Biochemical Luminescence for Evaluation of Alcohol Metabolic Capacity

Authors: Xin Wang, Munkbayar Munkhjargal, Kumiko Miyajima, Takahiro Arakawa, Kohji Mitsubayashi

Abstract:

The measurement of gaseous ethanol plays an important role of evaluation of alcohol metabolic capacity in clinical and forensic analysis. A 2-dimensional visualization system for gaseous ethanol was constructed and tested in visualization of breath and transdermal alcohol. We demonstrated breath ethanol measurement using developed high-sensitive visualization system. The concentration of breath ethanol calculated with the imaging signal was significantly different between the volunteer subjects of ALDH2 (+) and (-).

Keywords: breath ethanol, ethnaol imaging, biochemical luminescence, alcohol metabolism

Procedia PDF Downloads 328
476 Arsenic Contamination in Drinking Water Is Associated with Dyslipidemia in Pregnancy

Authors: Begum Rokeya, Rahelee Zinnat, Fatema Jebunnesa, Israt Ara Hossain, A. Rahman

Abstract:

Background and Aims: Arsenic in drinking water is a global environmental health problem, and the exposure may increase dyslipidemia and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of lipid metabolism, atherosclerosis formation, arsenic exposure and impact in pregnancy is still unclear. Recent epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and Dyslipidemia. However, the exact mechanism of this arsenic-mediated increase in atherosclerosis risk factors remains enigmatic. We explore the association of the effect of arsenic on serum lipid profile in pregnant subjects. Methods: A total 200 pregnant mother screened in this study from arsenic exposed area. Our study group included 100 exposed subjects were cases and 100 Non exposed healthy pregnant were controls requited by a cross-sectional study. Clinical and anthropometric measurements were done by standard techniques. Lipidemic status was assessed by enzymatic endpoint method. Urinary As was measured by inductively coupled plasma-mass spectrometry and adjusted with specific gravity and Arsenic exposure was assessed by the level of urinary arsenic level > 100 μg/L was categorized as arsenic exposed and < 100 μg/L were categorized as non-exposed. Multivariate logistic regression and Student’s t - test was used for statistical analysis. Results: Systolic and diastolic blood pressure both were significantly higher in the Arsenic exposed pregnant subjects compared to the Non-exposed group (p<0.001). Arsenic exposed subjects had 2 times higher chance of developing hypertensive pregnancy (Odds Ratio 2.2). In parallel to the findings in Ar exposed subjects showed significantly higher proportion of triglyceride and total cholesterol and low density of lipo protein when compare to non- arsenic exposed pregnant subjects. Significant correlation of urinary arsenic level was also found with SBP, DBP, TG, T chol and serum LDL-Cholesterol. On multivariate logistic regression showed urinary arsenic had a positive association with DBP, SBP, Triglyceride and LDL-c. Conclusion: In conclusion, arsenic exposure may induce dyslipidemia like atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element.

Keywords: Arsenic Exposure, Dyslipidemia, Gestational Diabetes Mellitus, Serum lipid profile

Procedia PDF Downloads 98
475 The Determination of Pb and Zn Phytoremediation Potential and Effect of Interaction between Cadmium and Zinc on Metabolism of Buckwheat (Fagopyrum Esculentum)

Authors: Nurdan Olguncelik Kaplan, Aysen Akay

Abstract:

Nowadays soil pollution has become a global problem. External added polluters to the soil are destroying and changing the structure of the soil and the problems are becoming more complex and in this sense the correction of these problems is going to be harder and more costly. Cadmium has got a fast mobility in the soil and plant system because of that cadmium can interfere very easily to the human and animal food chain and in the same time this can be very dangerous. The cadmium which is absorbed and stored by the plants is causing to many metabolic changes of the plants like; protein synthesis, nitrogen and carbohydrate metabolism, enzyme (nitrate reductase) activation, photo and chlorophyll synthesis. The biological function of cadmium is not known over the plants and it is not a necessary element. The plant is generally taking in small amounts the cadmium and this element is competing with the zinc. Cadmium is causing root damages. Buckwheat (Fagopyrum esculentum) is an important nutraceutical because of its high content of flavonoids, minerals and vitamins, and their nutritionally balanced amino-acid composition. Buckwheat has relatively high biomass productivity, is adapted to many areas of the world, and can flourish in sterile fields; therefore buckwheat plants are widely used for the phytoremediation process.The aim of this study were to evaluate the phytoremediation capacity of the high-yielding plant Buckwheat (Fagopyrum esculentum) in soils contaminated with Cd and Zn. The soils were applied to differrent doses cd(0-12.5-25-50-100 mg Cd kg−1 soil in the form of 3CdSO4.8H2O ) and Zn (0-10-30 mg Zn kg−1 soil in the form of ZnSO4.7H2O) and incubated about 60 days. Later buckwheat seeds were sown and grown for three mounth under greenhouse conditions. The test plants were irrigated by using pure water after the planting process. Buckwheat seeds (Gunes and Aktas species) were taken from Bahri Dagdas International Agricultural Research. After harvest, Cd and Zn concentrations of plant biomass and grain, yield and translocation factors (TFs) for Cd and Cd were determined. Cadmium accumulation in biomass and grain significantly increased in dose-dependent manner. Long term field trials are required to further investigate the potential of buckwheat to reclaimed the soil. But this could be undertaken in conjunction with actual remediation schemes. However, the differences in element accumulation among the genotypes were affected more by the properties of genotypes than by the soil properties. Gunes genotype accumulated higher lead than Aktas genotypes.

Keywords: buckwheat, cadmium, phytoremediation, zinc

Procedia PDF Downloads 396