Search results for: receiver operating characteristic histogram
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3948

Search results for: receiver operating characteristic histogram

3948 3D Receiver Operator Characteristic Histogram

Authors: Xiaoli Zhang, Xiongfei Li, Yuncong Feng

Abstract:

ROC curves, as a widely used evaluating tool in machine learning field, are the tradeoff of true positive rate and negative rate. However, they are blamed for ignoring some vital information in the evaluation process, such as the amount of information about the target that each instance carries, predicted score given by each classification model to each instance. Hence, in this paper, a new classification performance method is proposed by extending the Receiver Operator Characteristic (ROC) curves to 3D space, which is denoted as 3D ROC Histogram. In the histogram, the

Keywords: classification, performance evaluation, receiver operating characteristic histogram, hardness prediction

Procedia PDF Downloads 313
3947 Screening Post-Menopausal Women for Osteoporosis by Complex Impedance Measurements of the Dominant Arm

Authors: Yekta Ülgen, Fırat Matur

Abstract:

Cole-Cole parameters of 40 post-menopausal women are compared with their DEXA bone mineral density measurements. Impedance characteristics of four extremities are compared; left and right extremities are statistically same, but lower extremities are statistically different than upper ones due to their different fat content. The correlation of Cole-Cole impedance parameters to bone mineral density (BMD) is observed to be higher for a dominant arm. With the post menopausal population, ANOVA tests of the dominant arm characteristic frequency, as a predictor for DEXA classified osteopenic and osteoporotic population around the lumbar spine, is statistically very significant. When used for total lumbar spine osteoporosis diagnosis, the area under the Receiver Operating Curve of the characteristic frequency is 0.875, suggesting that the Cole-Cole plot characteristic frequency could be a useful diagnostic parameter when integrated into standard screening methods for osteoporosis. Moreover, the characteristic frequency can be directly measured by monitoring frequency driven the angular behavior of the dominant arm without performing any complex calculation.

Keywords: bioimpedance spectroscopy, bone mineral density, osteoporosis, characteristic frequency, receiver operating curve

Procedia PDF Downloads 522
3946 Comparison of Receiver Operating Characteristic Curve Smoothing Methods

Authors: D. Sigirli

Abstract:

The Receiver Operating Characteristic (ROC) curve is a commonly used statistical tool for evaluating the diagnostic performance of screening and diagnostic test with continuous or ordinal scale results which aims to predict the presence or absence probability of a condition, usually a disease. When the test results were measured as numeric values, sensitivity and specificity can be computed across all possible threshold values which discriminate the subjects as diseased and non-diseased. There are infinite numbers of possible decision thresholds along the continuum of the test results. The ROC curve presents the trade-off between sensitivity and the 1-specificity as the threshold changes. The empirical ROC curve which is a non-parametric estimator of the ROC curve is robust and it represents data accurately. However, especially for small sample sizes, it has a problem of variability and as it is a step function there can be different false positive rates for a true positive rate value and vice versa. Besides, the estimated ROC curve being in a jagged form, since the true ROC curve is a smooth curve, it underestimates the true ROC curve. Since the true ROC curve is assumed to be smooth, several smoothing methods have been explored to smooth a ROC curve. These include using kernel estimates, using log-concave densities, to fit parameters for the specified density function to the data with the maximum-likelihood fitting of univariate distributions or to create a probability distribution by fitting the specified distribution to the data nd using smooth versions of the empirical distribution functions. In the present paper, we aimed to propose a smooth ROC curve estimation based on the boundary corrected kernel function and to compare the performances of ROC curve smoothing methods for the diagnostic test results coming from different distributions in different sample sizes. We performed simulation study to compare the performances of different methods for different scenarios with 1000 repetitions. It is seen that the performance of the proposed method was typically better than that of the empirical ROC curve and only slightly worse compared to the binormal model when in fact the underlying samples were generated from the normal distribution.

Keywords: empirical estimator, kernel function, smoothing, receiver operating characteristic curve

Procedia PDF Downloads 152
3945 Morphological Features Fusion for Identifying INBREAST-Database Masses Using Neural Networks and Support Vector Machines

Authors: Nadia el Atlas, Mohammed el Aroussi, Mohammed Wahbi

Abstract:

In this paper a novel technique of mass characterization based on robust features-fusion is presented. The proposed method consists of mainly four stages: (a) the first phase involves segmenting the masses using edge information’s. (b) The second phase is to calculate and fuse the most relevant morphological features. (c) The last phase is the classification step which allows us to classify the images into benign and malignant masses. In this step we have implemented Support Vectors Machines (SVM) and Artificial Neural Networks (ANN), which were evaluated with the following performance criteria: confusion matrix, accuracy, sensitivity, specificity, receiver operating characteristic ROC, and error histogram. The effectiveness of this new approach was evaluated by a recently developed database: INBREAST database. The fusion of the most appropriate morphological features provided very good results. The SVM gives accuracy to within 64.3%. Whereas the ANN classifier gives better results with an accuracy of 97.5%.

Keywords: breast cancer, mammography, CAD system, features, fusion

Procedia PDF Downloads 599
3944 Estimating the Receiver Operating Characteristic Curve from Clustered Data and Case-Control Studies

Authors: Yalda Zarnegarnia, Shari Messinger

Abstract:

Receiver operating characteristic (ROC) curves have been widely used in medical research to illustrate the performance of the biomarker in correctly distinguishing the diseased and non-diseased groups. Correlated biomarker data arises in study designs that include subjects that contain same genetic or environmental factors. The information about correlation might help to identify family members at increased risk of disease development, and may lead to initiating treatment to slow or stop the progression to disease. Approaches appropriate to a case-control design matched by family identification, must be able to accommodate both the correlation inherent in the design in correctly estimating the biomarker’s ability to differentiate between cases and controls, as well as to handle estimation from a matched case control design. This talk will review some developed methods for ROC curve estimation in settings with correlated data from case control design and will discuss the limitations of current methods for analyzing correlated familial paired data. An alternative approach using Conditional ROC curves will be demonstrated, to provide appropriate ROC curves for correlated paired data. The proposed approach will use the information about the correlation among biomarker values, producing conditional ROC curves that evaluate the ability of a biomarker to discriminate between diseased and non-diseased subjects in a familial paired design.

Keywords: biomarker, correlation, familial paired design, ROC curve

Procedia PDF Downloads 239
3943 Performance Comparison of Tablet Devices and Medical Diagnostic Display Devices Using Digital Object Patterns in PACS Environment

Authors: Yan-Lin Liu, Cheng-Ting Shih, Jay Wu

Abstract:

Tablet devices have been introduced into the medical environment in recent years. The performance of display can be varied based on the use of different hardware specifications and types of display technologies. Therefore, the differences between tablet devices and medical diagnostic LCDs have to be verified to ensure that image quality is not jeopardized for clinical diagnosis in a picture archiving and communication system (PACS). In this study, a set of randomized object test patterns (ROTPs) were developed, which included randomly located spheres in abdominal CT images. Five radiologists were asked to independently review the CT images on different generations of iPads and a diagnostic monochrome medical LCD monitor. Receiver operating characteristic (ROC) analysis was performed by using a five-point rating scale, and the average area under curve (AUC) and average reading time (ART) were calculated. The AUC values for the second generation iPad, iPad mini, iPad Air, and monochrome medical monitor were 0.712, 0.717, 0.725, and 0.740, respectively. The differences between iPads were not significant. The ARTs were 177 min and 127 min for iPad mini and medical LCD monitor, respectively. A significant difference appeared (p = 0.04). The results show that the iPads were slightly inferior to the monochrome medical LCD monitor. However, tablet devices possess advantages in portability and versatility, which can improve the convenience of rapid diagnosis and teleradiology. With advances in display technology, the applicability of tablet devices and mobile devices may be more diversified in PACS.

Keywords: tablet devices, PACS, receiver operating characteristic, LCD monitor

Procedia PDF Downloads 480
3942 Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries

Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed

Abstract:

This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast.

Keywords: image segmentation, hierarchical analysis, 2-D histogram, classification

Procedia PDF Downloads 380
3941 Design of Low Power FSK Receiver

Authors: M. Aeysha Parvin, J. Asha, J. Jenifer

Abstract:

This letter presents a novel frequency-shift keying(FSK) receiver using PLL-based FSK demodulator, thereby achieving high sensitivity and low power consumption. The proposed receiver comprises a power amplifier, mixer, 3-stage ring oscillator, PLL based demodulator. Moreover, the proposed receiver is fabricated using 0.12µm CMOS process and consumes 0.7Mw. Measurement results demonstrate that the proposed receiver has a sensitivity of -93dbm with 1Mbps data rate in receiving a 2.4 GHz FSK signal.

Keywords: CMOS FSK receiver, phase locked loop (PLL), 3-stage ring oscillator, FSK signal

Procedia PDF Downloads 497
3940 Bias-Corrected Estimation Methods for Receiver Operating Characteristic Surface

Authors: Khanh To Duc, Monica Chiogna, Gianfranco Adimari

Abstract:

With three diagnostic categories, assessment of the performance of diagnostic tests is achieved by the analysis of the receiver operating characteristic (ROC) surface, which generalizes the ROC curve for binary diagnostic outcomes. The volume under the ROC surface (VUS) is a summary index usually employed for measuring the overall diagnostic accuracy. When the true disease status can be exactly assessed by means of a gold standard (GS) test, unbiased nonparametric estimators of the ROC surface and VUS are easily obtained. In practice, unfortunately, disease status verification via the GS test could be unavailable for all study subjects, due to the expensiveness or invasiveness of the GS test. Thus, often only a subset of patients undergoes disease verification. Statistical evaluations of diagnostic accuracy based only on data from subjects with verified disease status are typically biased. This bias is known as verification bias. Here, we consider the problem of correcting for verification bias when continuous diagnostic tests for three-class disease status are considered. We assume that selection for disease verification does not depend on disease status, given test results and other observed covariates, i.e., we assume that the true disease status, when missing, is missing at random. Under this assumption, we discuss several solutions for ROC surface analysis based on imputation and re-weighting methods. In particular, verification bias-corrected estimators of the ROC surface and of VUS are proposed, namely, full imputation, mean score imputation, inverse probability weighting and semiparametric efficient estimators. Consistency and asymptotic normality of the proposed estimators are established, and their finite sample behavior is investigated by means of Monte Carlo simulation studies. Two illustrations using real datasets are also given.

Keywords: imputation, missing at random, inverse probability weighting, ROC surface analysis

Procedia PDF Downloads 416
3939 Satellite-Based Drought Monitoring in Korea: Methodologies and Merits

Authors: Joo-Heon Lee, Seo-Yeon Park, Chanyang Sur, Ho-Won Jang

Abstract:

Satellite-based remote sensing technique has been widely used in the area of drought and environmental monitoring to overcome the weakness of in-situ based monitoring. There are many advantages of remote sensing for drought watch in terms of data accessibility, monitoring resolution and types of available hydro-meteorological data including environmental areas. This study was focused on the applicability of drought monitoring based on satellite imageries by applying to the historical drought events, which had a huge impact on meteorological, agricultural, and hydrological drought. Satellite-based drought indices, the Standardized Precipitation Index (SPI) using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM); Vegetation Health Index (VHI) using MODIS based Land Surface Temperature (LST), and Normalized Difference Vegetation Index (NDVI); and Scaled Drought Condition Index (SDCI) were evaluated to assess its capability to analyze the complex topography of the Korean peninsula. While the VHI was accurate when capturing moderate drought conditions in agricultural drought-damaged areas, the SDCI was relatively well monitored in hydrological drought-damaged areas. In addition, this study found correlations among various drought indices and applicability using Receiver Operating Characteristic (ROC) method, which will expand our understanding of the relationships between hydro-meteorological variables and drought events at global scale. The results of this research are expected to assist decision makers in taking timely and appropriate action in order to save millions of lives in drought-damaged areas.

Keywords: drought monitoring, moderate resolution imaging spectroradiometer (MODIS), remote sensing, receiver operating characteristic (ROC)

Procedia PDF Downloads 329
3938 Urine Neutrophil Gelatinase-Associated Lipocalin as an Early Marker of Acute Kidney Injury in Hematopoietic Stem Cell Transplantation Patients

Authors: Sara Ataei, Maryam Taghizadeh-Ghehi, Amir Sarayani, Asieh Ashouri, Amirhossein Moslehi, Molouk Hadjibabaie, Kheirollah Gholami

Abstract:

Background: Acute kidney injury (AKI) is common in hematopoietic stem cell transplantation (HSCT) patients with an incidence of 21–73%. Prevention and early diagnosis reduces the frequency and severity of this complication. Predictive biomarkers are of major importance to timely diagnosis. Neutrophil gelatinase associated lipocalin (NGAL) is a widely investigated novel biomarker for early diagnosis of AKI. However, no study assessed NGAL for AKI diagnosis in HSCT patients. Methods: We performed further analyses on gathered data from our recent trial to evaluate the performance of urine NGAL (uNGAL) as an indicator of AKI in 72 allogeneic HSCT patients. AKI diagnosis and severity were assessed using Risk–Injury–Failure–Loss–End-stage renal disease and AKI Network criteria. We assessed uNGAL on days -6, -3, +3, +9 and +15. Results: Time-dependent Cox regression analysis revealed a statistically significant relationship between uNGAL and AKI occurrence. (HR=1.04 (1.008-1.07), P=0.01). There was a relation between uNGAL day +9 to baseline ratio and incidence of AKI (unadjusted HR=.1.047(1.012-1.083), P<0.01). The area under the receiver-operating characteristic curve for day +9 to baseline ratio was 0.86 (0.74-0.99, P<0.01) and a cut-off value of 2.62 was 85% sensitive and 83% specific in predicting AKI. Conclusions: Our results indicated that increase in uNGAL augmented the risk of AKI and the changes of day +9 uNGAL concentrations from baseline could be of value for predicting AKI in HSCT patients. Additionally uNGAL changes preceded serum creatinine rises by nearly 2 days.

Keywords: acute kidney injury, hemtopoietic stem cell transplantation, neutrophil gelatinase-associated lipocalin, Receiver-operating characteristic curve

Procedia PDF Downloads 409
3937 Global Based Histogram for 3D Object Recognition

Authors: Somar Boubou, Tatsuo Narikiyo, Michihiro Kawanishi

Abstract:

In this work, we address the problem of 3D object recognition with depth sensors such as Kinect or Structure sensor. Compared with traditional approaches based on local descriptors, which depends on local information around the object key points, we propose a global features based descriptor. Proposed descriptor, which we name as Differential Histogram of Normal Vectors (DHONV), is designed particularly to capture the surface geometric characteristics of the 3D objects represented by depth images. We describe the 3D surface of an object in each frame using a 2D spatial histogram capturing the normalized distribution of differential angles of the surface normal vectors. The object recognition experiments on the benchmark RGB-D object dataset and a self-collected dataset show that our proposed descriptor outperforms two others descriptors based on spin-images and histogram of normal vectors with linear-SVM classifier.

Keywords: vision in control, robotics, histogram, differential histogram of normal vectors

Procedia PDF Downloads 279
3936 Content-Based Color Image Retrieval Based on the 2-D Histogram and Statistical Moments

Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed

Abstract:

In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach can overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.

Keywords: 2-D histogram, statistical moments, indexing, similarity distance, histograms intersection

Procedia PDF Downloads 456
3935 Enhanced Thai Character Recognition with Histogram Projection Feature Extraction

Authors: Benjawan Rangsikamol, Chutimet Srinilta

Abstract:

This research paper deals with extraction of Thai character features using the proposed histogram projection so as to improve the recognition performance. The process starts with transformation of image files into binary files before thinning. After character thinning, the skeletons are entered into the proposed extraction using histogram projection (horizontal and vertical) to extract unique features which are inputs of the subsequent recognition step. The recognition rate with the proposed extraction technique is as high as 97 percent since the technique works very well with the idiosyncrasies of Thai characters.

Keywords: character recognition, histogram projection, multilayer perceptron, Thai character features extraction

Procedia PDF Downloads 464
3934 Digital Watermarking Based on Visual Cryptography and Histogram

Authors: R. Rama Kishore, Sunesh

Abstract:

Nowadays, robust and secure watermarking algorithm and its optimization have been need of the hour. A watermarking algorithm is presented to achieve the copy right protection of the owner based on visual cryptography, histogram shape property and entropy. In this, both host image and watermark are preprocessed. Host image is preprocessed by using Butterworth filter, and watermark is with visual cryptography. Applying visual cryptography on water mark generates two shares. One share is used for embedding the watermark, and the other one is used for solving any dispute with the aid of trusted authority. Usage of histogram shape makes the process more robust against geometric and signal processing attacks. The combination of visual cryptography, Butterworth filter, histogram, and entropy can make the algorithm more robust, imperceptible, and copy right protection of the owner.

Keywords: digital watermarking, visual cryptography, histogram, butter worth filter

Procedia PDF Downloads 357
3933 Role of von Willebrand Factor Antigen as Non-Invasive Biomarker for the Prediction of Portal Hypertensive Gastropathy in Patients with Liver Cirrhosis

Authors: Mohamed El Horri, Amine Mouden, Reda Messaoudi, Mohamed Chekkal, Driss Benlaldj, Malika Baghdadi, Lahcene Benmahdi, Fatima Seghier

Abstract:

Background/aim: Recently, the Von Willebrand factor antigen (vWF-Ag)has been identified as a new marker of portal hypertension (PH) and its complications. Few studies talked about its role in the prediction of esophageal varices. VWF-Ag is considered a non-invasive approach, In order to avoid the endoscopic burden, cost, drawbacks, unpleasant and repeated examinations to the patients. In our study, we aimed to evaluate the ability of this marker in the prediction of another complication of portal hypertension, which is portal hypertensive gastropathy (PHG), the one that is diagnosed also by endoscopic tools. Patients and methods: It is about a prospective study, which include 124 cirrhotic patients with no history of bleeding who underwent screening endoscopy for PH-related complications like esophageal varices (EVs) and PHG. Routine biological tests were performed as well as the VWF-Ag testing by both ELFA and Immunoturbidimetric techniques. The diagnostic performance of our marker was assessed using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curves. Results: 124 patients were enrolled in this study, with a mean age of 58 years [CI: 55 – 60 years] and a sex ratio of 1.17. Viral etiologies were found in 50% of patients. Screening endoscopy revealed the presence of PHG in 20.2% of cases, while for EVsthey were found in 83.1% of cases. VWF-Ag levels, were significantly increased in patients with PHG compared to those who have not: 441% [CI: 375 – 506], versus 279% [CI: 253 – 304], respectively (p <0.0001). Using the area under the receiver operating characteristic curve (AUC), vWF-Ag was a good predictor for the presence of PHG. With a value higher than 320% and an AUC of 0.824, VWF-Ag had an 84% sensitivity, 74% specificity, 44.7% positive predictive value, 94.8% negative predictive value, and 75.8% diagnostic accuracy. Conclusion: VWF-Ag is a good non-invasive low coast marker for excluding the presence of PHG in patients with liver cirrhosis. Using this marker as part of a selective screening strategy might reduce the need for endoscopic screening and the coast of the management of these kinds of patients.

Keywords: von willebrand factor, portal hypertensive gastropathy, prediction, liver cirrhosis

Procedia PDF Downloads 205
3932 A Low-Power, Low-Noise and High-Gain 58~66 GHz CMOS Receiver Front-End for Short-Range High-Speed Wireless Communications

Authors: Yo-Sheng Lin, Jen-How Lee, Chien-Chin Wang

Abstract:

A 60-GHz receiver front-end using standard 90-nm CMOS technology is reported. The receiver front-end comprises a wideband low-noise amplifier (LNA), and a double-balanced Gilbert cell mixer with a current-reused RF single-to-differential (STD) converter, an LO Marchand balun and a baseband amplifier. The receiver front-end consumes 34.4 mW and achieves LO-RF isolation of 60.7 dB, LO-IF isolation of 45.3 dB and RF-IF isolation of 41.9 dB at RF of 60 GHz and LO of 59.9 GHz. At IF of 0.1 GHz, the receiver front-end achieves maximum conversion gain (CG) of 26.1 dB at RF of 64 GHz and CG of 25.2 dB at RF of 60 GHz. The corresponding 3-dB bandwidth of RF is 7.3 GHz (58.4 GHz to 65.7 GHz). The measured minimum noise figure was 5.6 dB at 64 GHz, one of the best results ever reported for a 60 GHz CMOS receiver front-end. In addition, the measured input 1-dB compression point and input third-order inter-modulation point are -33.1 dBm and -23.3 dBm, respectively, at 60 GHz. These results demonstrate the proposed receiver front-end architecture is very promising for 60 GHz direct-conversion transceiver applications.

Keywords: CMOS, 60 GHz, direct-conversion transceiver, LNA, down-conversion mixer, marchand balun, current-reused

Procedia PDF Downloads 451
3931 Selecting the Best Sub-Region Indexing the Images in the Case of Weak Segmentation Based on Local Color Histograms

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

Color Histogram is considered as the oldest method used by CBIR systems for indexing images. In turn, the global histograms do not include the spatial information; this is why the other techniques coming later have attempted to encounter this limitation by involving the segmentation task as a preprocessing step. The weak segmentation is employed by the local histograms while other methods as CCV (Color Coherent Vector) are based on strong segmentation. The indexation based on local histograms consists of splitting the image into N overlapping blocks or sub-regions, and then the histogram of each block is computed. The dissimilarity between two images is reduced, as consequence, to compute the distance between the N local histograms of the both images resulting then in N*N values; generally, the lowest value is taken into account to rank images, that means that the lowest value is that which helps to designate which sub-region utilized to index images of the collection being asked. In this paper, we make under light the local histogram indexation method in the hope to compare the results obtained against those given by the global histogram. We address also another noteworthy issue when Relying on local histograms namely which value, among N*N values, to trust on when comparing images, in other words, which sub-region among the N*N sub-regions on which we base to index images. Based on the results achieved here, it seems that relying on the local histograms, which needs to pose an extra overhead on the system by involving another preprocessing step naming segmentation, does not necessary mean that it produces better results. In addition to that, we have proposed here some ideas to select the local histogram on which we rely on to encode the image rather than relying on the local histogram having lowest distance with the query histograms.

Keywords: CBIR, color global histogram, color local histogram, weak segmentation, Euclidean distance

Procedia PDF Downloads 359
3930 Operating Characteristics of Point-of-Care Ultrasound in Identifying Skin and Soft Tissue Abscesses in the Emergency Department

Authors: Sathyaseelan Subramaniam, Jacqueline Bober, Jennifer Chao, Shahriar Zehtabchi

Abstract:

Background: Emergency physicians frequently evaluate skin and soft tissue infections in order to differentiate abscess from cellulitis. This helps determine which patients will benefit from incision and drainage. Our objective was to determine the operating characteristics of point-of-care ultrasound (POCUS) compared to clinical examination in identifying abscesses in emergency department (ED) patients with features of skin and soft tissue infections. Methods: We performed a comprehensive search in the following databases: Medline, Web of Science, EMBASE, CINAHL and Cochrane Library. Trials were included if they compared the operating characteristics of POCUS with clinical examination in identifying skin and soft tissue abscesses. Trials that included patients with oropharyngeal abscesses or that requiring abscess drainage in the operating room were excluded. The presence of an abscess was determined by pus drainage. No pus seen on incision or resolution of symptoms without pus drainage at follow up, determined the absence of an abscess. Quality of included trials was assessed using GRADE criteria. Operating characteristics of POCUS are reported as sensitivity, specificity, positive likelihood (LR+) and negative likelihood (LR-) ratios and the respective 95% confidence intervals (CI). Summary measures were calculated by generating a hierarchical summary receiver operating characteristic model (HSROC). Results: Out of 3203 references identified, 5 observational studies with 615 patients in aggregate were included (2 adults and 3 pediatrics). We rated the quality of 3 trials as low and 2 as very low. The operating characteristics of POCUS and clinical examination in identifying soft tissue abscesses are presented in the table. The HSROC for POCUS revealed a sensitivity of 96% (95% CI = 89-98%), specificity of 79% (95% CI = 71-86), LR+ of 4.6 (95% CI = 3.2-6.8), and LR- of 0.06 (95% CI = 0.02-0.2). Conclusion: Existing evidence indicates that POCUS is useful in identifying abscesses in ED patients with skin or soft tissue infections.

Keywords: abscess, point-of-care ultrasound, pocus, skin and soft tissue infection

Procedia PDF Downloads 369
3929 A 1.57ghz Mixer Design for GPS Receiver

Authors: Hamd Ahmed

Abstract:

During the Persian Gulf War in 1991s, The confederation forces were surprised when they were being shot at by friendly forces in Iraqi desert. As obvious was the fact that they were mislead due to the lack of proper guidance and technology resulting in unnecessary loss of life and bloodshed. This unforeseen incident along with many others led the US department of defense to open the doors of GPS. In the very beginning, this technology was for military use, but now it is being widely used and increasingly popular among the public due to its high accuracy and immeasurable significance. The GPS system simply consists of three segments, the space segment (the satellite), the control segment (ground control) and the user segment (receiver). This project work is about designing a 1.57GHZ mixer for triple conversion GPS receiver .The GPS Front-End receiver based on super heterodyne receiver which improves selectivity and image frequency. However the main principle of the super heterodyne receiver depends on the mixer. Many different types of mixers (single balanced mixer, Single Ended mixer, Double balanced mixer) can be used with GPS receiver, it depends on the required specifications. This research project will provide an overview of the GPS system and details about the basic architecture of the GPS receiver. The basic emphasis of this report in on investigating general concept of the mixer circuit some terms related to the mixer along with their definitions and present the types of mixer, then gives some advantages of using singly balanced mixer and its application. The focus of this report is on how to design mixer for GPS receiver and discussing the simulation results.

Keywords: GPS , RF filter, heterodyne, mixer

Procedia PDF Downloads 323
3928 Moving Object Detection Using Histogram of Uniformly Oriented Gradient

Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang

Abstract:

Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.

Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine

Procedia PDF Downloads 594
3927 A Modified Shannon Entropy Measure for Improved Image Segmentation

Authors: Mohammad A. U. Khan, Omar A. Kittaneh, M. Akbar, Tariq M. Khan, Husam A. Bayoud

Abstract:

The Shannon Entropy measure has been widely used for measuring uncertainty. However, in partial settings, the histogram is used to estimate the underlying distribution. The histogram is dependent on the number of bins used. In this paper, a modification is proposed that makes the Shannon entropy based on histogram consistent. For providing the benefits, two application are picked in medical image processing applications. The simulations are carried out to show the superiority of this modified measure for image segmentation problem. The improvement may be contributed to robustness shown to uneven background in images.

Keywords: Shannon entropy, medical image processing, image segmentation, modification

Procedia PDF Downloads 497
3926 Dissimilarity Measure for General Histogram Data and Its Application to Hierarchical Clustering

Authors: K. Umbleja, M. Ichino

Abstract:

Symbolic data mining has been developed to analyze data in very large datasets. It is also useful in cases when entry specific details should remain hidden. Symbolic data mining is quickly gaining popularity as datasets in need of analyzing are becoming ever larger. One type of such symbolic data is a histogram, which enables to save huge amounts of information into a single variable with high-level of granularity. Other types of symbolic data can also be described in histograms, therefore making histogram a very important and general symbolic data type - a method developed for histograms - can also be applied to other types of symbolic data. Due to its complex structure, analyzing histograms is complicated. This paper proposes a method, which allows to compare two histogram-valued variables and therefore find a dissimilarity between two histograms. Proposed method uses the Ichino-Yaguchi dissimilarity measure for mixed feature-type data analysis as a base and develops a dissimilarity measure specifically for histogram data, which allows to compare histograms with different number of bins and bin widths (so called general histogram). Proposed dissimilarity measure is then used as a measure for clustering. Furthermore, linkage method based on weighted averages is proposed with the concept of cluster compactness to measure the quality of clustering. The method is then validated with application on real datasets. As a result, the proposed dissimilarity measure is found producing adequate and comparable results with general histograms without the loss of detail or need to transform the data.

Keywords: dissimilarity measure, hierarchical clustering, histograms, symbolic data analysis

Procedia PDF Downloads 162
3925 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains

Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi

Abstract:

In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.

Keywords: binary vector quantization (BVQ), DCT coefficients, face recognition, local binary patterns (LBP)

Procedia PDF Downloads 349
3924 Surveillance Video Summarization Based on Histogram Differencing and Sum Conditional Variance

Authors: Nada Jasim Habeeb, Rana Saad Mohammed, Muntaha Khudair Abbass

Abstract:

For more efficient and fast video summarization, this paper presents a surveillance video summarization method. The presented method works to improve video summarization technique. This method depends on temporal differencing to extract most important data from large video stream. This method uses histogram differencing and Sum Conditional Variance which is robust against to illumination variations in order to extract motion objects. The experimental results showed that the presented method gives better output compared with temporal differencing based summarization techniques.

Keywords: temporal differencing, video summarization, histogram differencing, sum conditional variance

Procedia PDF Downloads 348
3923 The Secrecy Capacity of the Semi-Deterministic Wiretap Channel with Three State Information

Authors: Mustafa El-Halabi

Abstract:

A general model of wiretap channel with states is considered, where the legitimate receiver and the wiretapper’s observations depend on three states S1, S2 and S3. State S1 is non-causally known to the encoder, S2 is known to the receiver, and S3 remains unknown. A secure coding scheme, based using structured-binning, is proposed, and it is shown to achieve the secrecy capacity when the signal at legitimate receiver is a deterministic function of the input.

Keywords: physical layer security, interference, side information, secrecy capacity

Procedia PDF Downloads 388
3922 Comparison between Transient Elastography (FibroScan) and Liver Biopsy for Diagnosis of Hepatic Fibrosis in Chronic Hepatitis C Genotype 4

Authors: Gamal Shiha, Seham Seif, Shahera Etreby, Khaled Zalata, Waleed Samir

Abstract:

Background: Transient Elastography (TE; FibroScan®) is a non-invasive technique to assess liver fibrosis. Aim: To compare TE and liver biopsy in hepatitis C virus (HCV) patients, genotype IV and evaluate the effect of steatosis and schistosomiasis on FibroScan. Methods: The fibrosis stage (METAVIR Score) TE, was assessed in 519 patients. The diagnostic performance of FibroScan is assessed by calculating the area under the receiver operating characteristic curves (AUROCs). Results: The cut-off value of ≥ F2 was 8.55 kPa, ≥ F3 was 10.2 kPa and cirrhosis = F4 was 16.3 kPa. The positive predictive value and negative predictive value were 70.1% and 81.7% for the diagnosis of ≥ F2, 62.6% and 96.22% for F ≥ 3, and 27.7% and 100% for F4. No significant difference between schistosomiasis, steatosis degree and FibroScan measurements. Conclusion: Fibroscan could accurately predict liver fibrosis.

Keywords: chronic hepatitis C, FibroScan, liver biopsy, liver fibrosis

Procedia PDF Downloads 409
3921 QI Wireless Charging a Scope of Magnetic Inductive Coupling

Authors: Sreenesh Shashidharan, Umesh Gaikwad

Abstract:

QI or 'Chee' which is an interface standard for inductive electrical power transfer over distances of up to 4 cm (1.6 inches). The Qi system comprises a power transmission pad and a compatible receiver in a portable device which is placed on top of the power transmission pad, which charges using the principle of electromagnetic induction. An alternating current is passed through the transmitter coil, generating a magnetic field. This, in turn, induces a voltage in the receiver coil; this can be used to power a mobile device or charge a battery. The efficiency of the power transfer depends on the coupling (k) between the inductors and their quality (Q) The coupling is determined by the distance between the inductors (z) and the relative size (D2 /D). The coupling is further determined by the shape of the coils and the angle between them. If the receiver coil is at a certain distance to the transmitter coil, only a fraction of the magnetic flux, which is generated by the transmitter coil, penetrates the receiver coil and contributes to the power transmission. The more flux reaches the receiver, the better the coils are coupled.

Keywords: inductive electric power, electromagnetic induction, magnetic flux, coupling

Procedia PDF Downloads 732
3920 Investigation of the Unbiased Characteristic of Doppler Frequency to Different Antenna Array Geometries

Authors: Somayeh Komeylian

Abstract:

Array signal processing techniques have been recently developing in a variety application of the performance enhancement of receivers by refraining the power of jamming and interference signals. In this scenario, biases induced to the antenna array receiver degrade significantly the accurate estimation of the carrier phase. Owing to the integration of frequency becomes the carrier phase, we have obtained the unbiased doppler frequency for the high precision estimation of carrier phase. The unbiased characteristic of Doppler frequency to the power jamming and the other interference signals allows achieving the highly accurate estimation of phase carrier. In this study, we have rigorously investigated the unbiased characteristic of Doppler frequency to the variation of the antenna array geometries. The simulation results have efficiently verified that the Doppler frequency remains also unbiased and accurate to the variation of antenna array geometries.

Keywords: array signal processing, unbiased doppler frequency, GNSS, carrier phase, and slowly fluctuating point target

Procedia PDF Downloads 159
3919 Simulation Data Summarization Based on Spatial Histograms

Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura

Abstract:

In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.

Keywords: simulation data, data summarization, spatial histograms, exploration, visualization

Procedia PDF Downloads 176