Search results for: ESR1 gene
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1518

Search results for: ESR1 gene

1518 Characteristics of the Receptor and Molecular Genetic Features of Tumor Cells from Primary Cultures of the Luminal a Subtype of Breast Cancer

Authors: Sergey V. Sazonov, Anna S. Mogilenskikh, Svetlana S. Deryabina, Denis A. Demidov, Sergey M. Demidov

Abstract:

The majority of breast cancer (BC) cases are estrogen receptor (ER) positive, and the most common among surrogate molecular biological subtypes is Luminal A. Despite ongoing treatment, drug resistance occurs in a significant proportion of patients, leading to disease recurrence. To determine the sensitivity of a particular tumor to therapy, it is necessary to create an in vitro model, which could then serve as a basis for the selection of personalized therapy for breast cancer. The aim is to evaluate the molecular genetic profile of tumor cells from primary cultures of the Luminal A subtype of breast cancer as a potential model for assessing resistance to therapy. Materials and methods: Primary cell cultures were obtained from a surgical sample in patients with Luminal A subtype of breast cancer when the following inclusion criteria were met: absence of previous therapy and availability of voluntary informed consent. The subtype was determined using the IHC method. Growth was maintained in a serum-free Mammocult™ environment (STEMCELL, Canada). The culture was passed after 7-10 days (p1-p5), and flow cytometry was performed on a Beckman Coulter cytometer (USA) at each passage. Antibodies to estrogen (Alexa Fluor® 647, SP1, Abcam, Canada) to HER2 (24D2, Brilliant Violet 421™, Biolegend, USA) were used for evaluation, and at least 5,000 events were analyzed.). NGS testing was performed on the same cells (Prep&Seq™ U-panel BCEv1, 63 genes). Results: Luminal A subtype includes cases with a Ki-67 threshold of less than 10% of tumor cell nuclei, no HER2 expression (level 0 to 1 points), lack of amplification of the HER2 gene, and high estrogen and/or progesterone levels. The median for RE expression was 66.5% (IQR 7.1) from p1 to p5, and this index didn´t change significantly throughout culture (p<0.001). The presence of Her2 oncoprotein was detected in 5.0% across all passages (IQR 5.2). The data obtained are consistent with the characteristics of the Luminal A subtype. NGS testing detected mutations in genes associated with breast cancer: BARD1, BRCA2, BRIP1, CASP8, CCNE1, CDH1, KEAP1, MSH3, NF1, PALB2, RAD51D, RECQL5, TP53 ZNF217, as well as in genes associated with the Luminal A subtype: PIK3CA, MAP3KI, ESR1. At all passages are detected in the MAP3K1 gene, 7 mutations (3 missenses, 3 synonymous, 1 in-frame) except p2 and p5. A mutation in 1 exon (synonymous) is added at p2 and p5, while no changes are detected in the other genes. Conclusion: Primary cell cultures during the five passages can preserve the expression of RE and the composition of mutations in genes and can be used as an in vitro model. The combination of mutation in ESR1 and MAP3K gene is a potential factor of acquired resistance to therapy in patients with Luminal A breast cancer.

Keywords: breast cancer, Luminal A subtype, primary cell culture, HER2 receptors, estrogen receptors, MAP3K1 gene, ESR1 gene

Procedia PDF Downloads 1
1517 lncRNA Gene Expression Profiling Analysis by TCGA RNA-Seq Data of Breast Cancer

Authors: Xiaoping Su, Gabriel G. Malouf

Abstract:

Introduction: Breast cancer is a heterogeneous disease that can be classified in 4 subgroups using transcriptional profiling. The role of lncRNA expression in human breast cancer biology, prognosis, and molecular classification remains unknown. Methods and results: Using an integrative comprehensive analysis of lncRNA, mRNA and DNA methylation in 900 breast cancer patients from The Cancer Genome Atlas (TCGA) project, we unraveled the molecular portraits of 1,700 expressed lncRNA. Some of those lncRNAs (i.e, HOTAIR) are previously reported and others are novel (i.e, HOTAIRM1, MAPT-AS1). The lncRNA classification correlated well with the PAM50 classification for basal-like, Her-2 enriched and luminal B subgroups, in contrast to the luminal A subgroup which behaved differently. Importantly, estrogen receptor (ESR1) expression was associated with distinct lncRNA networks in lncRNA clusters III and IV. Gene set enrichment analysis for cis- and trans-acting lncRNA showed enrichment for breast cancer signatures driven by breast cancer master regulators. Almost two third of those lncRNA were marked by enhancer chromatin modifications (i.e., H3K27ac), suggesting that lncRNA expression may result in increased activity of neighboring genes. Differential analysis of gene expression profiling data showed that lncRNA HOTAIRM1 was significantly down-regulated in basal-like subtype, and DNA methylation profiling data showed that lncRNA HOTAIRM1 was highly methylated in basal-like subtype. Thus, our integrative analysis of gene expression and DNA methylation strongly suggested that lncRNA HOTAIRM1 should be a tumor suppressor in basal-like subtype. Conclusion and significance: Our study depicts the first lncRNA molecular portrait of breast cancer and shows that lncRNA HOTAIRM1 might be a novel tumor suppressor.

Keywords: lncRNA profiling, breast cancer, HOTAIRM1, tumor suppressor

Procedia PDF Downloads 109
1516 Computational Investigation on Structural and Functional Impact of Oncogenes and Tumor Suppressor Genes on Cancer

Authors: Abdoulie K. Ceesay

Abstract:

Within the sequence of the whole genome, it is known that 99.9% of the human genome is similar, whilst our difference lies in just 0.1%. Among these minor dissimilarities, the most common type of genetic variations that occurs in a population is SNP, which arises due to nucleotide substitution in a protein sequence that leads to protein destabilization, alteration in dynamics, and other physio-chemical properties’ distortions. While causing variations, they are equally responsible for our difference in the way we respond to a treatment or a disease, including various cancer types. There are two types of SNPs; synonymous single nucleotide polymorphism (sSNP) and non-synonymous single nucleotide polymorphism (nsSNP). sSNP occur in the gene coding region without causing a change in the encoded amino acid, while nsSNP is deleterious due to its replacement of a nucleotide residue in the gene sequence that results in a change in the encoded amino acid. Predicting the effects of cancer related nsSNPs on protein stability, function, and dynamics is important due to the significance of phenotype-genotype association of cancer. In this thesis, Data of 5 oncogenes (ONGs) (AKT1, ALK, ERBB2, KRAS, BRAF) and 5 tumor suppressor genes (TSGs) (ESR1, CASP8, TET2, PALB2, PTEN) were retrieved from ClinVar. Five common in silico tools; Polyphen, Provean, Mutation Assessor, Suspect, and FATHMM, were used to predict and categorize nsSNPs as deleterious, benign, or neutral. To understand the impact of each variation on the phenotype, Maestro, PremPS, Cupsat, and mCSM-NA in silico structural prediction tools were used. This study comprises of in-depth analysis of 10 cancer gene variants downloaded from Clinvar. Various analysis of the genes was conducted to derive a meaningful conclusion from the data. Research done indicated that pathogenic variants are more common among ONGs. Our research also shows that pathogenic and destabilizing variants are more common among ONGs than TSGs. Moreover, our data indicated that ALK(409) and BRAF(86) has higher benign count among ONGs; whilst among TSGs, PALB2(1308) and PTEN(318) genes have higher benign counts. Looking at the individual cancer genes predisposition or frequencies of causing cancer according to our research data, KRAS(76%), BRAF(55%), and ERBB2(36%) among ONGs; and PTEN(29%) and ESR1(17%) among TSGs have higher tendencies of causing cancer. Obtained results can shed light to the future research in order to pave new frontiers in cancer therapies.

Keywords: tumor suppressor genes (TSGs), oncogenes (ONGs), non synonymous single nucleotide polymorphism (nsSNP), single nucleotide polymorphism (SNP)

Procedia PDF Downloads 90
1515 Identification of Biological Pathways Causative for Breast Cancer Using Unsupervised Machine Learning

Authors: Karthik Mittal

Abstract:

This study performs an unsupervised machine learning analysis to find clusters of related SNPs which highlight biological pathways that are important for the biological mechanisms of breast cancer. Studying genetic variations in isolation is illogical because these genetic variations are known to modulate protein production and function; the downstream effects of these modifications on biological outcomes are highly interconnected. After extracting the SNPs and their effect on different types of breast cancer using the MRBase library, two unsupervised machine learning clustering algorithms were implemented on the genetic variants: a k-means clustering algorithm and a hierarchical clustering algorithm; furthermore, principal component analysis was executed to visually represent the data. These algorithms specifically used the SNP’s beta value on the three different types of breast cancer tested in this project (estrogen-receptor positive breast cancer, estrogen-receptor negative breast cancer, and breast cancer in general) to perform this clustering. Two significant genetic pathways validated the clustering produced by this project: the MAPK signaling pathway and the connection between the BRCA2 gene and the ESR1 gene. This study provides the first proof of concept showing the importance of unsupervised machine learning in interpreting GWAS summary statistics.

Keywords: breast cancer, computational biology, unsupervised machine learning, k-means, PCA

Procedia PDF Downloads 149
1514 Intelligent CRISPR Design for Bone Regeneration

Authors: Yu-Chen Hu

Abstract:

Gene editing by CRISPR and gene regulation by microRNA or CRISPR activation have dramatically changed the way to manipulate cellular gene expression and cell fate. In recent years, various gene editing and gene manipulation technologies have been applied to control stem cell differentiation to enhance tissue regeneration. This research will focus on how to develop CRISPR, CRISPR activation (CRISPRa), CRISPR inhibition (CRISPRi), as well as bi-directional CRISPR-AI gene regulation technologies to control cell differentiation and bone regeneration. Moreover, in this study, CRISPR/Cas13d-mediated RNA editng for miRNA editing and bone regeneration will be discussed.

Keywords: gene therapy, bone regeneration, stem cell, CRISPR, gene regulation

Procedia PDF Downloads 100
1513 Role of Estrogen Receptor-alpha in Mammary Carcinoma by Single Nucleotide Polymorphisms and Molecular Docking: An In-silico Analysis

Authors: Asif Bilal, Fouzia Tanvir, Sibtain Ahmad

Abstract:

Estrogen receptor alpha, also known as estrogen receptor-1, is highly involved in risk of mammary carcinoma. The objectives of this study were to identify non-synonymous SNPs of estrogen receptor and their association with breast cancer and to identify the chemotherapeutic responses of phytochemicals against it via in-silico study design. For this purpose, different online tools. to identify pathogenic SNPs the tools were SIFT, Polyphen, Polyphen-2, fuNTRp, SNAP2, for finding disease associated SNPs the tools SNP&GO, PhD-SNP, PredictSNP, MAPP, SNAP, MetaSNP, PANTHER, and to check protein stability Mu-Pro, I-Mutant, and CONSURF were used. Post-translational modifications (PTMs) were detected by Musitedeep, Protein secondary structure by SOPMA, protein to protein interaction by STRING, molecular docking by PyRx. Seven SNPs having rsIDs (rs760766066, rs779180038, rs956399300, rs773683317, rs397509428, rs755020320, and rs1131692059) showing mutations on I229T, R243C, Y246H, P336R, Q375H, R394S, and R394H, respectively found to be completely deleterious. The PTMs found were 96 times Glycosylation; 30 times Ubiquitination, a single time Acetylation; and no Hydroxylation and Phosphorylation were found. The protein secondary structure consisted of Alpha helix (Hh) is (28%), Extended strand (Ee) is (21%), Beta turn (Tt) is 7.89% and Random coil (Cc) is (44.11%). Protein-protein interaction analysis revealed that it has strong interaction with Myeloperoxidase, Xanthine dehydrogenase, carboxylesterase 1, Glutathione S-transferase Mu 1, and with estrogen receptors. For molecular docking we used Asiaticoside, Ilekudinuside, Robustoflavone, Irinoticane, Withanolides, and 9-amin0-5 as ligands that extract from phytochemicals and docked with this protein. We found that there was great interaction (from -8.6 to -9.7) of these ligands of phytochemicals at ESR1 wild and two mutants (I229T and R394S). It is concluded that these SNPs found in ESR1 are involved in breast cancer and given phytochemicals are highly helpful against breast cancer as chemotherapeutic agents. Further in vitro and in vivo analysis should be performed to conduct these interactions.

Keywords: breast cancer, ESR1, phytochemicals, molecular docking

Procedia PDF Downloads 75
1512 Construction of the Large Scale Biological Networks from Microarrays

Authors: Fadhl Alakwaa

Abstract:

One of the sustainable goals of the system biology is understanding gene-gene interactions. Hence, gene regulatory networks (GRN) need to be constructed for understanding the disease ontology and to reduce the cost of drug development. To construct gene regulatory from gene expression we need to overcome many challenges such as data denoising and dimensionality. In this paper, we develop an integrated system to reduce data dimension and remove the noise. The generated network from our system was validated via available interaction databases and was compared to previous methods. The result revealed the performance of our proposed method.

Keywords: gene regulatory network, biclustering, denoising, system biology

Procedia PDF Downloads 242
1511 Identification of Mx Gene Polymorphism in Indragiri Hulu duck by PCR-RFLP

Authors: Restu Misrianti

Abstract:

The amino acid variation of Asn (allele A) at position 631 in Mx gene was specific to positive antiviral to avian viral desease. This research was aimed at identifying polymorphism of Mx gene in duck using molecular technique. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) technique was used to select the genotype of AA, AG and GG. There were thirteen duck from Indragiri Hulu regency (Riau Province) used in this experiment. DNA amplification results showed that the Mx gene in duck is found in a 73 bp fragment. Mx gene in duck did not show any polymorphism. The frequency of the resistant allele (AA) was 0%, while the frequency of the susceptible allele (GG) was 100%.

Keywords: duck, Mx gene, PCR, RFLP

Procedia PDF Downloads 327
1510 Macronutrients and the FTO Gene Expression in Hypothalamus: A Systematic Review of Experimental Studies

Authors: Saeid Doaei

Abstract:

The various studies have examined the relationship between FTO gene expression and macronutrients levels. In order to obtain better viewpoint from this interactions, all of the existing studies were reviewed systematically. All published papers have been obtained and reviewed using standard and sensitive keywords from databases such as CINAHL, Embase, PubMed, PsycInfo, and the Cochrane, from 1990 to 2016. The results indicated that all of 6 studies that met the inclusion criteria (from a total of 428 published article) found FTO gene expression changes at short-term follow-ups. Four of six studies found an increased FTO gene expression after calorie restriction, while two of them indicated decreased FTO gene expression. The effect of protein, carbohydrate and fat were separately assessed and suggested by all of six studies. In conclusion, the level of FTO gene expression in hypothalamus is related to macronutrients levels. Future research should evaluate the long-term impact of dietary interventions.

Keywords: obesity, gene expression, FTO, macronutrients

Procedia PDF Downloads 273
1509 Network Pharmacological Evaluation of Holy Basil Bioactive Phytochemicals for Identifying Novel Potential Inhibitors Against Neurodegenerative Disorder

Authors: Bhuvanesh Baniya

Abstract:

Alzheimer disease is illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Holy basil in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of holy basil as potential inhibitors for the treatment of Alzheimer disease. To fulfill this objective, the Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 7 active components in holy basil, 12 predicted neurodegenerative targets of holy basil, and 8063 Alzheimer-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to Alzheimer disease. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer’s disease pathways. Further, the molecular docking results to found that various compounds showed the best binding affinities. Further, MDS top results suggested could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer’s disease.

Keywords: holy basil, network pharmacology, neurodegeneration, active phytochemicals, molecular docking and simulation

Procedia PDF Downloads 107
1508 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout

Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.

Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration

Procedia PDF Downloads 580
1507 Finding Bicluster on Gene Expression Data of Lymphoma Based on Singular Value Decomposition and Hierarchical Clustering

Authors: Alhadi Bustaman, Soeganda Formalidin, Titin Siswantining

Abstract:

DNA microarray technology is used to analyze thousand gene expression data simultaneously and a very important task for drug development and test, function annotation, and cancer diagnosis. Various clustering methods have been used for analyzing gene expression data. However, when analyzing very large and heterogeneous collections of gene expression data, conventional clustering methods often cannot produce a satisfactory solution. Biclustering algorithm has been used as an alternative approach to identifying structures from gene expression data. In this paper, we introduce a transform technique based on singular value decomposition to identify normalized matrix of gene expression data followed by Mixed-Clustering algorithm and the Lift algorithm, inspired in the node-deletion and node-addition phases proposed by Cheng and Church based on Agglomerative Hierarchical Clustering (AHC). Experimental study on standard datasets demonstrated the effectiveness of the algorithm in gene expression data.

Keywords: agglomerative hierarchical clustering (AHC), biclustering, gene expression data, lymphoma, singular value decomposition (SVD)

Procedia PDF Downloads 283
1506 Mutations in MTHFR Gene Associated with Mental Retardation and Cerebral Palsy Combined with Mental Retardation in Erbil City

Authors: Hazha Hidayat, Shayma Ibrahim

Abstract:

Folate metabolism plays a crucial role in the normal development of the neonatal central nervous system. It is regulated by MTHFR gene polymorphism. Any factors, which will affect this metabolism either by hereditary or gene mutation will lead to many mental disorders. The purpose of this study was to investigate whether MTHFR gene mutation contributes to the development of mental retardation and CP combined with mental retardation in Erbil city. DNA was isolated from the peripheral blood samples of 40 cases suffering from mental retardation (MR) and CP combined with MR were recruited, sequence the 4, 6, 7, 8 exons of the MTHFR gene were done to identify the variants. Exons were amplified by PCR technique and then sequenced according to Sanger method to show the differences with MTHFR reference sequences. We observed (14) mutations in 4, 6, 7, 8 exons in the MTHFR gene associated with Cerebral Palsy combined with mental retardation included deletion, insertion, Substitution. The current study provides additional evidence that multiple variations in the MTHFR gene are associated with mental retardation and Cerebral Palsy.

Keywords: methylenetetrahydrofolate reductase (MTHFR) gene, SNPs, homocysteine, sequencing

Procedia PDF Downloads 311
1505 A Review of Effective Gene Selection Methods for Cancer Classification Using Microarray Gene Expression Profile

Authors: Hala Alshamlan, Ghada Badr, Yousef Alohali

Abstract:

Cancer is one of the dreadful diseases, which causes considerable death rate in humans. DNA microarray-based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. In recent years, a DNA microarray technique has gained more attraction in both scientific and in industrial fields. It is important to determine the informative genes that cause cancer to improve early cancer diagnosis and to give effective chemotherapy treatment. In order to gain deep insight into the cancer classification problem, it is necessary to take a closer look at the proposed gene selection methods. We believe that they should be an integral preprocessing step for cancer classification. Furthermore, finding an accurate gene selection method is a very significant issue in a cancer classification area because it reduces the dimensionality of microarray dataset and selects informative genes. In this paper, we classify and review the state-of-art gene selection methods. We proceed by evaluating the performance of each gene selection approach based on their classification accuracy and number of informative genes. In our evaluation, we will use four benchmark microarray datasets for the cancer diagnosis (leukemia, colon, lung, and prostate). In addition, we compare the performance of gene selection method to investigate the effective gene selection method that has the ability to identify a small set of marker genes, and ensure high cancer classification accuracy. To the best of our knowledge, this is the first attempt to compare gene selection approaches for cancer classification using microarray gene expression profile.

Keywords: gene selection, feature selection, cancer classification, microarray, gene expression profile

Procedia PDF Downloads 463
1504 An Integrated Visualization Tool for Heat Map and Gene Ontology Graph

Authors: Somyung Oh, Jeonghyeon Ha, Kyungwon Lee, Sejong Oh

Abstract:

Microarray is a general scheme to find differentially expressed genes for target concept. The output is expressed by heat map, and biologists analyze related terms of gene ontology to find some characteristics of differentially expressed genes. In this paper, we propose integrated visualization tool for heat map and gene ontology graph. Previous two methods are used by static manner and separated way. Proposed visualization tool integrates them and users can interactively manage it. Users may easily find and confirm related terms of gene ontology for given differentially expressed genes. Proposed tool also visualize connections between genes on heat map and gene ontology graph. We expect biologists to find new meaningful topics by proposed tool.

Keywords: heat map, gene ontology, microarray, differentially expressed gene

Procedia PDF Downloads 319
1503 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning

Procedia PDF Downloads 406
1502 The Use of Medical Biotechnology to Treat Genetic Disease

Authors: Rachel Matar, Maxime Merheb

Abstract:

Chemical drugs have been used for many centuries as the only way to cure diseases until the novel gene therapy has been created in 1960. Gene therapy is based on the insertion, correction, or inactivation of genes to treat people with genetic illness (1). Gene therapy has made wonders in Parkison’s, Alzheimer and multiple sclerosis. In addition to great promises in the healing of deadly diseases like many types of cancer and autoimmune diseases (2). This method implies the use of recombinant DNA technology with the help of different viral and non-viral vectors (3). It is nowadays used in somatic cells as well as embryos and gametes. Beside all the benefits of gene therapy, this technique is deemed by some opponents as an ethically unacceptable treatment as it implies playing with the genes of living organisms.

Keywords: gene therapy, genetic disease, cancer, multiple sclerosis

Procedia PDF Downloads 548
1501 PRKAG3 and RYR1 Gene in Latvian White Pigs

Authors: Daina Jonkus, Liga Paura, Tatjana Sjakste, Kristina Dokane

Abstract:

The aim of this study was to analyse PRKAG3 and RYR1 gene and genotypes frequencies in Latvian White pigs’ breed. Genotypes of RYR1 gene two loci (rs196953058 and rs323041392) in 89 exon and PRKAG3 gene two loci (rs196958025 and rs344045190) in gene promoter were detected in 103 individuals of Latvian white pigs’ breed. Analysis of RYR1 gene loci rs196953058 shows all individuals are homozygous by T allele and all animals are with genotypes TT, its mean - in 2769 position is Phenylalanine. Analysis of RYR1 gene loci rs323041392 shows all individuals are homozygous by G allele and all animals are with genotypes GG, its mean - in 4119 positions is Asparagine. In loci rs196953058 and rs323041392, there were no gene polymorphisms. All analysed individuals by two loci rs196953058-rs323041392 have TT-GG genotypes or Phe-Asp amino acids. In PRKAG3 gene loci rs196958025 and rs344045190 there was gene polymorphisms. In both loci frequencies for A allele was higher: 84.6% for rs196958025 and 73.0% for rs344045190. Analysis of PRKAG3 gene loci rs196958025 shows 74% of individuals are homozygous by An allele and animals are with genotypes AA. Only 4% of individuals are homozygous by G allele and animals are with genotypes GG, which is associated with pale meat colour and higher drip loss. Analysis of PRKAG3 gene loci rs344045190 shows 46% of individuals are homozygous with genotypes AA and 54% of individuals are heterozygous with genotypes AG. There are no individuals with GG genotypes. According to the results, in Latvian white pigs population there are no rs344435545 (RYR1 gene) CT heterozygous or TT recessive homozygous genotypes, which is related to the meat quality and pigs’ stress syndrome; and there are 4% rs196958025 (PRKAG3 gene) GG recessive homozygote genotypes, which is related to the meat quality. Acknowledgment: the investigation is supported by VPP 2014-2017 AgroBioRes Project No. 3 LIVESTOCK.

Keywords: genotype frequencies, pig, PRKAG3, RYR1

Procedia PDF Downloads 212
1500 Bioinformatic Study of Follicle Stimulating Hormone Receptor (FSHR) Gene in Different Buffalo Breeds

Authors: Hamid Mustafa, Adeela Ajmal, Kim EuiSoo, Noor-ul-Ain

Abstract:

World wild, buffalo production is considered as most important component of food industry. Efficient buffalo production is related with reproductive performance of this species. Lack of knowledge of reproductive efficiency and its related genes in buffalo species is a major constraint for sustainable buffalo production. In this study, we performed some bioinformatics analysis on Follicle Stimulating Hormone Receptor (FSHR) gene and explored the possible relationship of this gene among different buffalo breeds and with other farm animals. We also found the evolution pattern for this gene among these species. We investigate CDS lengths, Stop codon variation, homology search, signal peptide, isoelectic point, tertiary structure, motifs and phylogenetic tree. The results of this study indicate 4 different motif in this gene, which are Activin-recp, GS motif, STYKc Protein kinase and transmembrane. The results also indicate that this gene has very close relationship with cattle, bison, sheep and goat. Multiple alignment (MA) showed high conservation of motif which indicates constancy of this gene during evolution. The results of this study can be used and applied for better understanding of this gene for better characterization of Follicle Stimulating Hormone Receptor (FSHR) gene structure in different farm animals, which would be helpful for efficient breeding plans for animal’s production.

Keywords: buffalo, FSHR gene, bioinformatics, production

Procedia PDF Downloads 536
1499 Polymorphism of Candidate Genes for Meat Production in Lori Sheep

Authors: Shahram Nanekarania, Majid Goodarzia

Abstract:

Calpastatin and callipyge have been known as one of the candidate genes in meat quality and quantity. Calpastatin gene has been located to chromosome 5 of sheep and callipyge gene has been localized in the telomeric region on ovine chromosome 18. The objective of this study was identification of calpastatin and callipyge genes polymorphism and analysis of genotype structure in population of Lori sheep kept in Iran. Blood samples were taken from 120 Lori sheep breed and genomic DNA was extracted by salting out method. Polymorphism was identified using the PCR-RFLP technique. The PCR products were digested with MspI and FaqI restriction enzymes for calpastatin gene and callipyge gene, respectively. In this population, three patterns were observed and AA, AB, BB genotype have been identified with the 0.32, 0.63, 0.05 frequencies for calpastatin gene. The results obtained for the callipyge gene revealed that only the wild-type allele A was observed, indicating that only genotype AA was present in the population under consideration.

Keywords: polymorphism, calpastatin, callipyge, PCR-RFLP, Lori sheep

Procedia PDF Downloads 622
1498 Gene Names Identity Recognition Using Siamese Network for Biomedical Publications

Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu

Abstract:

As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.

Keywords: biological pathway, gene identification, object detection, Siamese network

Procedia PDF Downloads 299
1497 Using Gene Expression Programming in Learning Process of Rough Neural Networks

Authors: Sanaa Rashed Abdallah, Yasser F. Hassan

Abstract:

The paper will introduce an approach where a rough sets, gene expression programming and rough neural networks are used cooperatively for learning and classification support. The Objective of gene expression programming rough neural networks (GEP-RNN) approach is to obtain new classified data with minimum error in training and testing process. Starting point of gene expression programming rough neural networks (GEP-RNN) approach is an information system and the output from this approach is a structure of rough neural networks which is including the weights and thresholds with minimum classification error.

Keywords: rough sets, gene expression programming, rough neural networks, classification

Procedia PDF Downloads 388
1496 Human Papillomavirus Type 16 E4 Gene Variation as Risk Factor for Cervical Cancer

Authors: Yudi Zhao, Ziyun Zhou, Yueting Yao, Shuying Dai, Zhiling Yan, Longyu Yang, Chuanyin Li, Li Shi, Yufeng Yao

Abstract:

HPV16 E4 gene plays an important role in viral genome amplification and release. Therefore, a variation of the E4 gene nucleic acid sequence may affect the carcinogenicity of HPV16. In order to understand the relationship between the variation of HPV16 E4 gene and cervical cancer, this study was to amplify and sequence the DNA sequences of E4 genes in 118 HPV16-positive cervical cancer patients and 151 HPV16-positive asymptomatic individuals. After obtaining E4 gene sequences, the phylogenetic trees were constructed by the Neighbor-joining method for gene variation analysis. The results showed that: 1) The distribution of HPV16 variants between the case group and the control group differed greatly (P = 0.015),and the Asian-American(AA)variant was likely to relate to the occurrence of cervical cancer. 2) DNA sequence analysis showed that there were significant differences in the distribution of 8 variants between the case group and the control group (P < 0.05). And 3) In European (EUR) variant, two variations, C3384T (L18L) and A3449G (P39P), were associated with the initiation and development of cervical cancer. The results suggested that the variation of HPV16 E4 gene may be a contributor affecting the occurrence as well as the development of cervical cancer, and different HPV16 variants may have different carcinogenic capability.

Keywords: cervical cancer, HPV16, E4 gene, variations

Procedia PDF Downloads 174
1495 Analysis of OPG Gene Polymorphism T245G (rs3134069) in Slovak Postmenopausal Women

Authors: I. Boroňová, J. Bernasovská, J. Kľoc, Z. Tomková, E. Petrejčíková, S. Mačeková, J. Poráčová, M. M. Blaščáková

Abstract:

Osteoporosis is a common multifactorial disease with a strong genetic component characterized by reduced bone mass and increased risk of fractures. Genetic factors play an important role in the pathogenesis of osteoporosis. The aim of our study was to identify the genotype and allele distribution of T245G polymorphism in OPG gene in Slovak postmenopausal women. A total of 200 unrelated Slovak postmenopausal women with diagnosed osteoporosis and 200 normal controls were genotyped for T245G (rs3134069) polymorphism of OPG gene. Genotyping was performed using the Custom Taqman®SNP Genotyping assays. Genotypes and alleles frequencies showed no significant differences (p=0.5551; p=0.6022). The results of the present study confirm the importance of T245G polymorphism in OPG gene in the pathogenesis of osteoporosis.

Keywords: OPG gene, T245G polymorphism, osteoporosis, T245G polymorphism, real-time PCR

Procedia PDF Downloads 414
1494 Construction of a Fusion Gene Carrying E10A and K5 with 2A Peptide-Linked by Using Overlap Extension PCR

Authors: Tiancheng Lan

Abstract:

E10A is a kind of replication-defective adenovirus which carries the human endostatin gene to inhibit the growth of tumors. Kringle 5(K5) has almost the same function as angiostatin to also inhibit the growth of tumors since they are all the byproduct of the proteolytic cleavage of plasminogen. Tumor size increasing can be suppressed because both of the endostatin and K5 can restrain the angiogenesis process. Therefore, in order to improve the treatment effect on tumor, 2A peptide is used to construct a fusion gene carrying both E10A and K5. Using 2A peptide is an ideal strategy when a fusion gene is expressed because it can avoid many problems during the expression of more than one kind of protein. The overlap extension PCR is also used to connect 2A peptide with E10A and K5. The final construction of fusion gene E10A-2A-K5 can provide a possible new method of the anti-angiogenesis treatment with a better expression performance.

Keywords: E10A, Kringle 5, 2A peptide, overlap extension PCR

Procedia PDF Downloads 155
1493 SCANet: A Workflow for Single-Cell Co-Expression Based Analysis

Authors: Mhaned Oubounyt, Jan Baumbach

Abstract:

Differences in co-expression networks between two or multiple cells (sub)types across conditions is a pressing problem in single-cell RNA sequencing (scRNA-seq). A key challenge is to define those co-variations that differ between or among cell types and/or conditions and phenotypes to examine small regulatory networks that can explain mechanistic differences. To this end, we developed SCANet, an all-in-one Python package that uses state-of-the-art algorithms to facilitate the workflow of a combined single-cell GCN (Gene Correlation Network) and GRN (Gene Regulatory Networks) pipeline, including inference of gene co-expression modules from scRNA-seq, followed by trait and cell type associations, hub gene detection, co-regulatory networks, and drug-gene interactions. In an example case, we illustrate how SCANet can be applied to identify regulatory drivers behind a cytokine storm associated with mortality in patients with acute respiratory illness. SCANet is available as a free, open-source, and user-friendly Python package that can be easily integrated into systems biology pipelines.

Keywords: single-cell, co-expression networks, drug-gene interactions, co-regulatory networks

Procedia PDF Downloads 162
1492 A C/T Polymorphism at the 5’ Untranslated Region of CD40 Gene in Patients Associated with Graves’ Disease in Kumaon Region

Authors: Sanjeev Kumar Shukla, Govind Singh, Prabhat Pant Shahzad Ahmad

Abstract:

Background: Graves’ disease is an autoimmune disorder with a genetic predisposition, and CD40 plays a pathogenic role in various autoimmune diseases. A single nucleotide polymorphism at position –1 of the Kozak sequence of the 5 untranslated regions of the CD40 gene of exon 1 has been reported to be associated with the development of Graves’ Disease. Objective: The aim of the present study was to investigate whether CD40 gene polymorphism confers susceptibility to Graves’ disease in the Kumaon region. CD40 gene polymorphisms were studied in Graves’ Disease patients (n=50) and healthy control subjects without anti-thyroid autoantibodies or a family history of autoimmune disorders (n=50). Material and Method: CD40 gene polymorphisms were studied in fifty Graves’ Disease patients and fifty healthy control subjects. All samples were collected from STG Hospital, Haldwani, Nainital. A C/T polymorphism at position –1 of the CD40 gene was measured using the polymerase chain reaction-restriction fragment length polymorphism. Results: There was no significant difference in allele or genotype frequency of the CD40 SNP between Graves’ Disease and control subjects. There was a significant decrease in the TT genotype frequency in the Graves’ Disease patients who developed Graves’ Disease after 40 years old than those under 40 years of age. These data suggest that the SNP of the CD40 gene is associated with susceptibility to the later onset of Graves’ Disease. Conclusion: The CD40 gene was a different susceptibility gene for Graves’ Disease within certain families because it was both linked and associated with Graves’ Disease.

Keywords: autoimmune diseases, pathogenesis, diagnosis, therapy

Procedia PDF Downloads 59
1491 The Identification of Combined Genomic Expressions as a Diagnostic Factor for Oral Squamous Cell Carcinoma

Authors: Ki-Yeo Kim

Abstract:

Trends in genetics are transforming in order to identify differential coexpressions of correlated gene expression rather than the significant individual gene. Moreover, it is known that a combined biomarker pattern improves the discrimination of a specific cancer. The identification of the combined biomarker is also necessary for the early detection of invasive oral squamous cell carcinoma (OSCC). To identify the combined biomarker that could improve the discrimination of OSCC, we explored an appropriate number of genes in a combined gene set in order to attain the highest level of accuracy. After detecting a significant gene set, including the pre-defined number of genes, a combined expression was identified using the weights of genes in a gene set. We used the Principal Component Analysis (PCA) for the weight calculation. In this process, we used three public microarray datasets. One dataset was used for identifying the combined biomarker, and the other two datasets were used for validation. The discrimination accuracy was measured by the out-of-bag (OOB) error. There was no relation between the significance and the discrimination accuracy in each individual gene. The identified gene set included both significant and insignificant genes. One of the most significant gene sets in the classification of normal and OSCC included MMP1, SOCS3 and ACOX1. Furthermore, in the case of oral dysplasia and OSCC discrimination, two combined biomarkers were identified. The combined genomic expression achieved better performance in the discrimination of different conditions than in a single significant gene. Therefore, it could be expected that accurate diagnosis for cancer could be possible with a combined biomarker.

Keywords: oral squamous cell carcinoma, combined biomarker, microarray dataset, correlated genes

Procedia PDF Downloads 427
1490 Correlation of P53 Gene Expression With Serum Alanine Transaminase Levels and Hepatitis B Viral Load in Cirrhosis and Hepatocellular Carcinoma Patients

Authors: Umme Shahera, Saifullah Munshi, Munira Jahan, Afzalun Nessa, Shahinul Alam, Shahina Tabassum

Abstract:

The development of HCC is a multi-stage process. Several extrinsic factors, such as aflatoxin, HBV, nutrition, alcohol, and trace elements are thought to initiate or/and promote the hepatocarcinogenesis. Alteration of p53 status is an important intrinsic factor in this process as p53 is essential for preventing inappropriate cell proliferation and maintaining genome integrity following genotoxic stress. This study was designed to assess the correlation of p53 gene expression with HBV-DNA and serum Alanine transaminase (ALT) in patients with cirrhosis and HCC. The study was conducted among 60 patients. The study population were divided into four groups (15 in each groups)-HBV positive cirrhosis, HBV negative cirrhosis, HBV positive HCC and HBV negative HCC. Expression of p53 gene was observed using real time PCR. P53 gene expressions in the above mentioned groups were correlated with serum ALT level and HBV viral load. p53 gene was significantly higher in HBV-positive patients with HCC than HBV-positive cirrhosis. Similarly, the expression of p53 was significantly higher in HBV-positive HCC than HBV-negative HCC patients. However, the expression of p53 was reduced in HBV-positive cirrhosis in comparison with HBV-negative cirrhosis. P53 gene expression in liver was not correlated with the serum levels of ALT in any of the study groups. HBV- DNA load also did not correlated with p53 gene expression in HBV positive HCC and HBV positive cirrhosis patients. This study shows that there was no significant change with the expression of p53 gene in any of the study groups with ALT level or viral load, though differential expression of p53 gene were observed in cirrhosis and HCC patients.

Keywords: P53, ALT, HBV-DNA, liver cirrhosis, hepatocellular carcinoma

Procedia PDF Downloads 100
1489 CCR5 as an Ideal Candidate for Immune Gene Therapy and Modification for the Induced Resistance to HIV-1 Infection

Authors: Alieh Farshbaf, Tayyeb Bahrami

Abstract:

Introduction: Cc-chemokine receptor-5 (CCR5) is known as a main co-receptor in human immunodeficiency virus type-1 (HIV-1) infection. Many studies showed 32bp deletion (Δ32) in CCR5 gene, provide natural resistance to HIV-1 infection in homozygous individuals. Inducing the resistance mechanism by CCR5 in HIV-1 infected patients eliminated many problems of highly-active-anti retroviral therapy (HAART) drugs like as low safety, side-effects and virus rebounding from latent reservoirs. New treatments solved some restrictions that are based on gene modification and cell therapy. Literature review: The stories of the “Berlin and Boston patients” showed autologous hematopoietic stem cells transplantation (HSCT) could provide effective cure of HIV-1 infected patients. Furthermore, gene modification by zinc finger nuclease (ZFN) demonstrated another successful result again. Despite the other studies for gene therapy by ∆32 genotype, there is another mutation -CCR5 ∆32/m303- that provides HIV-1 resistant. It is a heterozygote genotype for ∆32 and T→A point mutation at nucleotide 303. These results approved the key role of CCR5 gene. Conclusion: Recent studies showed immune gene therapy and cell therapy could provide effective cure for refractory disease like as HIV. Eradication of HIV-1 from immune system was not observed by HAART, because of reloading virus genome from latent reservoirs after stopping them. It is showed that CCR5 could induce natural resistant to HIV-1 infection by the new approaches based on stem cell transplantation and gene modifying.

Keywords: CCR5, HIV-1, stem cell, immune gene therapy, gene modification

Procedia PDF Downloads 294