Search results for: trabecular bone properties.
2974 Viscoelastic Characterization of Bovine Trabecular Bone Samples
Authors: Ramirez D. Edgar I., Angeles H. José J., Ruiz C. Osvaldo, Jacobo A. Victor H., Ortiz P. Armando
Abstract:
Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles.Keywords: Bone viscoelasticity, fatigue test, stress relaxation test, trabecular bone properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20732973 Long-Term Study for the Effect of Ovariectomy on Rat Bone - Use of In-Vivo Micro-CT -
Authors: Dae Gon Woo, Chang Yong Ko, Tae Woo Lee, Han Sung Kim, Beob Yi Lee
Abstract:
In the present study, changes of morphology and mechanical characteristics in the lumbar vertebrae of the ovariectomised (OVX) rat were investigated. In previous researches, there were many studies about morphology like volume fraction and trabecular thickness based on Micro - Computed Tomography (Micro - CT). However, detecting and tracking long-term changes in the trabecular bone of the lumbar vertebrae for the OVX rat were few. For this study, one female Sprague-Dawley rat was used: an OVX rat. The 4th Lumbar of the OVX rat was subjected to in-vivo micro-CT. Detecting and tracking long-term changes could be investigated in the trabecular bone of the lumbar vertebrae for an OVX rat using in-vivo micro-CT. An OVX rat was scanned at week 0 (just before surgery), at week 4, at week 8, week 16, week 22 and week 56 after surgery. Finite element (FE) analysis was used to investigate mechanical characteristics of the lumbar vertebrae for an OVX rat. When the OVX rat (at week 56) was compared with the OVX rat (at week 0), volume fraction was decreased by 80% and effective modulus was decreased by 75%.Keywords: OVX rats, Trabecular bone, In-vivo Micro-CT, FE analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16132972 Trabecular Bone Radiograph Characterization Using Fractal, Multifractal Analysis and SVM Classifier
Authors: I. Slim, H. Akkari, A. Ben Abdallah, I. Bhouri, M. Hedi Bedoui
Abstract:
Osteoporosis is a common disease characterized by low bone mass and deterioration of micro-architectural bone tissue, which provokes an increased risk of fracture. This work treats the texture characterization of trabecular bone radiographs. The aim was to analyze according to clinical research a group of 174 subjects: 87 osteoporotic patients (OP) with various bone fracture types and 87 control cases (CC). To characterize osteoporosis, Fractal and MultiFractal (MF) methods were applied to images for features (attributes) extraction. In order to improve the results, a new method of MF spectrum based on the q-stucture function calculation was proposed and a combination of Fractal and MF attributes was used. The Support Vector Machines (SVM) was applied as a classifier to distinguish between OP patients and CC subjects. The features fusion (fractal and MF) allowed a good discrimination between the two groups with an accuracy rate of 96.22%.Keywords: Fractal, micro-architecture analysis, multifractal, SVM, osteoporosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9862971 Bone Mineral Density and Trabecular Bone Score in Ukrainian Men with Obesity
Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Dzerovych, Roksolana Povoroznyuk
Abstract:
Osteoporosis and obesity are widespread diseases in people over 50 years associated with changes in structure and body composition. Нigher body mass index (BMI) values are associated with greater bone mineral density (BMD). However, trabecular bone score (TBS) indirectly explores bone quality, independently of BMD. The aim of our study was to evaluate the relationship between the BMD and TBS parameters in Ukrainian men suffering from obesity. We examined 396 men aged 40-89 years. Depending on their BMI all the subjects were divided into two groups: Group I – patients with obesity whose BMI was ≥ 30 kg/m2 (n=129) and Group II – patients without obesity and BMI of < 30 kg/m2 (n=267). The BMD of total body, lumbar spine L1-L4, femoral neck and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L1- L4 was assessed by means of TBS iNsight® software installed on DXA machine (product of Med-Imaps, Pessac, France). In general, obese men had a significantly higher BMD of lumbar spine L1-L4, femoral neck, total body and ultradistal forearm (p < 0.001) in comparison with men without obesity. The TBS of L1-L4 was significantly lower in obese men compared to non-obese ones (p < 0.001). BMD of lumbar spine L1-L4, femoral neck and total body significantly differ in men aged 40-49, 50-59, 60-69, and 80-89 years (p < 0.05). At the same time, in men aged 70-79 years, BMD of lumbar spine L1-L4 (p=0.46), femoral neck (p=0.18), total body (p=0.21), ultra-distal forearm (p=0.13), and TBS (p=0.07) did not significantly differ. A significant positive correlation between the fat mass and the BMD at different sites was observed. However, the correlation between the fat mass and TBS of L1-L4 was also significant, though negative.
Keywords: Bone mineral density, trabecular bone score, obesity, men.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10982970 Associations between Metabolic Syndrome and Bone Mineral Density and Trabecular Bone Score in Postmenopausal Women with Non-Vertebral Fractures
Authors: Vladyslav Povoroznyuk, Larysa Martynyuk, Iryna Syzonenko, Liliya Martynyuk
Abstract:
Medical, social, and economic relevance of osteoporosis is caused by reducing quality of life, increasing disability and mortality of the patients as a result of fractures due to the low-energy trauma. This study is aimed to examine the associations of metabolic syndrome components, bone mineral density (BMD) and trabecular bone score (TBS) in menopausal women with non-vertebral fractures. 1161 menopausal women aged 50-79 year-old were examined and divided into three groups: A included 419 women with increased body weight (BMI - 25.0-29.9 kg/m2), B – 442 females with obesity (BMI >29.9 kg/m2)i and C – 300 women with metabolic syndrome (diagnosis according to IDF criteria, 2005). BMD of lumbar spine (L1-L4), femoral neck, total body and forearm was investigated with usage of dual-energy X-ray absorptiometry. The bone quality indexes were measured according to Med-Imaps installation. All analyses were performed using Statistical Package 6.0. BMD of lumbar spine (L1-L4), femoral neck, total body, and ultradistal radius was significant higher in women with obesity and metabolic syndrome compared to the pre-obese ones (p<0.001). TBS was significantly higher in women with increased body weight compared to obese and metabolic syndrome patients. Analysis showed significant positive correlation between waist circumference, triglycerides level and BMD of lumbar spine and femur. Significant negative association between serum HDL level and BMD of investigated sites was established. The TBS (L1-L4) indexes positively correlated with HDL (high-density lipoprotein) level. Despite the fact that BMD indexes were better in women with metabolic syndrome, the frequency of non-vertebral fractures was significantly higher in this group of patients.
Keywords: Bone mineral density, trabecular bone score, metabolic syndrome, fracture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8042969 Alteration of Bone Strength in Osteoporosis of Mouse Femora: Computational Study Based on Micro CT Images
Authors: Changsoo Chon, Sangkuy Han, Donghyun Seo, Jihyung Park, Bokku Kang, Hansung Kim, Keyoungjin Chun, Cheolwoong Ko
Abstract:
The purpose of the study is to develop a finite element model based on 3D bone structural images of Micro-CT and to analyze the stress distribution for the osteoporosis mouse femora. In this study, results of finite element analysis show that the early osteoporosis of mouse model decreased a bone density in trabecular region; however, the bone density in cortical region increased.
Keywords: Micro-CT, finite element analysis, osteoporosis, bone strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17022968 Comparative Study of Tensile Properties of Cortical Bone Using Sub-size Specimens and Finite Element Simulation
Authors: N. K. Sharma, J. Nayak, D. K. Sehgal, R. K. Pandey
Abstract:
Bone material is treated as heterogeneous and hierarchical in nature therefore appropriate size of bone specimen is required to analyze its tensile properties at a particular hierarchical level. Tensile properties of cortical bone are important to investigate the effect of drug treatment, disease and aging as well as for development of computational and analytical models. In the present study tensile properties of buffalo as well as goat femoral and tibiae cortical bone are analyzed using sub-size tensile specimens. Femoral cortical bone was found to be stronger in tension as compared to the tibiae cortical bone and the tensile properties obtained using sub-size specimens show close resemblance with the tensile properties of full-size cortical specimens. A two dimensional finite element (FE) modal was also applied to simulate the tensile behavior of sub-size specimens. Good agreement between experimental and FE model was obtained for sub-size tensile specimens of cortical bone.
Keywords: Cortical bone, sub-size specimen, full size specimen, finite element modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15262967 Bone Mineral Density and Frequency of Low-Trauma Fractures in Ukrainian Women with Metabolic Syndrome
Authors: Vladyslav Povoroznyuk, Larysa Martynyuk, Iryna Syzonenko, Liliya Martynyuk
Abstract:
Osteoporosis is one of the important problems in postmenopausal women due to an increased risk of sudden and unexpected fractures. This study is aimed to determine the connection between bone mineral density (BMD) and trabecular bone score (TBS) in Ukrainian women suffering from metabolic syndrome. Participating in the study, 566 menopausal women aged 50-79 year-old were examined and divided into two groups: Group A included 336 women with no obesity (BMI ≤ 29.9 kg/m2), and Group B – 230 women with metabolic syndrome (diagnosis according to IDF criteria, 2005). Dual-energy X-ray absorptiometry was used for measuring of lumbar spine (L1-L4), femoral neck, total body and forearm BMD and bone quality indexes (last according to Med-Imaps installation). Data were analyzed using Statistical Package 6.0. A significant increase of lumbar spine (L1-L4), femoral neck, total body and ultradistal radius BMD was found in women with metabolic syndrome compared to those without obesity (p < 0.001) both in their totality and in groups of 50-59 years, 60-69 years, and 70-79 years. TBS was significantly higher in non-obese women compared to metabolic syndrome patients of 50-59 years and in the general sample (p < 0.05). Analysis showed significant positive correlation between body mass index (BMI) and BMD at all levels. Significant negative correlation between BMI and TBS (L1-L4) was established. Despite the fact that BMD indexes were significantly higher in women with metabolic syndrome, the frequency of vertebral and non-vertebral fractures did not differ significantly in the groups of patients.
Keywords: Bone mineral density, trabecular bone score, metabolic syndrome, fracture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10022966 Wavelet Based Qualitative Assessment of Femur Bone Strength Using Radiographic Imaging
Authors: Sundararajan Sangeetha, Joseph Jesu Christopher, Swaminathan Ramakrishnan
Abstract:
In this work, the primary compressive strength components of human femur trabecular bone are qualitatively assessed using image processing and wavelet analysis. The Primary Compressive (PC) component in planar radiographic femur trabecular images (N=50) is delineated by semi-automatic image processing procedure. Auto threshold binarization algorithm is employed to recognize the presence of mineralization in the digitized images. The qualitative parameters such as apparent mineralization and total area associated with the PC region are derived for normal and abnormal images.The two-dimensional discrete wavelet transforms are utilized to obtain appropriate features that quantify texture changes in medical images .The normal and abnormal samples of the human femur are comprehensively analyzed using Harr wavelet.The six statistical parameters such as mean, median, mode, standard deviation, mean absolute deviation and median absolute deviation are derived at level 4 decomposition for both approximation and horizontal wavelet coefficients. The correlation coefficient of various wavelet derived parameters with normal and abnormal for both approximated and horizontal coefficients are estimated. It is seen that in almost all cases the abnormal show higher degree of correlation than normals. Further the parameters derived from approximation coefficient show more correlation than those derived from the horizontal coefficients. The parameters mean and median computed at the output of level 4 Harr wavelet channel was found to be a useful predictor to delineate the normal and the abnormal groups.Keywords: Image processing, planar radiographs, trabecular bone and wavelet analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14932965 Bone Mineral Density and Trabecular Bone Score in Ukrainian Women with Obesity
Authors: Vladyslav Povoroznyuk, Nataliia Dzerovych, Larysa Martynyuk, Tetiana Kovtun
Abstract:
Obesity and osteoporosis are the two diseases whose increasing prevalence and high impact on the global morbidity and mortality, during the two recent decades, have gained a status of major health threats worldwide. Obesity purports to affect the bone metabolism through complex mechanisms. Debated data on the connection between the bone mineral density and fracture prevalence in the obese patients are widely presented in literature. There is evidence that the correlation of weight and fracture risk is sitespecific. This study is aimed at determining the connection between the bone mineral density (BMD) and trabecular bone score (TBS) parameters in Ukrainian women suffering from obesity. We examined 1025 40-89-year-old women, divided them into the groups according to their body mass index: Group A included 360 women with obesity whose BMI was ≥30 kg/m2, and Group B – 665 women with no obesity and BMI of <30 kg/m2. The BMD of total body, lumbar spine at the site L1-L4, femur and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L1- L4 was assessed by means of TBS iNsight® software installed on our DXA machine (product of Med-Imaps, Pessac, France). In general, obese women had a significantly higher BMD of lumbar spine, femoral neck, proximal femur, total body and ultradistal forearm (p<0.001) in comparison with women without obesity. The TBS of L1-L4 was significantly lower in obese women compared to nonobese women (p<0.001). The BMD of lumbar spine, femoral neck and total body differed to a significant extent in women of 40-49, 50- 59, 60-69 and 70-79 years (p<0.05). At same time, in women aged 80-89 years the BMD of lumbar spine (p=0.09), femoral neck (p=0.22) and total body (p=0.06) barely differed. The BMD of ultradistal forearm was significantly higher in women of all age groups (p<0.05). The TBS of L1-L4 in all the age groups tended to reveal the lower parameters in obese women compared with the nonobese; however, those data were not statistically significant. By contrast, a significant positive correlation was observed between the fat mass and the BMD at different sites. The correlation between the fat mass and TBS of L1-L4 was also significant, although negative. Women with vertebral fractures had a significantly lower body weight, body mass index and total body fat mass in comparison with women without vertebral fractures in their anamnesis. In obese women the frequency of vertebral fractures was 27%, while in women without obesity – 57%.Keywords: Bone mineral density, trabecular bone score, obesity, women.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16912964 Bone Mineral Density and Quality, Body Composition of Women in the Postmenopausal Period
Authors: Vladyslav Povoroznyuk, Oksana Ivanyk, Nataliia Dzerovych
Abstract:
In the diagnostics of osteoporosis, the gold standard is considered to be bone mineral density; however, X-ray densitometry is not an accurate indicator of osteoporotic fracture risk under all circumstances. In this regard, the search for new methods that could determine the indicators not only of the mineral density, but of the bone tissue quality, is a logical step for diagnostic optimization. One of these methods is the evaluation of trabecular bone quality. The aim of this study was to examine the quality and mineral density of spine bone tissue, femoral neck, and body composition of women depending on the duration of the postmenopausal period, to determine the correlation of body fat with indicators of bone mineral density and quality. The study examined 179 women in premenopausal and postmenopausal periods. The patients were divided into the following groups: Women in the premenopausal period and women in the postmenopausal period at various stages (early, middle, late postmenopause). A general examination and study of the above parameters were conducted with General Electric X-ray densitometer. The results show that bone quality and mineral density probably deteriorate with advancing of postmenopausal period. Total fat and lean mass ratio is not likely to change with age. In the middle and late postmenopausal periods, the bone tissue mineral density of the spine and femoral neck increases along with total fat mass.
Keywords: Osteoporosis, bone tissue mineral density, bone quality, fat mass, lean mass, postmenopausal osteoporosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9422963 Compressive Properties of a Synthetic Bone Substitute for Vertebral Cancellous Bone
Authors: H. N. Mehmanparast, J.M. Mac-Thiong., Y. Petit
Abstract:
Transpedicular screw fixation in spinal fractures, degenerative changes, or deformities is a well-established procedure. However, important rate of fixation failure due to screw bending, loosening, or pullout are still reported particularly in weak bone stock in osteoporosis. To overcome the problem, mechanism of failure has to be fully investigated in vitro. Post-mortem human subjects are less accessible and animal cadavers comprise limitations due to different geometry and mechanical properties. Therefore, the development of a synthetic model mimicking the realistic human vertebra is highly demanded. A bone surrogate, composed of Polyurethane (PU) foam analogous to cancellous bone porous structure, was tested for 3 different densities in this study. The mechanical properties were investigated under uniaxial compression test by minimizing the end artifacts on specimens. The results indicated that PU foam of 0.32 g.cm-3 density has comparable mechanical properties to human cancellous bone in terms of young-s modulus and yield strength. Therefore, the obtained information can be considered as primary step for developing a realistic cancellous bone of human vertebral body. Further evaluations are also recommended for other density groups.Keywords: Cancellous bone, Pedicle screw, Polyurethane foam, Synthetic bone
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30582962 How the Decrease of Collagen or Mineral Affect the Fracture in the Turkey Long Bones
Authors: P. Vosynek, T. Návrat, M. Peč, J. Pořízka, P. Diviš
Abstract:
Bone properties and response behavior after static or dynamic activation (loading) are still interesting topics in many fields of the science especially in the biomechanical problems such as bone loss of astronauts in space, osteoporosis, bone remodeling after fracture or remodeling after surgery (endoprosthesis and implants) and in osteointegration. This contribution deals with the relation between physiological, demineralized and deproteinized state of the turkey long bone – tibia. Three methods for comparison were used: 1) densitometry, 2) three point bending and 3) frequency analysis. The main goal of this work was to describe the decrease of the protein (collagen) or mineral of the bone with relation to the fracture in three point bending. The comparison is linked to the problem of different bone mechanical behavior in physiological and osteoporotic state.
Keywords: Bone properties, long bone, osteoporosis, response behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22772961 A Composite Developed from a Methyl Methacrylate and Embedded Eppawala Hydroxyapatite for Orthopedics
Authors: H. K. G. K. D. K. Hapuhinna, R. D. Gunaratne, H. M. J. C. Pitawala
Abstract:
This study aimed to find out chemical and structural suitability of synthesized eppawala hydroxyapatite composite as bone cement, by comparing and contrasting it with human bone as well as commercially available bone cement, which is currently used in orthopedic surgeries. Therefore, a mixture of commercially available bone cement and its liquid monomer, commercially available methyl methacrylate (MMA) and a mixture of solid state synthesized eppawala hydroxyapatite powder with commercially available MMA were prepared as the direct substitution for bone cement. Then physical and chemical properties including composition, crystallinity, presence of functional groups, thermal stability, surface morphology, and microstructural features were examined compared to human bone. Results show that there is a close similarity between synthesized product and human bone and it has exhibited high thermal stability, good crystalline and porous properties than the commercial product. Finally, the study concluded that synthesized hydroxyapatite composite can be used directly as a substitution for commercial bone cement.
Keywords: Hydroxyapatite, bone cement, methyl methacrylate, orthopedics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6242960 Effect of Cow bone and Groundnut Shell Reinforced in Epoxy Resin on the Mechanical Properties and Microstructure of the Composites
Authors: O. I. Rufai, G. I. Lawal, B. O. Bolasodun, S. I. Durowaye, J. O. Etoh
Abstract:
It is an established fact that polymers have several physical limitations such as low stiffness and low resistance to impact on loading. Hence, polymers do not usually have requisite mechanical strength for application in various fields. The reinforcement by high strength fibers provides the polymer substantially enhanced mechanical properties and makes them more suitable for a large number of diverse applications. This research evaluates the effects of particulate Cow bone and Groundnut shell additions on the mechanical properties and microstructure of cow bone and groundnut shell reinforced epoxy composite in order to assess the possibility of using it as a material for engineering applications. Cow bone and groundnut shell particles reinforced with epoxy (CBRPC and GSRPC) was prepared by varying the cow bone and groundnut shell particles from 0-25 wt% with 5 wt% intervals. A Hybrid of the Cow bone and Groundnut shell (HGSCB) reinforce with epoxy was also prepared. The mechanical properties of the developed composites were investigated. Optical microscopy was used to examine the microstructure of the composites. The results revealed that mechanical properties did not increase uniformly with additions in filler but exhibited maximum properties at specific percentages of filler additions. From the Microscopic evaluation, it was discovered that homogeneity decreases with increase in % filler, this could be due to poor interfacial bonding.Keywords: Groundnut shell reinforced polymer composite (GSRPC), Cow bone reinforced polymer composite (CBRPC), Hybrid of ground nutshell and cowbone (HGSCB).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30622959 Preparation and Characterization of Newly Developed Trabecular Structures in Titanium Alloy to Optimize Osteointegration
Authors: M. Regis, E. Marin, S. Fusi, M. Pressacco, L. Fedrizzi
Abstract:
Electron Beam Melting (EBM) process was used to prepare porous scaffolds with controlled porosity to ensure optimal levels of osteointegration for different trabeculae sizes. Morphological characterization by means of SEM analyses was carried out to assess pore dimensions; tensile, compression and adhesion tests have been carried out to determine the mechanical behavior. The results indicate that EBM process allows the creation of regular and repeatable porous scaffolds. Mechanical properties greatly depend on pore dimension and on bulk-pore ratio. Adhesion resistance meets the normative requirements, and the overall performance of the produced structures is compatible with potential orthopaedic applications.
Keywords: Additive manufacturing, orthopaedic implants, osteointegration, trabecular structures
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23162958 Induced Bone Tissue Temperature in Drilling Procedures: A Comparative Laboratory Study with and without Lubrication
Authors: L. Roseiro, C. Veiga, V. Maranha, A.Neto, N. Laraqi, A. Baïri, N. Alilat
Abstract:
In orthopedic surgery there are various situations in which the surgeon needs to implement methods of cutting and drilling the bone. With this type of procedure the generated friction leads to a localized increase in temperature, which may lead to the bone necrosis. Recognizing the importance of studying this phenomenon, an experimental evaluation of the temperatures developed during the procedure of drilling bone has been done. Additionally the influence of the use of the procedure with / without additional lubrication during drilling of bone has also been done. The obtained results are presented and discussed and suggests an advantage in using additional lubrication as a way to minimize the appearance of bone tissue necrosis during bone drilling procedures.
Keywords: Bone Necrosis, Bone Drilling, Thermography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20552957 Trabecular Texture Analysis Using Fractal Metrics for Bone Fragility Assessment
Authors: Khaled Harrar, Rachid Jennane
Abstract:
The purpose of this study is the discrimination of 28 postmenopausal with osteoporotic femoral fractures from an agematched control group of 28 women using texture analysis based on fractals. Two pre-processing approaches are applied on radiographic images; these techniques are compared to highlight the choice of the pre-processing method. Furthermore, the values of the fractal dimension are compared to those of the fractal signature in terms of the classification of the two populations. In a second analysis, the BMD measure at proximal femur was compared to the fractal analysis, the latter, which is a non-invasive technique, allowed a better discrimination; the results confirm that the fractal analysis of texture on calcaneus radiographs is able to discriminate osteoporotic patients with femoral fracture from controls. This discrimination was efficient compared to that obtained by BMD alone. It was also present in comparing subgroups with overlapping values of BMD.Keywords: Osteoporosis, fractal dimension, fractal signature, bone mineral density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23292956 Bone Ash Impact on Soil Shear Strength
Authors: G. M. Ayininuola, A. O. Sogunro
Abstract:
Most failures of soil have been attributed to poor shear strength. Consequently, the present paper investigated the suitability of cattle bone ash as a possible additive to improve the shear strength of soils. Four soil samples were collected and stabilized with prepared bone ash in proportions of 3%, 5%, 7%, 10%, 15% and 20% by dry weight. Chemical analyses of the bone ash; followed by classification, compaction, and triaxial shear tests of the treated soil samples were conducted. Results obtained showed that bone ash contained high proportion of calcium oxide and phosphate. Addition of bone ash to soil samples led to increase in soil shear strengths within the range of 22.40% to 105.18% over the strengths of the respective control tests. Conversely, all samples attained maximum shear strengths at 7% bone ash stabilization. The use of bone ash as an additive will therefore improve the shear strength of soils; however, using bone ash quantities in excess of 7% may not yield ample results.
Keywords: Bone ash, Shear strength, Stabilization, Soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35592955 Design Improvement of Dental Implant-Based on Bone Remodelling
Authors: Solehuddin Shuib, Koay Boon Aik, Zainul Ahmad Rajion
Abstract:
There are many types of mechanical failure on the dental implant. In this project, the failure that needs to take into consideration is the bone resorption on the dental implant. Human bone has its ability to remodel after the implantation. As the dental implant is installed into the bone, the bone will detect and change the bone structure to achieve new biomechanical environment. This phenomenon is known as bone remodeling. The objective of the project is to improve the performance of dental implant by using different types of design. These designs are used to analyze and predict the failure of the dental implant by using finite element analysis (FEA) namely ANSYS. The bone is assumed to be fully attached to the implant or cement. Hence, results are then compared with other researchers. The results were presented in the form of Von Mises stress, normal stress, shear stress analysis, and displacement. The selected design will be analyzed further based on a theoretical calculation of bone remodeling on the dental implant. The results have shown that the design constructed passed the failure analysis. Therefore, the selected design is proven to have a stable performance at the recovery stage.Keywords: Dental implant, FEA, bone remodeling, osseointegration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10542954 Obesity and Bone Mineral Density in Patients with Large Joint Osteoarthritis
Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Zaverukha, Roksolana Povoroznyuk
Abstract:
Along with the global aging of population, the number of people with somatic diseases is increasing, including such interrelated pathologies as obesity, osteoarthritis (OA) and osteoporosis (OP). The objective of the study is to examine the connection between body mass index (BMI), OA and bone mineral density (BMD) of lumbar spine, femoral neck and trabecular bone score (TBS) in postmenopausal women with OA. We have observed 359 postmenopausal women (50-89 years old) and divided them into four groups by age: 50-59 yrs, 60-69 yrs, 70-79 yrs and over 80 years old. In addition, according to the American College of Rheumatology (ACR) Clinical classification criteria for knee and hip OA, we divided them into 2 groups: group I – 117 females with symptomatic OA (including 89 patients with knee OA, 28 patients with hip OA) and group II –242 women with a normal functional activity of large joints. Analysis of data was performed taking into account their BMI, classified by World Health Organization (WHO). Diagnosis of obesity was established when BMI was above 30 kg/m2. In woman with obesity, a symptomatic OA was detected in 44 postmenopausal women (41.1%), a normal functional activity of large joints - in 63 women (58.9%). However, in women with normal BMI – 73 women, who account for 29.0% of cases, a symptomatic OA was detected. According to a chi-squared (χ2) test, a significantly higher level of BMI was detected in postmenopausal women with OA (χ2 = 5.05, p = 0.02). Women with a symptomatic OA had a significantly higher BMD of lumbar spine compared with women who had a normal functional activity of large joints. No significant differences of BMD of femoral necks or TBS were detected in either the group with OA or with a normal functional activity of large joints.
Keywords: Bone mineral density, BMD, body mass index, BMI, obesity, overweight, postmenopausal women, osteoarthritis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6852953 Numerical Simulation of Bio-Chemical Diffusion in Bone Scaffolds
Authors: Masoud Madadelahi, Amir Shamloo, Seyedeh Sara Salehi
Abstract:
Previously, some materials like solid metals and their alloys have been used as implants in human’s body. In order to amend fixation of these artificial hard human tissues, some porous structures have been introduced. In this way, tissues in vicinity of the porous structure can be attached more easily to the inserted implant. In particular, the porous bone scaffolds are useful since they can deliver important biomolecules like growth factors and proteins. This study focuses on the properties of the degradable porous hard tissues using a three-dimensional numerical Finite Element Method (FEM). The most important studied properties of these structures are diffusivity flux and concentration of different species like glucose, oxygen, and lactate. The process of cells migration into the scaffold is considered as a diffusion process, and related parameters are studied for different values of production/consumption rates.Keywords: Bone scaffolds, diffusivity, numerical simulation, tissue engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17832952 Design of Polyetheretherketone Fixation Plates for Fractured Distal Femur
Authors: Abhishek Soni, Bhagat Singh
Abstract:
In the present study, a methodology has been proposed to treat fracture in the distal part of the femur bone. Initially, bone model has been developed using the computed tomography scan data of the fractured bone. This information has been further used to create polyether ether ketone (PEEK) implant for this fractured bone. Damaged bone and implant models have been assembled. This assembled model has been further analyzed for stress distribution. Moreover, deformation developed was also measured. It has been observed that the stress and deformation developed was not so appreciable. Thus, it proves that the aforementioned procedure can be suitably adopted for the treatment of fractured distal femur bone.
Keywords: Distal femur, fixation plates, PEEK, reverse engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4602951 Characterization of Fish Bone Catalyst for Biodiesel Production
Authors: Sarina Sulaiman, N. Khairudin, P. Jamal, M. Z. Alam, Zaki Zainudin, S. Azmi
Abstract:
In this study, fish bone waste was used as a new catalyst for biodiesel production. Instead of discarding the fish bone waste, it will be utilized as a source for catalyst that can provide significant benefit to the environment. Also, it can be substitute as a calcium oxide source instead of using eggshell, crab shell and snail shell. The XRD and SEM analysis proved that calcined fish bone contains calcium oxide, calcium phosphate and hydroxyapatite. The catalyst was characterized using Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD).
Keywords: Calcinations, fish bone, transesterification, waste catalyst.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40492950 Physical, Textural and Sensory Properties of Noodles Supplemented with Tilapia Bone Flour (Tilapia nilotica)
Authors: Supatchalee Sirichokworrakit
Abstract:
Fishbone of Nile Tilapia (Tilapia nilotica), waste from the frozen Nile Tilapia fillet factory, is one of calcium sources. In order to increase fish bone powder value, this study aimed to investigate the effect of Tilapia bone flour (TBF) addition (5, 10, 15% by flour weight) on cooking quality, texture and sensory attributes of noodles. The results indicated that tensile strength, color value (a*) and water absorption of noodles significantly decreased (p£0.05) as the levels of TBF increased from 0-15%. While cooking loss, cooking time and color values (L* and b*) of noodles significantly increased (p£0.05). Sensory evaluation indicated that noodles with 5% TBF received the highest overall acceptability score.
Keywords: Tilapia bone flour, Noodles, Cooking quality, Calcium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40882949 Finite Element Analysis of Different Architectures for Bone Scaffold
Authors: Nimisha R. Shirbhate, Sanjay Bokade
Abstract:
Bone Scaffolds are fundamental architecture or a support structure that allows the regeneration of lost or damaged tissues and they are developed as a crucial tool in biomedical engineering. The structure of bone scaffolds plays an important role in treating bone defects. The shape of the bone scaffold performs a vital role, specifically pore size and shape, which help understand the behavior and strength of the scaffold. In this article, first, fundamental aspects of bone scaffold design are established. Second, the behavior of each architecture of the bone scaffold with biomaterials is discussed. Finally, for each structure, the stress analysis was carried out. This study aimed to design a porous and mechanically strong bone regeneration scaffold that can be successfully manufactured. Four porous architectures of the bone scaffold were designed using Rhinoceros solid modelling software. The structure model consisted of repeatable unit cells arranged in layers to fill the chosen scaffold volume. The mechanical behavior of used biocompatible material is studied with the help of ANSYS 19.2 software. It is also playing significant role to predict the strength of defined structures or 3 dimensional models.
Keywords: Bone scaffold, stress analysis, porous structure, static loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5362948 Epidemiology of Bone Hydatidosis in Eastern Libya from 1995 to 2013
Authors: Sadek Makhlouf, Hassan M. Nouh
Abstract:
Bone hydatidosis is an infection in worldwide distribution. Although there is no evidence in literature on Bone Hydatid disease in Libya, we tried to present the first Epidemiological study of this disease in Eastern Libya through retrospective study from 1995 to 2013. Our data were collected from 3 hospitals in Eastern Libya particularly the sheep-raising areas with total number of musculoskeletal infection cases of two thousand one hundred ninety four (2,194). There were five (5) five cases of bone infection, four (4) of it have been diagnosed after more than three (3) months. Our study is comparable to other international study but this type of bone infection need further studies for effective control strategies for all dogs to avoid serious complications that might happened from the delay in diagnosing this type of disease.
Keywords: Bone infection, Hydatidosis, Eastern Libya, Sheep-raising areas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16172947 Comparison of Valuation Techniques for Bone Age Assessment
Authors: N. Olarte L, A. Rubiano F, A. Mejía F.
Abstract:
This comparison of valuation techniques for bone age assessment is a work carried out by the Telemedicine Research Group of the Military University - TIGUM, as a preliminary to the Design and development a treatment system of hand and wrist radiological images for children aged 0-6 years to bone age assessment . In this paper the techniques mentioned for decades have been the most widely used and the statistically significant. Althought, initially with the current project, it wants to work with children who have limit age, this comparison and evaluation techniques work will help in the future to expand the study subject in the system to bone age assessment, implementing more techniques, tools and deeper analysis to accomplish this purpose.Keywords: Atlas, Bone Age Assessment, Hand and Wrist Radiograph, Image Processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25122946 Ultrasonic Evaluation of Bone Callus Growth in a Rabbit Tibial Distraction Model
Authors: H.K. Luk, Y.M. Lai, L. Qin, C.W. Chan, Z. Liu, Y.P. Huang, Y.P. Zheng
Abstract:
Ultrasound is useful in demonstrating bone mineral density of regenerating osseous tissue as well as structural alterations. A proposed ultrasound method, which included ultrasonography and acoustic parameters measurement, was employed to evaluate its efficacy in monitoring the bone callus changes in a rabbit tibial distraction osteogenesis (DO) model. The findings demonstrated that ultrasonographic images depicted characteristic changes of the bone callus, typical of histology findings, during the distraction phase. Follow-up acoustic parameters measurement of the bone callus, including speed of sound, reflection and attenuation, showed significant linear changes over time during the distraction phase. The acoustic parameters obtained during the distraction phase also showed moderate to strong correlation with consolidated bone callus density and micro-architecture measured by micro-computed tomography at the end of the consolidation phase. The results support the preferred use of ultrasound imaging in the early monitoring of bone callus changes during DO treatment.Keywords: Bone Callus Growth, Rabbit Tibial DistractionOsteogenesis, Ultrasonography, Ultrasonometry
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16462945 Development of an Artificial Ear for Bone-Conducted Objective Occlusion Measurement
Authors: Yu Luan
Abstract:
The bone-conducted objective occlusion effect (OE) is characterized by a discomforting sensation of fullness experienced in an occluded ear. This phenomenon arises from various external stimuli, such as human speech, chewing, and walking, which generate vibrations transmitted through the body to the ear canal walls. The bone-conducted OE occurs due to the pressure build-up inside the occluded ear caused by sound radiating into the ear canal cavity from its walls. In the hearing aid industry, artificial ears are utilized as a tool for developing hearing aids. However, the currently available commercial artificial ears primarily focus on pure acoustics measurements, neglecting the bone-conducted vibration aspect. This research endeavors to develop an artificial ear specifically designed for bone-conducted occlusion measurements. Finite Element Analysis (FEA) modeling has been employed to gain insights into the behavior of the artificial ear.
Keywords: Artificial ear, bone conducted vibration, occlusion measurement, Finite Element Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191