Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31836
Ultrasonic Evaluation of Bone Callus Growth in a Rabbit Tibial Distraction Model

Authors: H.K. Luk, Y.M. Lai, L. Qin, C.W. Chan, Z. Liu, Y.P. Huang, Y.P. Zheng


Ultrasound is useful in demonstrating bone mineral density of regenerating osseous tissue as well as structural alterations. A proposed ultrasound method, which included ultrasonography and acoustic parameters measurement, was employed to evaluate its efficacy in monitoring the bone callus changes in a rabbit tibial distraction osteogenesis (DO) model. The findings demonstrated that ultrasonographic images depicted characteristic changes of the bone callus, typical of histology findings, during the distraction phase. Follow-up acoustic parameters measurement of the bone callus, including speed of sound, reflection and attenuation, showed significant linear changes over time during the distraction phase. The acoustic parameters obtained during the distraction phase also showed moderate to strong correlation with consolidated bone callus density and micro-architecture measured by micro-computed tomography at the end of the consolidation phase. The results support the preferred use of ultrasound imaging in the early monitoring of bone callus changes during DO treatment.

Keywords: Bone Callus Growth, Rabbit Tibial DistractionOsteogenesis, Ultrasonography, Ultrasonometry

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453


[1] J. Aronson, H. D. Shin, "Imaging techniques for bone regenerate analysis during distraction osteogenesis", Journal of Pediatric Orthopaedics, vol 23, pp.550-560, 2003.
[2] R. Lisa, A. V. Everts, A. L. J. J. Broncker, "Bone regeneration during distraction osteogenesis", Odontology, vol 97, pp.63-75, 2009.
[3] T. Hughes, G. V. Maffulli N, Fixsen JA., "Imaging in bone lengthening. A review", Clinical Orthopaedics and Related Research, pp.50-53, 1994.
[4] BEIR, Health risks from exposure to low levels of ionizing radiation : BEIR VII, Phase 2. . Washington, D.C. : National Academies Press, 2006.
[5] D. Richter, M. P. Hahn, P. A. W. Ostermann, A. Ekkernkamp, G. Muhr, "Ultrasound monitoring of callus distraction: An alternative to radiological diagnosis?", Langenbecks Archiv Fur Chirurgie, pp.931-933, 1996.
[6] N. Maffulli, T. Hughes, J. A. Fixsen, "Ultrasonography monitoring of limb lengthening", Journal of Bone and Joint Surgery-British Volume, vol 74, pp.130-132, 1992.
[7] C. Bruno, S. Minniti, E. Buttura-Da-Prato, M. Albanese, P. F. Nocini, R. Pozzi-Mucelli, "Gray-scale ultrasonography in the evaluation of bone callus in distraction osteogenesis of the mandible: initial findings", European Radiology, vol 18, pp.1012-1017, 2008.
[8] N. Adolphs, C. Kunz, P. Pyk, B. Hammer, B. Rahn, "Callus mineralization following distraction osteogenesis of the mandible monitored by scanning acoustic microscopy (SAM)", Journal of Cranio-Maxillofacial Surgery, vol 33, pp.314-317, 2005.
[9] N. Adolphs, C. Kunz, P. Pyk, B. Hammer, B. Rahn, "Callus mineralization following distraction osteogenesis of the mandible monitored by scanning acoustic microscopy (SAM)", Journal of Cranio-Maxillofacial Surgery, vol 33, pp.314-317, 2005.
[10] C. W. Chan, L. Qin, K. M. Lee, M. Zhang, J. C. Y. Cheng, K. S. Leung, "Low intensity pulsed ultrasound accelerated bone remodeling during consolidation stage of distraction osteogenesis", Journal of Orthopaedic Research, vol 24, pp.263-270, 2006.
[11] J. E. Tis, R. H. Meffert, N. Inoue, E. F. McCarthy, M. S. Machen, K. A. McHale, E. Y. S. Chao, "The effect of low intensity pulsed ultrasound applied to rabbit tibiae during the consolidation phase of distraction osteogenesis", Journal of Orthopaedic Research, vol 20, pp.793-800, 2002.
[12] R. Aleksyniene, Eckardt, H., Bundgaard, K., Lind, M, and Hvid, I., "Effects of parathyroid hormone on newly regenerated bone during distraction osteogenesis in a rabbit tibial lengthening model. A pilot study.", Medicina (Kaunas), pp.38-48, 2006.
[13] K. B. Jones, N. Inoue, J. E. Tis, E. F. McCarthy, K. A. McHale, E. Y. S. Chao, Quantification of the microstructural anisotropy of distraction osteogenesis in the rabbit tibia. 2005.
[14] J. Aronson, "Basic science and biological principles of distraction osteogenesis", in Limb Lengthening and reconstructive surgery, S. Robert Rozbruch SI, editor. Ed. New York: Informa Healthcare, 2007, pp.19-42.
[15] J. Aronson, "Experimental and clinical experience with distraction osteogenesis", Cleft Palate-Craniofacial Journal, vol 31, pp.473-481, 1994.
[16] J. Aronson, B. Good, C. Stewart, B. Harrison, J. Harp, "Preliminary studies of mineralization during distraction osteogenesis", Clinical Orthopaedics and Related Research, pp.43-49, 1990.
[17] G. Li, A. H. R. W. Simpson, J. Kenwright, J. T. Triffitt, "Assessment of cell proliferation in regenerating bone during distraction osteogenesis at different distraction rates", Journal of Orthopaedic Research, vol 15, pp.765-772, 1997.
[18] R. N. McCarthy, L. B. Jeffcott, R. N. McCartney, "Ultrasound speed in equine cortical bone: Effects of orientation, density, porosity and temperature", Journal of Biomechanics, vol 23, pp.1139-1143, 1990.
[19] A. A. Hijazy, S. M. Smoudi H, Qaddoum N, Al Nashash H, Ramesh K G, "Quantitative monitoring of bone healing process using ultrasound", Journal of the Franklin Institute, vol 343, pp.495-500, 2006.
[20] Y. P. Huang, Y. P. Zheng, S. F. Leung, A. F. T. Mak, "Reliability of measurement of skin ultrasonic properties in vivo: a potential technique for assessing irradiated skin", Skin Research and Technology, vol 13, pp.55-61, 2007.
[21] Y. P. Huang, Y. P. Zheng, S. F. Leung, A. P. C. Choi, "High frequency ultrasound assessment of skin fibrosis: Clinical results", Ultrasound in Medicine and Biology, vol 33, pp.1191-1198, 2007.
[22] O. Gauthier, R. M ler, D. von Stechow, B. Lamy, P. Weiss, J.-M. Bouler, E. Aguado, G. Daculsi, "In vivo bone regeneration with injectable calcium phosphate biomaterial: A three-dimensional micro-computed tomographic, biomechanical and SEM study", Biomaterials, vol 26, pp.5444-5453, 2005.
[23] F. M. Elise, D. M. Zachary, B. C. Karen, J. P. Anthony, L. B. George, A. E. Thomas, C. G. Louis, "Micro-computed tomography assessment of fracture healing: Relationships among callus structure, composition, and mechanical function", Bone, vol 44, pp.335-344, 2009.
[24] R. Aleksyniene, J. S. Thomsen, H. Eckardt, K. G. Bundgaard, M. Lind, I. Hvid, "Three-dimensional microstructural properties of regenerated mineralizing tissue after PTH (1-34) treatment in a rabbit tibial lengthening model", Journal of Musculoskeletal & Neuronal Interactions, vol 9, pp.268-277, 2009.
[25] J. Cohen, Statistical power analysis for the behavioral sciences 2nd. NJ: Hillsdale, 1988.
[26] D. R. Carter, G. S. Beaupr, N. J. Giori, J. A. Helms, "Mechanobiology of skeletal regeneration", Clinical Orthopaedics and Related Research, vol 355, pp.S41-S55, 1998.
[27] M. Mullender, A. J. El Haj, Y. Yang, M. A. van Duin, E. H. Burger, J. Klein-Nulend, "Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue", Medical & Biological Engineering & Computing, vol 42, pp.14-21, 2004.
[28] H. Isaksson, O. Comas, C. C. van Donkelaar, J. Mediavilla, W. Wilson, R. Huiskes, K. Ito, "Bone regeneration during distraction osteogenesis: Mechano-regulation by shear strain and fluid velocity", Journal of Biomechanics, vol 40, pp.2002-2011, 2007.
[29] L. B. Kaban, P. Thurmuller, M. J. Troulis, J. Glowacki, D. Wahl, B. Linke, B. Rahn, D. H. Perrott, "Correlation of biomechanical stiffness with plain radiographic and ultrasound data in an experimental mandibular distraction wound", International Journal of Oral and Maxillofacial Surgery, vol 32, pp.296-304, 2003.
[30] E. Seeman, "Bone quality: the material and structural basis of bone strength", Journal of Bone and Mineral Metabolism, vol 26, pp.1-8, 2008.