Search results for: spin waves.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 322

Search results for: spin waves.

322 Electron Spin Resonance of Conduction Electrons and Spin Waves Dynamics Investigations in Bi-2223 Superconductor for Decoding Pairing Mechanism

Authors: S. N. Ekbote, G. K. Padam, Manju Arora

Abstract:

Electron spin resonance (ESR) spectroscopic investigations of (Bi, Pb)2Sr2Ca2Cu3O10-x (Bi-2223) bulk samples were carried out in both the normal and superconducting states. A broad asymmetric resonance signal with side signals is obtained in the normal state, and all of them disappear in the superconducting state. The temperature and angular orientation effects on these signals suggest that the broad asymmetric signal arises from electron spin resonance of conduction electrons (CESR) and the side signals from exchange interactions as Platzman-Wolff type spin waves. The disappearance of CESR and spin waves in a superconducting state demonstrates the role of exchange interactions in Cooper pair formation.

Keywords: Bi-2223 superconductor, electron spin resonance of conduction electrons, electron spin resonance, Exchange interactions, spin waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232
321 Effect of Exchange Interaction J on Magnetic Moment of MnO

Authors: C. Thassana, W. Techitdheera

Abstract:

This calculation focus on the effect of exchange interaction J and Coulomb interaction U on spin magnetic moments (ms) of MnO by using the local spin density approximation plus the Coulomb interaction (LSDA+U) method within full potential linear muffin-tin orbital (FP-LMTO). Our calculated results indicated that the spin magnetic moments correlated to J and U. The relevant results exhibited the increasing spin magnetic moments with increasing exchange interaction and Coulomb interaction. Furthermore, equations of spin magnetic moment, which h good correspondence to the experimental data 4.58μB, are defined ms = 0.11J +4.52μB and ms = 0.03U+4.52μB. So, the relation of J and U parameter is obtained, it is obviously, J = -0.249U+1.346 eV.

Keywords: exchange interaction J, the Coulomb interaction U, spin magnetic moment, LSDA+U, MnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
320 Spin-Dependent Transport Signatures of Bound States: From Finger to Top Gates

Authors: Yun-Hsuan Yu, Chi-Shung Tang, Nzar Rauf Abdullah, Vidar Gudmundsson

Abstract:

Spin-orbit gap feature in energy dispersion of one-dimensional devices is revealed via strong spin-orbit interaction (SOI) effects under Zeeman field. We describe the utilization of a finger-gate or a top-gate to control the spin-dependent transport characteristics in the SOI-Zeeman influenced split-gate devices by means of a generalized spin-mixed propagation matrix method. For the finger-gate system, we find a bound state in continuum for incident electrons within the ultra-low energy regime. For the top-gate system, we observe more bound-state features in conductance associated with the formation of spin-associated hole-like or electron-like quasi-bound states around band thresholds, as well as hole bound states around the reverse point of the energy dispersion. We demonstrate that the spin-dependent transport behavior of a top-gate system is similar to that of a finger-gate system only if the top-gate length is less than the effective Fermi wavelength.

Keywords: Spin-orbit, Zeeman, top-gate, finger-gate, bound state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949
319 Spurious Crests in Second-Order Waves

Authors: M. A. Tayfun

Abstract:

Occurrences of spurious crests on the troughs of large, relatively steep second-order Stokes waves are anomalous and not an inherent characteristic of real waves. Here, the effects of such occurrences on the statistics described by the standard second-order stochastic model are examined theoretically and by way of simulations. Theoretical results and simulations indicate that when spurious occurrences are sufficiently large, the standard model leads to physically unrealistic surface features and inaccuracies in the statistics of various surface features, in particular, the troughs and thus zero-crossing heights of large waves. Whereas inaccuracies can be fairly noticeable for long-crested waves in both deep and shallower depths, they tend to become relatively insignificant in directional waves.

Keywords: Large waves, non-linear effects, simulation, spectra, spurious crests, Stokes waves, wave breaking, wave statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
318 In Search of High Growth: Mapping out Academic Spin-Off´s Performance in Catalonia

Authors: F. Guspi, E. García

Abstract:

This exploratory study gives an overview of the evolution of the main financial and performance indicators of the Academic Spin-Off’s and High Growth Academic Spin-Off’s in year 3 and year 6 after its creation in the region of Catalonia in Spain. The study compares and evaluates results of these different measures of performance and the degree of success of these companies for each University. We found that the average Catalonian Academic Spin-Off is small and have not achieved the sustainability stage at year 6. On the contrary, a small group of High Growth Academic Spin-Off’s exhibits robust performance with high profits in year 6. Our results support the need to increase selectivity and support for these companies especially near year 3, because are the ones that will bring wealth and employment. University role as an investor has rigid norms and habits that impede an efficient economic return from their ASO investment. Universities with high performance on sales and employment in year 3 not always could sustain this growth in year 6 because their ASO’s are not profitable. On the contrary, profitable ASO exhibit superior performance in all measurement indicators in year 6. We advocate the need of a balanced growth (with profits) as a way to obtain subsequent continuous growth.

Keywords: Academic Spin-Off (ASO), University Entrepreneurship, Entrepreneurial University, high growth, New Technology Based Companies (NTBC), University Spin-Off.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
317 Magnetic Properties of NiO and MnO by LSDA+U

Authors: Chewa Thassana, Wicharn Techitdheera

Abstract:

The spin (ms) and orbital (mo) magnetic moment of the antiferromagnetic NiO and MnO have been studied in the local spin density approximation (LSDA+U) within full potential linear muffin-tin orbital (FP-LMTO method with in the coulomb interaction U varying from 0 to 10eV, exchange interaction J, from 0 to 1.0eV, and volume compression VC in range of 0 to 80%. Our calculated results shown that the spin magnetic moments and the orbital magnetic moments increase linearly with increasing U and J. While the interesting behaviour appears when volume compression is greater than 70% for NiO and 50% for MnO at which ms collapses. Further increase of volume compression to be at 80% leads to the disappearance of both magnetic moments.

Keywords: spin-orbital magnetic moment, Coulomb interaction U and exchange interaction J, volume compression VC, LSDA+U.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
316 The Effect of the Crystal Field Interaction on the Critical Temperatures and the Sublattice Magnetizations of a Mixed Spin-3/2 and Spin-5/2 Ferrimagnetic System

Authors: Fathi Abubrig, Mohamed Delfag, Suad M. Abuzariba

Abstract:

The influence of the crystal field interactions on the mixed spin-3/2 and spin-5/2 ferrimagnetic Ising system is considered by using the mean field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram is constructed, the phase diagrams of the second-order critical temperatures are obtained, and the thermal variation of the sublattice magnetizations is investigated in detail. We find some interesting phenomena for the sublattice magnetizations at particular values of the crystal field interactions.

Keywords: Crystal field, Ising system, Ferrimagnetic, magnetization, phase diagrams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
315 Treatment of Spin-1/2 Particle in Interaction with a Time-Dependent Magnetic Field by the Fermionic Coherent-State Path-Integral Formalism

Authors: Aouachria Mekki

Abstract:

We consider a spin-1/2 particle interacting with a time-dependent magnetic field using path integral formalism. The propagator is first of all written in the standard form replacing the spin by two fermionic oscillators via the Schwinger model. The propagator is then exactly determined, thanks to a simple transformation, and the transition probability is deduced.

Keywords: Path integral, formalism, Propagator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463
314 Investigation of Stoneley Waves in Multilayered Plates

Authors: Bing Li, Tong Lu, Lei Qiang

Abstract:

Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.

Keywords: Characteristic equation, interface waves, dispersion curves, potential function, Stoneley waves, wave structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
313 EEG Waves Classifier using Wavelet Transform and Fourier Transform

Authors: Maan M. Shaker

Abstract:

The electroencephalograph (EEG) signal is one of the most widely signal used in the bioinformatics field due to its rich information about human tasks. In this work EEG waves classification is achieved using the Discrete Wavelet Transform DWT with Fast Fourier Transform (FFT) by adopting the normalized EEG data. The DWT is used as a classifier of the EEG wave's frequencies, while FFT is implemented to visualize the EEG waves in multi-resolution of DWT. Several real EEG data sets (real EEG data for both normal and abnormal persons) have been tested and the results improve the validity of the proposed technique.

Keywords: Bioinformatics, DWT, EEG waves, FFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5556
312 Rarefactive and Compressive Solitary Waves in Warm Plasma with Positrons and Nonthermal Electrons

Authors: Hamid Reza Pakzad

Abstract:

Ion-acoustic solitary waves in a plasma with nonthermal electrons, thermal positrons and warm ions are investigated using Sagdeev-s pseudopotential technique. We study the effects of non-thermal electrons and ion temperature on solitons and show both negative and positive potential waves are possible.

Keywords: Ion acoustic waves, Solitons, Nonlinear phenomena, Sagdeev potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
311 An Implementation of a Dual-Spin Spacecraft Attitude Reorientation Using Properties of Its Chaotic Motion

Authors: Anton V. Doroshin

Abstract:

This article contains a description of main ideas for the attitude reorientation of spacecraft (small dual-spin spacecraft, nanosatellites) using properties of its chaotic attitude motion under the action of internal perturbations. The considering method based on intentional initiations of chaotic modes of the attitude motion with big amplitudes of the nutation oscillations, and also on the redistributions of the angular momentum between coaxial bodies of the dual-spin spacecraft (DSSC), which perform in the purpose of system’s phase space changing.

Keywords: Spacecraft, Attitude Dynamics and Control, Chaos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
310 Behavior of Current in a Semiconductor Nanostructure under Influence of Embedded Quantum Dots

Authors: H. Paredes Gutiérrez, S. T. Pérez-Merchancano

Abstract:

Motivated by recent experimental and theoretical developments, we investigate the influence of embedded quantum dot (EQD) of different geometries (lens, ring and pyramidal) in a double barrier heterostructure (DBH). We work with a general theory of quantum transport that accounts the tight-binding model for the spin dependent resonant tunneling in a semiconductor nanostructure, and Rashba spin orbital to study the spin orbit coupling. In this context, we use the second quantization theory for Rashba effect and the standard Green functions method. We calculate the current density as a function of the voltage without and in the presence of quantum dots. In the second case, we considered the size and shape of the quantum dot, and in the two cases, we worked considering the spin polarization affected by external electric fields. We found that the EQD generates significant changes in current when we consider different morphologies of EQD, as those described above. The first thing shown is that the current decreases significantly, such as the geometry of EQD is changed, prevailing the geometrical confinement. Likewise, we see that the current density decreases when the voltage is increased, showing that the quantum system studied here is more efficient when the morphology of the quantum dot changes.

Keywords: Quantum semiconductors, nanostructures, quantum dots, spin polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 956
309 Deformation of Water Waves by Geometric Transitions with Power Law Function Distribution

Authors: E. G. Bautista, J. M. Reyes, O. Bautista, J. C. Arcos

Abstract:

In this work, we analyze the deformation of surface waves in shallow flows conditions, propagating in a channel of slowly varying cross-section. Based on a singular perturbation technique, the main purpose is to predict the motion of waves by using a dimensionless formulation of the governing equations, considering that the longitudinal variation of the transversal section obey a power-law distribution. We show that the spatial distribution of the waves in the varying cross-section is a function of a kinematic parameter,κ , and two geometrical parameters εh and w ε . The above spatial behavior of the surface elevation is modeled by an ordinary differential equation. The use of single formulas to model the varying cross sections or transitions considered in this work can be a useful approximation to natural or artificial geometrical configurations.

Keywords: Surface waves, Asymptotic solution, Power law function, Non-dispersive waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
308 The Effect of the Initial Stresses on the Reflection and Transmission of Plane Quasi-Vertical Transverse Waves in Piezoelectric Materials

Authors: Abo-El-Nour N. Abd-Alla, Fatimah A. Alsheikh

Abstract:

This study deals with the phenomena of reflection and transmission (refraction) of qSV-waves, for an incident of quasi transverse vertically waves, at a plane interface of two semi-infinite piezoelectric elastic media under the influence of the initial stresses. The relations governing the reflection and transmission coefficients of these reflected waves for various suitable boundary conditions are derived. We have shown analytically that reflection and transmission coefficients of (qP) and (qSV) waves depend upon the angle of incidence, the parameters of electric potential, the material constants of the medium as will as the initial stresses presented in the media. The numerical calculations of the reflection and transmission amplitude ratios for different values of initial stresses have been carried out by computer for different materials as examples and the results are given in the form of graphs. Finally, some of particular cases are considered.

Keywords: Quasi plane vertical transverse waves, reflection and transmission coefficients, initial stresses, PZT-5H Ceramic, Aluminum Nitride (AlN), Piezoelectricity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
307 Nonlinear Solitary Structures of Electron Plasma Waves in a Finite Temperature Quantum Plasma

Authors: Swarniv Chandra, Basudev Ghosh

Abstract:

Nonlinear solitary structures of electron plasma waves have been investigated by using nonlinear quantum fluid equations for electrons with an arbitrary temperature. It is shown that the electron degeneracy parameter has significant effects on the linear and nonlinear properties of electron plasma waves. Depending on its value both compressive and rarefactive solitons can be excited in the model plasma under consideration.

Keywords: Electron Plasma Waves, Finite Temperature Model, Modulational Instability, Quantum Plasma, Solitary structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
306 Modulational Instability of Electron Plasma Waves in Finite Temperature Quantum Plasma

Authors: Swarniv Chandra, Basudev Ghosh

Abstract:

Using the quantum hydrodynamic (QHD) model for quantum plasma at finite temperature the modulational instability of electron plasma waves is investigated by deriving a nonlinear Schrodinger equation. It was found that the electron degeneracy parameter significantly affects the linear and nonlinear properties of electron plasma waves in quantum plasma.

Keywords: Amplitude Modulation, Electron Plasma Waves, Finite Temperature Model, Modulational Instability, Quantum Plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
305 Reflection of Plane Waves at Free Surface of an Initially Stressed Dissipative Medium

Authors: M. M. Selim

Abstract:

The paper discuses the effect of initial stresses on the reflection coefficients of plane waves in a dissipative medium. Basic governing equations are formulated in context of Biot's incremental deformation theory. These governing equations are solved analytically to obtain the dimensional phase velocities of plane waves propagating in plane of symmetry. Closed-form expressions for the reflection coefficients of P and SV waves- incident at the free surface of an initially stressed dissipative medium are obtained. Numerical computations, using these expressions, are carried out for a particular model. Computations made with the results predicted in presence and absence of the initial stresses and the results have been shown graphically. The study shows that the presence of compressive initial stresses increases the velocity of longitudinal wave (P-wave) but diminishes that of transverse wave (SV-wave). Also the numerical results presented indicate that initial stresses and dissipation might affect the reflection coefficients significantly.

Keywords: Dissipation medium, initial stress, longitudinal waves, reflection coefficients, reflection of plane waves, transverse waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1059
304 Arbitrary Amplitude Ion-Acoustic Solitary Waves in Electron-Ion-Positron Plasma with Nonthermal Electrons

Authors: Basudev Ghosh, Sreyasi Banerjee

Abstract:

Using pseudo potential method arbitrary amplitude ion-acoustic solitary waves have been theoretically studied in a collisionless plasma consisting of warm drifting positive ions, Boltzmann positrons and nonthermal electrons. Ion-acoustic solitary wave solutions have been obtained and the dependence of the solitary wave profile on different plasma parameters has been studied numerically. Lower and higher order compressive and rarefactive solitary waves are observed in presence of positrons, nonthermal electrons, ion drift velocity and finite ion temperature. Inclusion of higher order nonlinearity is shown to have significant correction to the solitary wave profile for the same values of plasma parameters.

Keywords: Ion-acoustic waves, Nonthermal electrons, Sagdeev potential, Solitary waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
303 Lamb Waves in Plates Subjected to Uniaxial Stresses

Authors: Munawwar Mohabuth, Andrei Kotousov, Ching-Tai Ng

Abstract:

On the basis of the theory of nonlinear elasticity, the effect of homogeneous stress on the propagation of Lamb waves in an initially isotropic hyperelastic plate is analysed. The equations governing the propagation of small amplitude waves in the prestressed plate are derived using the theory of small deformations superimposed on large deformations. By enforcing traction free boundary conditions at the upper and lower surfaces of the plate, acoustoelastic dispersion equations for Lamb wave propagation are obtained, which are solved numerically. Results are given for an aluminum plate subjected to a range of applied stresses.

Keywords: Acoustoelasticity, dispersion, finite deformation, lamb waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
302 Obstacles as Switches between Different Cardiac Arrhythmias

Authors: Daniel Olmos-Liceaga

Abstract:

Ventricular fibrillation is a very important health problem as is the cause of most of the sudden deaths in the world. Waves of electrical activity are sent by the SA node, propagate through the cardiac tissue and activate the mechanisms of cell contraction, and therefore are responsible to pump blood to the body harmonically. A spiral wave is an abnormal auto sustainable wave that is responsible of certain types of arrhythmias. When these waves break up, give rise to the fibrillation regime, in which there is a complete loss in the coordination of the contraction of the heart muscle. Interaction of spiral waves and obstacles is also of great importance as it is believed that the attachment of a spiral wave to an obstacle can provide with a transition of two different arrhythmias. An obstacle can be partially excitable or non excitable. In this talk, we present a numerical study of the interaction of meandering spiral waves with partially and non excitable obstacles and focus on the problem where the obstacle plays a fundamental role in the switch between different spiral regimes, which represent different arrhythmic regimes. Particularly, we study the phenomenon of destabilization of spiral waves due to the presence of obstacles, a phenomenon not completely understood (This work will appear as a Chapter in a Book named Cardiac Arrhytmias by INTECH under the name "Spiral Waves, Obstacles and Cardiac Arrhythmias", ISBN 979-953-307-050-5.).

Keywords: Arrhythmias, Cardiac tissue, Obstacles, Spiral waves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
301 Quantum Ion Acoustic Solitary and Shock Waves in Dissipative Warm Plasma with Fermi Electron and Positron

Authors: Hamid Reza Pakzad

Abstract:

Ion-acoustic solitary and shock waves in dense quantum plasmas whose constituents are electrons, positrons, and positive ions are investigated. We assume that ion velocity is weakly relativistic and also the effects of kinematic viscosity among the plasma constituents is considered. By using the reductive perturbation method, the Korteweg–deVries–Burger (KdV-B) equation is derived.

Keywords: Ion acoustic shock waves; Quantum plasmas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
300 Nonplanar Ion-acoustic Waves in a Relativistically Degenerate Quantum Plasma

Authors: Swarniv Chandra, Sibarjun Das, Agniv Chandra, Basudev Ghosh, Apratim Jash

Abstract:

Using the quantum hydrodynamic (QHD) model the nonlinear properties of ion-acoustic waves in are lativistically degenerate quantum plasma is investigated by deriving a nonlinear Spherical Kadomtsev–Petviashvili (SKP) equation using the standard reductive perturbation method equation. It was found that the electron degeneracy parameter significantly affects the linear and nonlinear properties of ion-acoustic waves in quantum plasma.

Keywords: Kadomtsev-Petviashvili equation, Ion-acoustic Waves, Relativistic Degeneracy, Quantum Plasma, Quantum Hydrodynamic Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
299 Amplification of Compression Waves in Clean and Bubbly Liquid

Authors: Robert I. Nigmatulin, Raisa Kh. Bolotnova, Nailya K. Vakhitova, Andrey S. Topolnikov, Svetlana I. Konovalova, Nikolai A. Makhota

Abstract:

The theoretical investigation is carried out to describe the effect of increase of pressure waves amplitude in clean and bubbly liquid. The goal of the work is to capture the regime of multiple magnification of acoustic and shock waves in the liquid, which enables to get appropriate conditions to enlarge collapses of micro-bubbles. The influence of boundary conditions and frequency of the governing acoustic field is studied for the case of the cylindrical acoustic resonator. It has been observed the formation of standing waves with large amplitude at resonant frequencies. The interaction of the compression wave with gas and vapor bubbles is investigated for the convergent channel. It is shown theoretically that the chemical reactions, which occur inside gas bubbles, provide additional impulse to the wave, that affect strongly on the collapses of the vapor bubbles

Keywords: acoustics, cavitation, detonation, shock waves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
298 Simulation of Irregular Waves by CFD

Authors: Muniyandy Elangovan

Abstract:

Wave generation methodology has been developed and validated by simulating wave in CFD. In this analysis, Flap type wave maker has been modeled numerically with wave basin to generate waves for marine experimental analysis. Irregular waves are arrived from the wave spectrum, and this wave has been simulated in CFD. Generated irregular wave has been compared with an analytical wave. Simulated wave has been processed for FFT analysis, and the wave spectrum is validated with original wave spectrum.

Keywords: Numerical wave tank, irregular wave, FFT, wavespectrum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4043
297 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings

Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo

Abstract:

The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.

Keywords: Building structure, seismic waves, spectral analysis, structural response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5296
296 Propagation of Electron-Acoustic Solitary Waves in Weakly Relativistically Degenerate Fermi Plasma

Authors: Swarniv Chandra, Basudev Ghosh, S. N. Paul

Abstract:

Using one dimensional Quantum hydrodynamic (QHD) model Korteweg de Vries (KdV) solitary excitations of electron-acoustic waves (EAWs) have been examined in twoelectron- populated relativistically degenerate super dense plasma. It is found that relativistic degeneracy parameter influences the conditions of formation and properties of solitary structures.

Keywords: Relativistic Degeneracy, Electron-Acoustic Waves, Quantum Plasma, KdV Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
295 Study of Two Writing Schemes for a Magnetic Tunnel Junction Based On Spin Orbit Torque

Authors: K. Jabeur, L. D. Buda-Prejbeanu, G. Prenat, G. Di Pendina

Abstract:

MRAM technology provides a combination of fast access time, non-volatility, data retention and endurance. While a growing interest is given to two-terminal Magnetic Tunnel Junctions (MTJ) based on Spin-Transfer Torque (STT) switching as the potential candidate for a universal memory, its reliability is dramatically decreased because of the common writing/reading path. Three-terminal MTJ based on Spin-Orbit Torque (SOT) approach revitalizes the hope of an ideal MRAM. It can overcome the reliability barrier encountered in current two-terminal MTJs by separating the reading and the writing path. In this paper, we study two possible writing schemes for the SOT-MTJ device based on recently fabricated samples. While the first is based on precessional switching, the second requires the presence of permanent magnetic field. Based on an accurate Verilog-A model, we simulate the two writing techniques and we highlight advantages and drawbacks of each one. Using the second technique, pioneering logic circuits based on the three-terminal architecture of the SOT-MTJ described in this work are under development with preliminary attractive results.

Keywords: Spin orbit Torque, Magnetic Tunnel Junction, MRAM, Spintronic, Circuit simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3572
294 Nonlinear Slow Shear Alfven Waves in Electron- Positron-Ion Plasma Including Full Ion Dynamics

Authors: B. Ghosh, H. Sahoo, K. K. Mondal

Abstract:

Propagation of arbitrary amplitude nonlinear Alfven waves has been investigated in low but finite β electron-positron-ion plasma including full ion dynamics. Using Sagdeev pseudopotential method an energy integral equation has been derived. The Sagdeev potential has been calculated for different plasma parameters and it has been shown that inclusion of ion parallel motion along the magnetic field changes the nature of slow shear Alfven wave solitons from dip type to hump type. The effects of positron concentration, plasma-β and obliqueness of the wave propagation on the solitary wave structure have also been examined.

Keywords: Alfven waves, Sagdeev potential, Solitary waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
293 Integrable Heisenberg Ferromagnet Equations with Self-Consistent Potentials

Authors: Gulgassyl Nugmanova, Zhanat Zhunussova, Kuralay Yesmakhanova, Galya Mamyrbekova, Ratbay Myrzakulov

Abstract:

In this paper, we consider some integrable Heisenberg Ferromagnet Equations with self-consistent potentials. We study their Lax representations. In particular we derive their equivalent counterparts in the form of nonlinear Schr¨odinger type equations. We present the integrable reductions of the Heisenberg Ferromagnet Equations with self-consistent potentials. These integrable Heisenberg Ferromagnet Equations with self-consistent potentials describe nonlinear waves in ferromagnets with some additional physical fields.

Keywords: Spin systems, equivalent counterparts, integrable reductions, self-consistent potentials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732