Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Spin-Dependent Transport Signatures of Bound States: From Finger to Top Gates
Authors: Yun-Hsuan Yu, Chi-Shung Tang, Nzar Rauf Abdullah, Vidar Gudmundsson
Abstract:
Spin-orbit gap feature in energy dispersion of one-dimensional devices is revealed via strong spin-orbit interaction (SOI) effects under Zeeman field. We describe the utilization of a finger-gate or a top-gate to control the spin-dependent transport characteristics in the SOI-Zeeman influenced split-gate devices by means of a generalized spin-mixed propagation matrix method. For the finger-gate system, we find a bound state in continuum for incident electrons within the ultra-low energy regime. For the top-gate system, we observe more bound-state features in conductance associated with the formation of spin-associated hole-like or electron-like quasi-bound states around band thresholds, as well as hole bound states around the reverse point of the energy dispersion. We demonstrate that the spin-dependent transport behavior of a top-gate system is similar to that of a finger-gate system only if the top-gate length is less than the effective Fermi wavelength.Keywords: Spin-orbit, Zeeman, top-gate, finger-gate, bound state.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1315897
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949References:
[1] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, G. A. C. Jones, “One-dimensional transport and the quantisation of the ballistic resistance”, J. Phys. C: Solid State Phys., vol. 21, pp.209-214, 1988.
[2] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, C. T. Foxon, “Quantized Conductance of Point Contacts in a Two-Dimensional Electron Gas”, Phys. Rev. Lett., vol. 60, no. 9, pp.848-850, 1988.
[3] K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, and D. A. Ritchie, “Possible Spin Polarization in a One-Dimensional Electron Gas”, Phys. Rev. Lett., vol. 77, no. 1, pp.135-138, 1996.
[4] J. H. Bardarson, I. Magnusdottir, G. Gudmundsdottir, C.-S. Tang, A. Manolescu, and V. Gudmundsson , “Coherent electronic transport in a multimode quantum channel with Gaussian-type scatterers”, Phys. Rev. B, vol. 70, no. 24, 245308, 2004.
[5] S. Datta and B. Das, “Electronic analog of the electro-optic modulator”, Appl. Phys. Lett., vol. 56, pp.665-667, 1990.
[6] M. Governale, D. Boese, U. ZLulicke, and C. Schroll, “Filtering spin with tunnel-coupled electron wave guides”, Phys. Rev. B, vol. 65, no. 14, 140403, 2002.
[7] A. Aharony, O. Entin-Wohlman, Y. Tokura, and S. Katsumoto, “Spin filtering by a periodic spintronic device”, Phys. Rev. B, vol. 78, no.12, 125328, 2008.
[8] D. D. Awschalom, D. Loss, and N. Samarth, Semiconductor Sprintronics and Quantum Computation (Springer, Berlin, 2002).
[9] A. G. Mal’shukov, C. S. Tang, C. S. Chu, and K. A. Chao, “Spin-current generation and detection in the presence of an ac gate”, Phys. Rev. B, vol. 68, no.23, 233307, 2003.
[10] A. G. Mal’shukov, C. S. Tang, C. S. Chu, and K. A. Chao, “Strain-induced coupling of spin current to nanomechanical oscillations”, Phys. Rev. Lett., vol. 95, no. 10, 107203, 2005.
[11] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, “Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47/In0.52Al0.48As Heterostructure”, Phys. Rev. Lett., vol. 78, no. 7, pp.1335-1338, 1997.
[12] P. S. Eldridge, W. J. H. Leyland, P. G. Lagoudakis, O. Z. Karimov, M. Henini, D. Taylor, R. T. Phillips, and R. T. Harley, “All-optical measurement of Rashba coefficient in quantum wells”, Phys. Rev. B, vol. 77, no. 12, 125344, 2008.
[13] A. S. Sheremet, O. V. Kibis, A. V. Kavokin, and I. A. Shelykh, “Datta-and-Das spin transistor controlled by a high-frequency electromagnetic field”, Phys. Rev. B, vol. 93, no. 16, 165307, 2016.
[14] S. D. Ganichev and L. E. Golub, “Interplay of Rashba/Dresselhaus spin splittings probed by photogalvanic spectroscopyVA review”, Phys. Status Solidi B, vol. 251, pp.1801-1823, 2014.
[15] I. Zailer, J. E. F. Frost, V. Chabasseur-Molyneux, C. J. B. Ford, and M. Pepper, “Crosslinked PMMA as a highresolution negative resist for electron beam lithography and applications for physics of low-dimensional structures”, Semicond. Sci. Technol., vol. 11, pp. 1235-1238, 1996.
[16] C.-S. Tang, J.-A. Keng, N. R. Abdullah, V. Gudmundsson, “Spin magneto-transport in a RashbaVDresselhaus quantum channel with single and double finger gates”, Phys. Lett. A, vol. 381, pp. 1529-1533, 2017.
[17] C.-S. Tang, Y.-H. Yu, N. R. Abdullah, V. Gudmundsson, “Transport signatures of top-gate bound states with strong RashbaVZeeman effect”, Phys. Lett. A, vol. 381, pp. 3960-3963, 2017.
[18] S. Giglberger, L. E. Golub, V. V. Belkov, S. N. Danilov, D. Schuh, C. Gerl, F. Rohlfing, J. Stahl,W.Wegscheider, D.Weiss, W. Prettl, and S. D. Ganichev, “Rashba and Dresselhaus spin splittings in semiconductor quantum wells measured by spin photocurrents”, Phys. Rev. B, vol. 75, no. 3, 035327, 2007.
[19] C. L´opez-Bastidas, J. A. Maytorena, and F. Mireles, “Interplay of the Rashba and Dresselhaus spin-orbit coupling in the optical spin susceptibility of 2D electron systems”, Phys. Status Solidi C, vol. 4, pp.4229-4235, 2007.
[20] Y. V. Pershin, J. A. Nesteroff, and V. Privman, “Effect of spin-orbit interaction and in-plane magnetic field on the conductance of a quasi-one-dimensional system”, Phys. Rev. B, vol. 69, no. 12, 121306(R), 2004.
[21] C. H. L. Quay, T. L. Hughes, J. A. Sulpizio, L. N. Pfeiffer, K.W. Baldwin, K.W.West, D. Goldhaber-Gordon, and R. de Picciotto, “Observation of a one-dimensional spinVorbit gap in a quantum wire”, Nat. Phys., vol. 6, pp.336-339, 2010.
[22] C.-S. Tang, S. Y. Chang, and S. J. Cheng, “Finger-gate manipulated quantum transport in a semiconductor narrow constriction with spin-orbit interactions and Zeeman effect”, Phys. Rev. B, vol. 86, no. 12, 125321, 2012.
[23] A. F. Sadreev and E. Ya. Sherman, “Effect of gate-driven spin resonance on the conductance through a one-dimensional quantum wire”, Phys. Rev. B, vol. 88, no. 11, 115302, 2013.
[24] D. Rainis and D. Loss, “Conductance behavior in nanowires with spin-orbit interaction: A numerical study”, Phys. Rev. B, vol. 90, no. 23, 235415, 2014.
[25] C.-S. Tang, S.-T. Tseng, V. Gudmundsson, and S.-J. Cheng, “Double-finger-gate controlled spin-resolved resonant quantum transport in the presence of a RashbaVZeeman gap”, J. Phys. Cond. Mat., vol. 27, 085801, 2015.
[26] R. Landauer, “Electrical resistance of disordered one-dimensional lattices”, Philos. Mag., vol. 21, pp.863-867, 1970.
[27] M. B¨uttiker, “Quantized transmission of a saddle-point constriction”, Phys. Rev. B, vol. 41, no. 11, pp.7906-7909, 1990.