Search results for: source temperature.
3814 A Second Law Assessment of Organic Rankine Cycle Depending on Source Temperature
Authors: Kyoung Hoon Kim
Abstract:
Organic Rankine Cycle (ORC) has potential in reducing fossil fuels and relaxing environmental problems. In this work performance analysis of ORC is conducted based on the second law of thermodynamics for recovery of low temperature heat source from 100oC to 140oC using R134a as the working fluid. Effects of system parameters such as turbine inlet pressure or source temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as net work production or exergy efficiency. Results show that the net work or exergy efficiency has a peak with respect to the turbine inlet pressure when the source temperature is low, however, increases monotonically with increasing turbine inlet pressure when the source temperature is high.
Keywords: Organic Rankine cycle (ORC), low temperature heat source, exergy, source temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18793813 Performance Analysis of Absorption Power Cycle under Different Source Temperatures
Authors: Kyoung Hoon Kim
Abstract:
The absorption power generation cycle based on the ammonia-water mixture has attracted much attention for efficient recovery of low-grade energy sources. In this paper a thermodynamic performance analysis is carried out for a Kalina cycle using ammonia-water mixture as a working fluid for efficient conversion of low-temperature heat source in the form of sensible energy. The effects of the source temperature on the system performance are extensively investigated by using the thermodynamic models. The results show that the source temperature as well as the ammonia mass fraction affects greatly on the thermodynamic performance of the cycle.
Keywords: Ammonia-water mixture, Kalina cycle, low-grade heat source, source temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24643812 Influence of Flash Temperature on Exergetical Performance of Organic Flash Cycle
Authors: Kyoung Hoon Kim, Chul Ho Han
Abstract:
Organic Flash Cycle (OFC) has potential of improving efficiency for recovery of low temperature heat sources mainly due to reducing temperature mismatch in the heat exchanger. In this work exergetical performance analysis of ORC is conducted for recovery of low grade heat source. Effects of system parameters such as flash evaporation temperature or heating temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as exergy efficiency. Results show that exergy efficiency has a peak with respect to the flash temperature, and the optimum flash temperature increases with the heating temperature. The component where the largest exergy destruction occurs varies with the flash temperature or heating temperature.
Keywords: Organic flash cycle (OFC), low grade heat source, exergy, anergy, flash temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19093811 Analytic and Finite Element Solutions for Temperature Profiles in Welding using Varied Heat Source Models
Authors: Djarot B. Darmadi, John Norrish, Anh Kiet Tieu
Abstract:
Solutions for the temperature profile around a moving heat source are obtained using both analytic and finite element (FEM) methods. Analytic and FEM solutions are applied to study the temperature profile in welding. A moving heat source is represented using both point heat source and uniform distributed disc heat source models. Analytic solutions are obtained by solving the partial differential equation for energy conservation in a solid, and FEM results are provided by simulating welding using the ANSYS software. Comparison is made for quasi steady state conditions. The results provided by the analytic solutions are in good agreement with results obtained by FEM.Keywords: Analytic solution, FEM, Temperature profile, HeatSource Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22183810 Growth of Multi-Layered Graphene Using Organic Solvent-PMMA Film as the Carbon Source under Low Temperature Conditions
Authors: Alaa Y. Ali, Natalie P. Holmes, John Holdsworth, Warwick Belcher, Paul Dastoor, Xiaojing Zhou
Abstract:
Multi-layered graphene has been produced under low temperature chemical vapour deposition (CVD) growth conditions by utilizing an organic solvent and polymer film source. Poly(methylmethacrylate) (PMMA) was dissolved in chlorobenzene solvent and used as a drop-cast film carbon source on a quartz slide. A source temperature (Tsource) of 180 °C provided sufficient carbon to grow graphene, as identified by Raman spectroscopy, on clean copper foil catalytic surfaces. Systematic variation of hydrogen gas (H2) flow rate from 25 standard cubic centimeters per minute (sccm) to 100 sccm and CVD temperature (Tgrowth) from 400 to 800 °C, yielded graphene films of varying quality as characterized by Raman spectroscopy. The optimal graphene growth parameters were found to occur with a hydrogen flow rate of 75 sccm sweeping the 180 °C source carbon past the Cu foil at 600 °C for 1 min. The deposition at 600 °C with a H2 flow rate of 75 sccm yielded a 2D band peak with ~53.4 cm-1 FWHM and a relative intensity ratio of the G to 2D bands (IG/I2D) of 0.21. This recipe fabricated a few layers of good quality graphene.
Keywords: Graphene, chemical vapour deposition, carbon source, low temperature growth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9083809 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously
Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen
Abstract:
Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.
Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO2 cycle, transcritical CO2 cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10743808 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non-Uniform Heat Source/Sink
Authors: Bandaris Shankar, Yohannes Yirga
Abstract:
In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement.
Keywords: Manetohydrodynamics, nanofluid, non-uniform heat source/sink, unsteady.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32223807 Correction of Infrared Data for Electrical Components on a Board
Authors: Seong-Ho Song, Ki-Seob Kim, Seop-Hyeong Park, Seon-Woo Lee
Abstract:
In this paper, the data correction algorithm is suggested when the environmental air temperature varies. To correct the infrared data in this paper, the initial temperature or the initial infrared image data is used so that a target source system may not be necessary. The temperature data obtained from infrared detector show nonlinear property depending on the surface temperature. In order to handle this nonlinear property, Taylor series approach is adopted. It is shown that the proposed algorithm can reduce the influence of environmental temperature on the components in the board. The main advantage of this algorithm is to use only the initial temperature of the components on the board rather than using other reference device such as black body sources in order to get reference temperatures.Keywords: Infrared camera, Temperature Data compensation, Environmental Ambient Temperature, Electric Component
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15273806 Free Convection in an Infinite Porous Dusty Medium Induced by Pulsating Point Heat Source
Authors: K. Kannan, V. Venkataraman
Abstract:
Free convection effects and heat transfer due to a pulsating point heat source embedded in an infinite, fluid saturated, porous dusty medium are studied analytically. Both velocity and temperature fields are discussed in the form of series expansions in the Rayleigh number, for both the fluid and particle phases based on the mean heat generation rate from source and on the permeability of the porous dusty medium. This study is carried out by assuming the Rayleigh number small and the validity of Darcy-s law. Analytical expressions for both phases are obtained for second order mean in both velocity and temperature fields and evolution of different wave patterns are observed in the fluctuating part. It has been observed that, at the vicinity of the origin, the second order mean flow is influenced only by relaxation time of dust particles and not by dust concentration.
Keywords: Pulsating point heat source, azimuthal velocity, porous dusty medium, Darcy's law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13633805 Improving the Optoacoustic Signal by Monitoring the Changes of Coupling Medium
Authors: P. Prasannakumar, L. Myoung Young, G. Seung Kye, P. Sang Hun, S. Chul Gyu
Abstract:
In this paper, we discussed the coupling medium in the optoacoustic imaging. The coupling medium is placed between the scanned object and the ultrasound transducers. Water with varying temperature was used as the coupling medium. The water temperature is gradually varied between 25 to 40 degrees. This heating process is taken with care in order to avoid the bubble formation. Rise in the photoacoustic signal is noted through an unfocused transducer with frequency of 2.25 MHz as the temperature increases. The temperature rise is monitored using a NTC thermistor and the values in degrees are calculated using an embedded evaluation kit. Also the temperature is transmitted to PC through a serial communication. All these processes are synchronized using a trigger signal from the laser source.
Keywords: Embedded, optoacoustic, ultrasound, unfocused transducer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7173804 Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins
Authors: F. A. Gdhaidh, K. Hussain, H. S. Qi
Abstract:
A numerical study of natural convection heat transfer in water filled cavity has been examined in 3-Dfor single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5∗37.5mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15 - 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68°C when the heat input was at 40W that is much lower than the recommended computer chips limit temperature of no more than 85°C and hence the performance of the CPU is enhanced.
Keywords: Chips limit temperature, closed enclosure, natural convection, parallel plate, single phase liquid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29883803 Finite Element Investigation of Transmission Conditions for Non-Monotonic Temperature Interphases
Authors: Hamid Mozafari, Andreas Öchsner, Amran Alias
Abstract:
Imperfect transmission conditions modeling a thin reactive 2D interphases layer between two dissimilar bonded strips have been extracted. In this paper, the soundness of these transmission conditions for heat conduction problems are examined by the finite element method for a strong temperature-dependent source or sink and non-monotonic temperature distributions around the faces..
Keywords: Imperfect interface, Transmission conditions, Finiteelement analysis, Interphase
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15093802 Efficiency of Compact Organic Rankine Cycle System with Rotary-Vane-Type Expander for Low-Temperature Waste Heat Recovery
Authors: Musthafah b. Mohd.Tahir, Noboru Yamada, Tetsuya Hoshino
Abstract:
This paper describes the experimental efficiency of a compact organic Rankine cycle (ORC) system with a compact rotary-vane-type expander. The compact ORC system can be used for power generation from low-temperature heat sources such as waste heat from various small-scale heat engines, fuel cells, electric devices, and solar thermal energy. The purpose of this study is to develop an ORC system with a low power output of less than 1 kW with a hot temperature source ranging from 60°C to 100°C and a cold temperature source ranging from 10°C to 30°C. The power output of the system is rather less due to limited heat efficiency. Therefore, the system should have an economically optimal efficiency. In order to realize such a system, an efficient and low-cost expander is indispensable. An experimental ORC system was developed using the rotary-vane-type expander which is one of possible candidates of the expander. The experimental results revealed the expander performance for various rotation speeds, expander efficiencies, and thermal efficiencies. Approximately 30 W of expander power output with 48% expander efficiency and 4% thermal efficiency with a temperature difference between the hot and cold sources of 80°C was achieved.Keywords: Organic Rankine cycle, Thermodynamic cycle, Thermal efficiency, Turbine efficiency, Waste heat recovery, Powergeneration, Low temperature heat engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35653801 Temperature Sensor IC Design for Intracranial Monitoring Device
Authors: Wai Pan Chan, Minkyu Je
Abstract:
A precision CMOS chopping amplifier is adopted in this work to improve a CMOS temperature sensor high sensitive enough for intracranial temperature monitoring. An amplified temperature sensitivity of 18.8 ± 3*0.2 mV/oC is attained over the temperature range from 20 oC to 80 oC from a given 10 samples of the same wafer. The analog frontend design outputs the temperature dependent and the temperature independent signals which can be directly interfaced to a 10 bit ADC to accomplish an accurate temperature instrumentation system.
Keywords: Chopping, analog frontend, CMOS temperature sensor, traumatic brain injury (TBI), intracranial temperature monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19793800 A Single-chip Proportional to Absolute Temperature Sensor Using CMOS Technology
Authors: AL.AL, M. B. I. Reaz, S. M. A. Motakabber, Mohd Alauddin Mohd Ali
Abstract:
Nowadays it is a trend for electronic circuit designers to integrate all system components on a single-chip. This paper proposed the design of a single-chip proportional to absolute temperature (PTAT) sensor including a voltage reference circuit using CEDEC 0.18m CMOS Technology. It is a challenge to design asingle-chip wide range linear response temperature sensor for many applications. The channel widths between the compensation transistor and the reference transistor are critical to design the PTAT temperature sensor circuit. The designed temperature sensor shows excellent linearity between -100°C to 200° and the sensitivity is about 0.05mV/°C. The chip is designed to operate with a single voltage source of 1.6V.Keywords: PTAT, single-chip circuit, linear temperature sensor, CMOS technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34313799 The Temperature Effects on the Microstructure and Profile in Laser Cladding
Authors: P. C. Chiu, Jehnming Lin
Abstract:
In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.Keywords: Laser cladding, temperature, profile, microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10673798 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient
Authors: Anjanna Matta, P. A. L. Narayana
Abstract:
An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleigh number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.Keywords: Linear stability analysis, heat source, porous medium, mass flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17203797 Ground Heat Exchanger Modeling Developed for Energy Flows of an Incompressible Fluid
Authors: Paul Christodoulides, Georgios Florides, Panayiotis Pouloupatis, Vassilios Messaritis, Lazaros Lazari
Abstract:
Ground-source heat pumps achieve higher efficiencies than conventional air-source heat pumps because they exchange heat with the ground that is cooler in summer and hotter in winter than the air environment. Earth heat exchangers are essential parts of the ground-source heat pumps and the accurate prediction of their performance is of fundamental importance. This paper presents the development and validation of a numerical model through an incompressible fluid flow, for the simulation of energy and temperature changes in and around a U-tube borehole heat exchanger. The FlexPDE software is used to solve the resulting simultaneous equations that model the heat exchanger. The validated model (through a comparison with experimental data) is then used to extract conclusions on how various parameters like the U-tube diameter, the variation of the ground thermal conductivity and specific heat and the borehole filling material affect the temperature of the fluid.Keywords: U-tube borehole, energy flow, incompressible fluid, numerical model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20033796 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source
Authors: Z. Veselý, M. Honner, J. Mach
Abstract:
The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. Complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.Keywords: Computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20383795 Analysis of the Long-term Effect of Office Lighting Environment on Human Reponses
Authors: D.Y. Su, C.C. Liu, C.M. Chiang, W. Wang
Abstract:
This study aims to discuss the effect of illumination and the color temperature of the lighting source under the office lighting environment on human psychological and physiological responses. In this study, 21 healthy participants were selected, and the Ryodoraku measurement system was utilized to measure their skin resistance change.The findings indicated that the effect of the color temperature of the lighting source on human physiological responses is significant within 90 min after turning the lights on; while after 90 min the effect of illumination on human physiological responses is higher than that of the color temperature. Moreover, the cardiovascular, digestive and endocrine systems are prone to be affected by the indoor lighting environment. During the long-term exposure to high intensity of illumination and high color temperature (2000Lux -6500K), the effect on the psychological responses turned moderate after the human visual system adopted to the lighting environment. However, the effect of the Ryodoraku value on human physiological responses was more significant with the increase of perceptive time. The effect of long time exposure to a lighting environment on the physiological responses is greater than its effect on the psychological responses. This conclusion is different from the traditional public viewpoint that the effect on the psychological responses is greater.
Keywords: Autonomic nervous system, Human responses, Office Lighting Environment, Ryodoraku, Meridian
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19513794 The Effect of the Thermal Temperature and Injected Current on Laser Diode 808 nm Output Power
Authors: Hassan H. Abuelhassan, M. Ali Badawi, Abdelrahman A. Elbadawi, Adam A. Elbashir
Abstract:
In this paper, the effect of the injected current and temperature into the output power of the laser diode module operating at 808nm were applied, studied and discussed. Low power diode laser was employed as a source. The experimental results were demonstrated and then the output power of laser diode module operating at 808nm was clearly changed by the thermal temperature and injected current. The output power increases by the increasing the injected current and temperature. We also showed that the increasing of the injected current results rising in heat, which also, results into decreasing of the laser diode output power during the highest temperature as well. The best ranges of characteristics made by diode module operating at 808nm were carefully handled and determined.
Keywords: Laser diode, light amplification, injected current, output power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18213793 Thermal Post-buckling of Shape Memory Alloy Composite Plates under Non-uniform Temperature Distribution
Authors: Z.A. Rasid, R. Zahari, A. Ayob, D.L. Majid, A.S.M. Rafie
Abstract:
Aerospace vehicles are subjected to non-uniform thermal loading that may cause thermal buckling. A study was conducted on the thermal post-buckling of shape memory alloy composite plates subjected to the non-uniform tent-like temperature field. The shape memory alloy wires were embedded within the laminated composite plates to add recovery stress to the plates. The non-linear finite element model that considered the recovery stress of the shape memory alloy and temperature dependent properties of the shape memory alloy and composite matrix along with its source codes were developed. It was found that the post-buckling paths of the shape memory alloy composite plates subjected to various tentlike temperature fields were stable within the studied temperature range. The addition of shape memory alloy wires to the composite plates was found to significantly improve the post-buckling behavior of laminated composite plates under non-uniform temperature distribution.Keywords: Post-buckling, shape memory alloy, temperaturedependent property, tent-like temperature distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20163792 Developing the Color Temperature Histogram Method for Improving the Content-Based Image Retrieval
Authors: P. Phokharatkul, S. Chaisriya, S. Somkuarnpanit, S. Phaiboon, C. Kimpan
Abstract:
This paper proposes a new method for image searches and image indexing in databases with a color temperature histogram. The color temperature histogram can be used for performance improvement of content–based image retrieval by using a combination of color temperature and histogram. The color temperature histogram can be represented by a range of 46 colors. That is more than the color histogram and the dominant color temperature. Moreover, with our method the colors that have the same color temperature can be separated while the dominant color temperature can not. The results showed that the color temperature histogram retrieved an accurate image more often than the dominant color temperature method or color histogram method. This also took less time so the color temperature can be used for indexing and searching for images.
Keywords: Color temperature histogram, color temperature, animage retrieval and content-based image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24533791 Numerical and Infrared Mapping of Temperature in Heat Affected Zone during Plasma Arc Cutting of Mild Steel
Authors: Dalvir Singh, Somnath Chattopadhyaya
Abstract:
During welding or flame cutting of metals, the prediction of heat affected zone (HAZ) is critical. There is need to develop a simple mathematical model to calculate the temperature variation in HAZ and derivative analysis can be used for this purpose. This study presents analytical solution for heat transfer through conduction in mild steel plate. The homogeneous and nonhomogeneous boundary conditions are single variables. The full field analytical solutions of temperature measurement, subjected to local heating source, are derived first by method of separation of variables followed with the experimental visualization using infrared imaging. Based on the present work, it is suggested that appropriate heat input characteristics controls the temperature distribution in and around HAZ.Keywords: Conduction Heat Transfer, Heat Affected Zone (HAZ), Infra-Red Imaging, Numerical Method, Orthogonal Function, Plasma Arc Cutting, Separation of Variables, Temperature Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17873790 Experimental Investigation on the Effects of Electroless Nickel Phosphorus Deposition, pH and Temperature with the Varying Coating Bath Parameters on Impact Energy by Taguchi Method
Authors: D. Kari Basavaraja, M. G. Skanda, C. Soumya, V. Ramesh
Abstract:
This paper discusses the effects of sodium hypophosphite concentration, pH, and temperature on deposition rate. This paper also discusses the evaluation of coating strength, surface, and subsurface by varying the bath parameters, percentage of phosphate, plating temperature, and pH of the plating solution. Taguchi technique has been used for the analysis. In the experiment, nickel chloride which is a source of nickel when mixed with sodium hypophosphite has been used as the reducing agent and the source of phosphate and sodium hydroxide has been used to vary the pH of the coating bath. The coated samples are tested for impact energy by conducting impact test. Finally, the effects of coating bath parameters on the impact energy absorbed have been plotted, and analysis has been carried out. Further, percentage contribution of coating bath parameters using Design of Experiments approach (DOE) has been analysed. Finally, it can be concluded that the bath parameters of the Ni-P coating will certainly influence on the strength of the specimen.
Keywords: Bath parameters, coatings, design of experiment, fracture toughness, impact strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13013789 Comparative Exergy Analysis of Ammonia-Water Rankine Cycles and Kalina Cycle
Authors: Kyoung Hoon Kim
Abstract:
This paper presents a comparative exergy analysis of ammonia-water Rankine cycles with and without regeneration and Kalina cycle for recovery of low-temperature heat source. Special attention is paid to the effect of system parameters such as ammonia mass fraction and turbine inlet pressure on the exergetical performance of the systems. Results show that maximum exergy efficiency can be obtained in the regenerative Rankine cycle for high turbine inlet pressures. However, Kalina cycle shows better exergy efficiency for low turbine inlet pressures, and the optimum ammonia mass fractions of Kalina cycle are lower than Rankine cycles.Keywords: Ammonia-water, Rankine cycle, Kalina cycle, exergy, exergy destruction, low-temperature heat source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7323788 Source Direction Detection based on Stationary Electronic Nose System
Authors: Jie Cai, David C. Levy
Abstract:
Electronic nose (array of chemical sensors) are widely used in food industry and pollution control. Also it could be used to locate or detect the direction of the source of emission odors. Usually this task is performed by electronic nose (ENose) cooperated with mobile vehicles, but when a source is instantaneous or surrounding is hard for vehicles to reach, problem occurs. Thus a method for stationary ENose to detect the direction of the source and locate the source will be required. A novel method which uses the ratio between the responses of different sensors as a discriminant to determine the direction of source in natural wind surroundings is presented in this paper. The result shows that the method is accurate and easily to be implemented. This method could be also used in movably, as an optimized algorithm for robot tracking source location.Keywords: Electronic nose, Nature wind situation, Source direction detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13303787 Investigation of Tool Temperature and Surface Quality in Hot Machining of Hard-to-Cut Materials
Authors: M.Davami, M.Zadshakoyan
Abstract:
Production of hard-to-cut materials with uncoated carbide cutting tools in turning, not only cause tool life reduction but also, impairs the product surface roughness. In this paper, influence of hot machining method were studied and presented in two cases. Case1-Workpiece surface roughness quality with constant cutting parameter and 300 ºC initial workpiece surface temperature. Case 2- Tool temperature variation when cutting with two speeds 78.5 (m/min) and 51 (m/min). The workpiece material and tool used in this study were AISI 1060 steel (45HRC) and uncoated carbide TNNM 120408-SP10(SANDVIK Coromant) respectively. A gas flam heating source was used to preheating of the workpiece surface up to 300 ºC, causing reduction of yield stress about 15%. Results obtained experimentally, show that the method used can considerably improved surface quality of the workpiece.
Keywords: Hard-to-cut material, Hot machining, Surfaceroughness, Tool Temperature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22033786 Temperature Related Alterations to Mineral Levels and Crystalline Structure in Porcine Long Bone: Intense Heat vs. Open Flame
Authors: Caighley Logan, Suzzanne McColl
Abstract:
The outcome of fire related fatalities, along with other research, has found fires can have a detrimental effect to the mineral and crystalline structures within bone. This study focused on the mineral and crystalline structures within porcine bone samples to analyse the changes caused, with the intent of effectively ‘reverse engineering’ the data collected from burned bone samples to discover what may have happened. Using Fourier Transform Infrared (FTIR), and X-Ray Fluorescence (XRF), the data were collected from a controlled source of intense heat (muffle furnace) and an open fire, based in a living room setting in a standard size shipping container (2.5 m x 2.4 m) of a similar temperature with a known ignition source, a gasoline lighter. This approach is to analyse the changes to the samples and how the changes differ depending on the heat source. Results have found significant differences in the levels of remaining minerals for each type of heat/burning (p =< 0.001), particularly Phosphorus and Calcium, this also includes notable additions of absorbed elements and minerals from the surrounding materials, i.e., Cerium (Ce), Bromine (Br) and Neodymium (Ne). The analysis techniques included provide validated results in conjunction with previous studies.
Keywords: Forensic anthropology, thermal alterations, porcine bone, FTIR, XRF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043785 Temperature-Based Detection of Initial Yielding Point in Loading of Tensile Specimens Made of Structural Steel
Authors: Aqsa Jamil, Hiroshi Tamura, Hiroshi Katsuchi, Jiaqi Wang
Abstract:
Yield point represents the upper limit of forces which can be applied on a specimen without causing any permanent deformation. After yielding, the behavior of specimen suddenly changes including the possibility of cracking or buckling. So, the accumulation of damage or type of fracture changes depending on this condition. As it is difficult to accurately detect yield points of the several stress concentration points in structural steel specimens, an effort has been made in this research work to develop a convenient technique using thermography (temperature-based detection) during tensile tests for the precise detection of yield point initiation. To verify the applicability of thermography camera, tests were conducted under different loading conditions and measuring the deformation by installing various strain gauges and monitoring the surface temperature with the help of thermography camera. The yield point of specimens was estimated by the help of temperature dip which occurs due to the thermoelastic effect during the plastic deformation. The scattering of the data has been checked by performing repeatability analysis. The effect of temperature imperfection and light source has been checked by carrying out the tests at daytime as well as midnight and by calculating the signal to noise ratio (SNR) of the noised data from the infrared thermography camera, it can be concluded that the camera is independent of testing time and the presence of a visible light source. Furthermore, a fully coupled thermal-stress analysis has been performed by using Abaqus/Standard exact implementation technique to validate the temperature profiles obtained from the thermography camera and to check the feasibility of numerical simulation for the prediction of results extracted with the help of thermographic technique.
Keywords: Signal to noise ratio, thermoelastic effect, thermography, yield point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 367