Search results for: soil reaction.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1442

Search results for: soil reaction.

1352 Response of Buildings with Soil-Structure Interaction with Varying Soil Types

Authors: Shreya Thusoo, Karan Modi, Rajesh Kumar, Hitesh Madahar

Abstract:

Over the years, it has been extensively established that the practice of assuming a structure being fixed at base, leads to gross errors in evaluation of its overall response due to dynamic loadings and overestimations in design. The extent of these errors depends on a number of variables; soil type being one of the major factor. This paper studies the effect of Soil Structure Interaction (SSI) on multistorey buildings with varying under-laying soil types after proper validation of the effect of SSI. Analysis for soft, stiff and very stiff base soils has been carried out, using a powerful Finite Element Method (FEM) software package ANSYS v14.5. Results lead to some very important conclusions regarding time period, deflection and acceleration responses.

Keywords: Dynamic response, multi-storey building, Soil-Structure Interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4116
1351 Drafting the Design and Development of Micro- Controller Based Portable Soil Moisture Sensor for Advancement in Agro Engineering

Authors: Guneet Mander, Gurinder Pal Singh

Abstract:

Moisture is an important consideration in many aspects ranging from irrigation, soil chemistry, golf course, corrosion and erosion, road conditions, weather predictions, livestock feed moisture levels, water seepage etc. Vegetation and crops always depend more on the moisture available at the root level than on precipitation occurrence. In this paper, design of an instrument is discussed which tells about the variation in the moisture contents of soil. This is done by measuring the amount of water content in soil by finding the variation in capacitance of soil with the help of a capacitive sensor. The greatest advantage of soil moisture sensor is reduced water consumption. The sensor is also be used to set lower and upper threshold to maintain optimum soil moisture saturation and minimize water wilting, contributes to deeper plant root growth ,reduced soil run off /leaching and less favorable condition for insects and fungal diseases. Capacitance method is preferred because, it provides absolute amount of water content and also measures water content at any depth.

Keywords: Capacitive Sensors, aluminum, Water, Irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
1350 Influence of Combined Drill Coulters on Seedbed Compaction under Conservation Tillage Technologies

Authors: E. Šarauskis, L. Masilionyte, Z. Kriaučiūniene, K. Romaneckas

Abstract:

All over the world, including the Middle and East European countries, sustainable tillage and sowing technologies are applied increasingly broadly with a view to optimising soil resources, mitigating soil degradation processes, saving energy resources, preserving biological diversity, etc. As a result, altered conditions of tillage and sowing technological processes are faced inevitably. The purpose of this study is to determine the seedbed topsoil hardness when using a combined sowing coulter in different sustainable tillage technologies. The research involved a combined coulter consisting of two dissected blade discs and a shoe coulter. In order to determine soil hardness at the seedbed area, a multipenetrometer was used. It was found by experimental studies that in loosened soil, a combined sowing coulter equally suppresses the furrow bottom, walls and soil near the furrow; therefore, here, soil hardness was similar at all researched depths and no significant differences were established. In loosened and compacted (double-rolled) soil, the impact of a combined coulter on the hardness of seedbed soil surface was more considerable at a depth of 2 mm. Soil hardness at the furrow bottom and walls to a distance of up to 26 mm was 1.1 MPa. At a depth of 10 mm, the greatest hardness was established at the furrow bottom. In loosened and heavily compacted (rolled for 6 times) soil, at a depth of 2 and 10 mm a combined coulter most of all compacted the furrow bottom, which has a hardness of 1.8 MPa. At a depth of 20 mm, soil hardness within the whole investigated area varied insignificantly and fluctuated by around 2.0 MPa. The hardness of furrow walls and soil near the furrow was by approximately 1.0 MPa lower than that at the furrow bottom

Keywords: Coulters design, seedbed, soil hardness, combined coulters, soil compaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
1349 Ecotoxicological Studies of Soil Using Analytical and Biological Methods: A Review

Authors: V. Chahal, A. Nagpal, Y. B. Pakade, J. K. Katnoria

Abstract:

Soil is a complex physical and biological system that provides support, water, nutrients and oxygen to the plants. Apart from these, it acts as a connecting link between inorganic, organic and living components of the ecosystem. In recent years, presence of xenobiotics, alterations in the natural soil environment, application of pesticides/inorganic fertilizers, percolation of contaminated surface water as well as leachates from landfills to subsurface strata and direct discharge of industrial wastes to the land have resulted in soil pollution which in turn has posed severe threats to human health especially in terms of causing carcinogenicity by direct DNA damage. The present review is an attempt to summarize literature on sources of soil pollution, characterization of pollutants and their consequences in different living systems.

Keywords: Soil Pollution, Contaminants, Heavy metals, Pesticides, Bioassays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3485
1348 Effect of Cocoa Pod Ash and Poultry Manure on Soil Properties and Cocoyam Productivity of Nutrient-Depleted Tropical Alfisol

Authors: T. M. Agbede, A. O. Adekiya

Abstract:

An experiment was carried out for three consecutive years at Owo, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of cocoyam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 7.5 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control), arranged in a randomized complete block design with three replications. Results showed that soil amendments significantly increased (p = 0.05) corm and cormel weights and growth of cocoyam, soil and leaf N, P, K, Ca and Mg, soil pH and organic carbon (OC) concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased corm and cormel weights, plant height and leaf area of cocoyam by 40, 39, 42, and 48%, respectively, compared with inorganic fertilizer (NPK) and 13, 12, 15 and 7%, respectively, compared with PM alone. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties compared with NPK and the NSF (control). The mixture of CPA+PM applied at 7.5 t ha-1 was the most effective treatment in improving cocoyam yield and growth parameters, soil and leaf nutrient composition.

Keywords: Cocoa pod ash, cocoyam, poultry manure, soil and leaf nutrient composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
1347 Biodiesel Production from Waste Chicken Fatbased Sources

Authors: Kambiz Tahvildari A., Narges Davari B., Mohammadreza Allahgholi Ghasri C, MasoomehBehrourzinavid D

Abstract:

Chicken fat was employed as a feedstock for producing of biodiesel by trasesterification reaction with methanol and alkali catalyst (KOH). In this study chicken fat biodiesel with 1.4% free fatty acid, methanol and various amount of potassium hydroxide for 2 hour were studied. The progression of reaction and conversion of triglycerides to methyl ester were checked by IR spectrum method.

Keywords: Alkali catalyst, biodiesel, chicken fat, transesterification reaction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2782
1346 Comparison of Different Techniques to Estimate Surface Soil Moisture

Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini

Abstract:

Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.

Keywords: Artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
1345 The Potential Effect of Biochar Application on Microbial Activities and Availability of Mineral Nitrogen in Arable Soil Stressed by Drought

Authors: Helena Dvořáčková, Jakub Elbl, Irina Mikajlo, Antonín Kintl, Jaroslav Hynšt, Olga Urbánková, Jaroslav Záhora

Abstract:

Application of biochar to arable soils represents a new approach to restore soil health and quality. Many studies reported the positive effect of biochar application on soil fertility and development of soil microbial community. Moreover biochar may affect the soil water retention, but this effect has not been sufficiently described yet. Therefore this study deals with the influence of biochar application on: microbial activities in soil, availability of mineral nitrogen in soil for microorganisms, mineral nitrogen retention and plant production. To demonstrate the effect of biochar addition on the above parameters, the pot experiment was realized. As a model crop, Lactuca sativa L. was used and cultivated from December 10th 2014 till March 22th 2015 in climate chamber in thoroughly homogenized arable soil with and without addition of biochar. Five variants of experiment (V1 – V5) with different regime of irrigation were prepared. Variants V1 – V2 were fertilized by mineral nitrogen, V3 – V4 by biochar and V5 was a control. The significant differences were found only in plant production and mineral nitrogen retention. The highest content of mineral nitrogen in soil was detected in V1 and V2, about 250 % in comparison with the other variants. The positive effect of biochar application on soil fertility, mineral nitrogen availability was not found. On the other hand results of plant production indicate the possible positive effect of biochar application on soil water retention.

Keywords: Arable soil, biochar, drought, mineral Nitrogen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
1344 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction

Authors: Kyoungjin Kim

Abstract:

Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.

Keywords: Nanoparticles, Thermite reaction, Combustion wave, Numerical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
1343 Radioactivity of the Agricultural Soil in Northern Province of Serbia, Vojvodina

Authors: I. Bikit, S. Forkapic, J. Nikolov, N. Todorovic, D. Mrdja

Abstract:

During the year 1999, Serbia (ex Yugoslavia) and their northern province, Vojvodina, has been bombarded. Because of that general public believe is that this region was contaminated by depleted uranium and that there is a potential contaminant of agricultural products due to soil radioactivity. This paper presents the repeated analysis of agricultural soil samples in Vojvodina. The same investigation was carried out during the year 2001, and it was concluded that, based on the gamma-spectrometric analysis of 50 soil samples taken from the region of Vojvodina, there haven-t been registered any increase of radioactivity that could endanger the food production. We continue with the monitoring of this region. The comparison between those two sets of results is presented.

Keywords: gamma spectrometry analysis, radioactivity of theagricultural soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
1342 Effects of Oilfield Water Treated by Electroflocculation and Reverse Osmosis in a Typical Brazilian Semiarid Soil

Authors: P. S. A. Souza, M. R. C. Marques, M. M. Rigo, A. A. Cerqueira, J. L. Paiva, F. Merçon, D. V. Perez

Abstract:

Produced water (PW), which is water extracted along with oil, is the largest waste stream in the oil and gas industry. With the proper treatment, this wastewater can be used in agricultural irrigation. This study evaluated the effects the application of PW treated by electroflocculation (EF) and combined electroflocculation-reverse osmosis (EF-RO) on soil salinity and sodification parameters. Excessive sodium levels in PW treated by EF may affect soil structural stability and plant growth, and tends to accumulate in upper layers, displacing the nutrient K to deeper layers of the soil profile. PW treated by EF-RO did not promote salinization and soil sodification, indicating that this combined technique may be a viable alternative for oily water treatment aiming at irrigation use in semiarid regions.

Keywords: Electroflocculation, irrigation, produced water, reverse osmosis, soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 532
1341 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load

Authors: R. Ziaie Moayed, E. Ghanbari Alamouty

Abstract:

Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.

Keywords: Area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
1340 Influence of Nanozeolite Particles on Improvement of Clayey Soil

Authors: A. Goodarzian, A. Ghasemipanah, R. Ziaie Moayed, H. Niroumand

Abstract:

The problem of soil stabilization has been one of the important issues in geotechnical engineering. Nowadays, nanomaterials have revolutionized many industries. In this research, improvement of the Kerman fine-grained soil by nanozeolite and nanobentonite additives separately has been investigated using Atterberg Limits and unconfined compression test. In unconfined compression test, the samples were prepared with 3, 5 and 7% nano additives, with 1, 7 and 28 days curing time with strain control method. Finally, the effect of different percentages of nanozeolite and nanobentonite on the geotechnical behavior and characteristics of Kerman fine-grained soil was investigated. The results showed that with increasing the amount of nanozeolite and also nanobentonite to fine-grained soil, the soil exhibits more compression strength. So that by adding 7% nanozeolite and nanobentonite with 1 day curing, the unconfined compression strength is 1.18 and 2.1 times higher than the unstabilized soil. In addition, the failure strain decreases in samples containing nanozeolite, whereas it increases in the presence of nanobentonite. Increasing the percentage of nanozeolite and nanobentonite also increased the elasticity modulus of soil.

Keywords: Nanozeolite particles, nanobentonite particles, clayey soil, unconfined compression stress, specific surface area, cation exchange capacity, Atterberg limits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
1339 Effect of Oil Contamination on the Liquefaction Behavior of Sandy

Authors: S. A. Naeini, M. M. Shojaedin

Abstract:

Oil leakage from the pipelines and the tanks carrying them, or during oil extraction, could lead to the changes in the characteristics and properties of the soil. In this paper, conducting a series of experimental cyclic triaxial tests, the effects of oil contamination on the liquefaction potential of sandy soils is investigated. The studied specimens are prepared by mixing the Firoozkuh sand with crude oil in 4, 8 and 12 percent by soil dry weight. The results show that the oil contamination up to 8% causes an increase in the soil liquefaction resistance and then with increase in the contamination, the liquefaction resistance decreases.

Keywords: Cyclic triaxial test, Liquefaction resistance, Oil contamination, Sandy soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
1338 Soil Resistivity Structure and Its Implication on the Pole Grid Resistance for Transmission Lines

Authors: M. Nassereddine, J. Rizk, G. Nasserddine

Abstract:

High Voltage (HV) transmission lines are widely spread around residential places. They take all forms of shapes: concrete, steel, and timber poles. Earth grid always form part of the HV transmission structure, whereat soil resistivity value is one of the main inputs when it comes to determining the earth grid requirements. In this paper, the soil structure and its implication on the electrode resistance of HV transmission poles will be explored. In Addition, this paper will present simulation for various soil structures using IEEE and Australian standards to verify the computation with CDEGS software. Furthermore, the split factor behavior under different soil resistivity structure will be presented using CDEGS simulations.

Keywords: Earth Grid, EPR, High Voltage, Soil Resistivity Structure, Split Factor, Step Voltage, Touch Voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3232
1337 Features of Soil Formation in the North of Western Siberia in Cryogenic Conditions

Authors: Tatiana V. Raudina, Sergey P. Kulizhskiy

Abstract:

A large part of Russia is located in permafrost areas. These areas are widely used because there are concentrated valuable natural resources. Therefore to explore of cryosols it is important due to the significant increase of anthropogenic stress as well as the problem of global climate change. In the north of Western Siberia permafrost phenomena is widespread. Permafrost as a factor of soil formation and cryogenesis as a process have a great impact on the soil formation of these areas. Based on the research results of permafrost-affected soils tundra landscapes formed in the central part of the Tazovskiy Peninsula in cryogenic conditions, data were obtained which characterize the morphological features of soils. The specificity of soil cover distribution and manifestation of soil-forming processes within the study area are noted. Permafrost features such as frost cracking, cryoturbation, thixotropy, movement of humus are formed. The formation of these features is increased with the development of the territory. As a consequence, there is a change in the components of the environment and the destruction of the soil cover.

Keywords: Gleyed and nongleyed soils, permafrost, soil cryogenesis (pedocryogenesis), soil-forming macroprocesses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
1336 Plants Cover Effects on Overland Flow and on Soil Erosion under Simulated Rainfall Intensity

Authors: H. Madi, L. Mouzai, M. Bouhadef

Abstract:

The purpose of this article is to study the effects of plants cover on overland flow and, therefore, its influences on the amount of eroded and transported soil. In this investigation, all the experiments were conducted in the LEGHYD laboratory using a rainfall simulator and a soil tray. The experiments were conducted using an experimental plot (soil tray) which is 2m long, 0.5 m wide and 0.15 m deep. The soil used is an agricultural sandy soil (62,08% coarse sand, 19,14% fine sand, 11,57% silt and 7,21% clay). Plastic rods (4 mm in diameter) were used to simulate the plants at different densities: 0 stem/m2 (bared soil), 126 stems/m², 203 stems/m², 461 stems/m² and 2500 stems/m²). The used rainfall intensity is 73mm/h and the soil tray slope is fixed to 3°. The results have shown that the overland flow velocities decreased with increasing stems density, and the density cover has a great effect on sediment concentration. Darcy–Weisbach and Manning friction coefficients of overland flow increased when the stems density increased. Froude and Reynolds numbers decreased with increasing stems density and, consequently, the flow regime of all treatments was laminar and subcritical. From these findings, we conclude that increasing the plants cover can efficiently reduce soil loss and avoid denuding the roots plants.

Keywords: Soil erosion, vegetation, stems density, overland flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3080
1335 Evaluation of Hand Grip Strength and EMG Signal on Visual Reaction

Authors: Sung-Wook Shin, Sung-Taek Chung

Abstract:

Hand grip strength has been utilized as an indicator to evaluate the motor ability of hands, responsible for performing multiple body functions. It is, however, difficult to evaluate other factors (other than hand muscular strength) utilizing the hand grip strength only. In this study, we analyzed the motor ability of hands using EMG and the hand grip strength, simultaneously in order to evaluate concentration, muscular strength reaction time, instantaneous muscular strength change, and agility in response to visual reaction. In results, the average time (and their standard deviations) of muscular strength reaction EMG signal and hand grip strength was found to be 209.6 ± 56.2 ms and 354.3 ± 54.6 ms, respectively. In addition, the onset time which represents acceleration time to reach 90% of maximum hand grip strength, was 382.9 ± 129.9 ms.

Keywords: Hand grip strength, EMG, visual reaction, endurance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2947
1334 Effect of Waste Bottle Chips on Strength Parameters of Silty Soil

Authors: Seyed Abolhasan Naeini, Hamidreza Rahmani

Abstract:

Laboratory consolidated undrained triaxial (CU) tests were carried out to study the strength behavior of silty soil reinforced with randomly plastic waste bottle chips. Specimens mixed with plastic waste chips in triaxial compression tests with 0.25, 0.50, 0.75, 1.0, and 1.25% by dry weight of soil and tree different length including 4, 8, and 12 mm. In all of the samples, the width and thickness of plastic chips were kept constant. According to the results, the amount and size of plastic waste bottle chips played an important role in the increasing of the strength parameters of reinforced silt compared to the pure soil. Because of good results, the suggested method of soil improvement can be used in many engineering problems such as increasing the bearing capacity and settlement reduction in foundations.

Keywords: Soil improvement, waste bottle chips, reinforcement, silt, Triaxial test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
1333 Topochemical Synthesis of Epitaxial Silicon Carbide on Silicon

Authors: Andrey V. Osipov, Sergey A. Kukushkin, Andrey V. Luk’yanov

Abstract:

A method is developed for the solid-phase synthesis of epitaxial layers when the substrate itself is involved into a topochemical reaction and the reaction product grows in the interior of substrate layer. It opens up new possibilities for the relaxation of the elastic energy due to the attraction of point defects formed during the topochemical reaction in anisotropic media. The presented method of silicon carbide (SiC) formation employs a topochemical reaction between the single-crystalline silicon (Si) substrate and gaseous carbon monoxide (CO). The corresponding theory of interaction of point dilatation centers in anisotropic crystals is developed. It is eliminated that the most advantageous location of the point defects is the direction (111) in crystals with cubic symmetry. The single-crystal SiC films with the thickness up to 200 nm have been grown on Si (111) substrates owing to the topochemical reaction with CO. Grown high-quality single-crystal SiC films do not contain misfit dislocations despite the huge lattice mismatch value of ~20%. Also the possibility of growing of thick wide-gap semiconductor films on these templates SiC/Si(111) and, accordingly, its integration into Si electronics, is demonstrated. Finally, the ab initio theory of SiC formation due to the topochemical reaction has been developed.

Keywords: Epitaxy, silicon carbide, topochemical reaction, wide-bandgap semiconductors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036
1332 The Utilisation of Two Types of Fly Ashes Used as Cement Replacement in Soft Soil Stabilisation

Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock, E. Loffill

Abstract:

This study represents the results of an experimental work using two types of fly ashes as a cement replacement in soft soil stabilisation. The fly ashes (FA1 and FA2) used in this study are by-products resulting from an incineration processes between 800 and 1200 ˚C. The stabilised soil in this study was an intermediate plasticity silty clayey soil with medium organic matter content. The experimental works were initially conducted on soil treated with different percentages of FA1 (0, 3, 6, 9, 12, and 15%) to identify the optimum FA1 content. Then FA1 was chemically activated by FA2 which has high alkalinity by blending the optimum content of FA1 with different portions of FA2. The improvement levels were evaluated dependent on the results obtained from consistency limits and compaction tests along with the results of unconfined compressive strength (UCS) tests which were conducted on specimens of soil treated with FA1 and FA2 and exposed to different periods of curing (zero, 7, 14, and 28 days). The results indicated that the FA1 and FA2 used in this study effectively improved the physical and geotechnical properties of the soft soil where the index of plasticity (IP) was decreased significantly from 21 to 13.17 with 12% of FA1; however, there was a slight increase in IP with the use of FA2. Meanwhile, 12% of FA1 was identified as the optimum percentage improving the UCS of stabilised soil significantly. Furthermore, FA2 was found effective as a chemical activator to FA1 where the UCS was improved significantly after using FA2.

Keywords: Soft soil stabilisation, waste materials, unconfined compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322
1331 Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil

Authors: M. A. Stoian, D. M. Cocarta, A. Badea

Abstract:

The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kgd.w.), while the second one was highly contaminated (TPH in soil was 24306 mg/kgd.w.). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), ChromiumVI (CrVI), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kgd.w; As in Site 2 = 11.62 mg/kgd.w, Cd in Site 1 = 0.9 mg/kgd.w; Cd in Site 2 = 1 mg/kgd.w; CrVI was 0.1 mg/kgd.w for both sites; Ni in Site 1 = 37.00 mg/kgd.w; Ni in Site 2 = 42.46 mg/kgd.w; Pb in Site 1 = 34.67 mg/kgd.w; Pb in Site 2 = 120.44 mg/kgd.w. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10-6, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10-5 compared with 8.61×10-6

Keywords: Carcinogenic risk, heavy metals, human health risk assessment, soil pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
1330 Effects of Sole and Integrated Application of Cocoa Pod Ash and Poultry Manure on Soil Properties and Leaf Nutrient Composition and Performance of White Yam

Authors: T. M. Agbede, A. O. Adekiya

Abstract:

Field experiments were conducted during 2013, 2014 and 2015 cropping seasons at Rufus Giwa Polytechnic, Owo, Ondo State, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of yam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 20 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control). The five treatments were arranged in a randomized complete block design with three replications. The test soil was slightly acidic, low in organic carbon (OC), N, P, K, Ca and Mg. Results showed that soil amendments significantly increased (p = 0.05) tuber weights and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and OC concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased tuber weights of yam by 36%, compared with inorganic fertilizer (NPK) and 19%, compared with PM alone. Sole PM increased tuber weight of yam by 15%, compared with NPK. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties, nutrient availability, compared with NPK and the NSF (control). Integrated application of CPA at 10 t ha-1 + PM at 10 t ha-1 was the most effective treatment in improving soil physical properties, increasing nutrient availability and yam performance than sole application of any of the fertilizer materials.

Keywords: Cocoa pod ash, leaf nutrient composition, poultry manure, soil properties, yam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
1329 The Effect of Forest Fires on Physical Properties and Magnetic Susceptibility of Semi-Arid Soils in North-Eastern, Libya

Authors: G. S. Eldiabani, W. H. G. Hale, C. P. Heron

Abstract:

Forest areas are particularly susceptible to fires, which are often manmade. One of the most fire affected forest regions in the world is the Mediterranean. Libya, in the Mediterranean region, has soils that are considered to be arid except in a small area called Aljabal Alakhdar (Green mountain), which is the geographic area covered by this study. Like other forests in the Mediterranean it has suffered extreme degradation. This is mainly due to people removing fire wood, or sometimes converting forested areas to agricultural use, as well as fires which may alter several soil chemical and physical properties. The purpose of this study was to evaluate the effects of fires on the physical properties of soil of Aljabal Alakhdar forest in the north-east of Libya. The physical properties of soil following fire in two geographic areas have been determined, with those subjected to the fire compared to those in adjacent unburned areas in one coastal and one mountain site. Physical properties studied were: soil particle size (soil texture), soil water content, soil porosity and soil particle density. For the first time in Libyan soils, the effect of burning on the magnetic susceptibility properties of soils was also tested. The results showed that the soils in both study sites, irrespective of burning or depth fell into the category of a silt loam texture, low water content, homogeneity of porosity of the soil profiles, relatively high soil particle density values and there is a much greater value of the soil magnetic susceptibility in the top layer from both sites except for the soil water content and magnetic susceptibility, fire has not had a clear effect on the soils’ physical properties.

Keywords: Aljabal Alakhdar, the coastal site, the mountain site, fire effect, soil particle size, soil water content, soil porosity, soil particle density, soil magnetic susceptibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2605
1328 Wetting-Drying Cycles Effect on Piles Embedded in a Very High Expansive Soil

Authors: Bushra Suhale Al-Busoda, Laith Kadim Al-Anbarry

Abstract:

The behavior of model piles embedded in a very high expansive soil was investigated, a specially manufactured saturation-drying tank was used to apply three cycles of wetting and drying to the expansive soil surrounding the model straight shaft and under reamed piles, the relative movement of the piles with respect to the soil surface was recorded with time, also the exerted uplift pressure of the piles due to soil swelling was recorded. The behavior of unloaded straight shaft and under reamed piles was investigated. Two design charts were presented for straight shaft and under reamed piles one for the required pile depth for zero upward movement due to soil swelling, while the other for the required pile depth to exert zero uplift pressure when the soil swells. Under reamed piles showed a decrease in upward movement of 20% to 30%, and an uplift pressure decrease of 10% to 30%.

Keywords: Expansive Soil, Piles, under reamed, wetting drying cycles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2512
1327 Dynamic Soil Structure Interaction in Buildings

Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar

Abstract:

Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.

Keywords: Soil-structure interaction, response-spectrum analysis, finite element method, multi-storey buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
1326 Methanation Catalyst for Low CO Concentration

Authors: Hong-fang Ma, Cong-yi He, Hai-tao Zhang, Wei-yong Ying, Ding-ye Fang

Abstract:

A Ni-based catalyst supported by γ-Al2O3 was prepared by impregnation method, and the catalyst was used in a low CO and CO2 concentration methanation system. The effect of temperature, pressure and space velocity on the methanation reaction was investigated in an experimental fixed-bed reactor. The methanation reaction was operated at the conditions of 190-240°C, 3000-24000ml•g-1•h-1 and 1.5-3.5MPa. The results show that temperature and space velocity play important role on the reaction. With the increase of reaction temperature the CO and CO2 conversion increase and the selectivity of CH4 increase. And with the increase of the space velocity the conversion of CO and CO2 and the selectivity of CH4 decrease sharply.

Keywords: Coke oven gas, methanation, catalyst, fixed-bed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3225
1325 The Effect of Soil Surface Slope on Splash Distribution under Water Drop Impact

Authors: H. Aissa, L. Mouzai, M. Bouhadef

Abstract:

The effects of down slope steepness on soil splash distribution under a water drop impact have been investigated in this study. The equipment used are the burette to simulate a water drop, a splash cup filled with sandy soil which forms the source area and a splash board to collect the ejected particles. The results found in this study have shown that the apparent mass increased with increasing downslope angle following a linear regression equation with high coefficient of determination. In the same way, the radial soil splash distribution over the distance has been analyzed statistically, and an exponential function was the best fit of the relationship for the different slope angles. The curves and the regressions equations validate the well known FSDF and extend the theory of Van Dijk.

Keywords: Splash distribution, water drop, slope steepness, soil detachment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
1324 Construction Technology of Modified Vacuum Pre-Loading Method for Slurry Dredged Soil

Authors: Ali H. Mahfouz, Gao Ming-Jun, Mohamad Sharif

Abstract:

Slurry dredged soil at coastal area has a high water content, poor permeability, and low surface intensity. Hence, it is infeasible to use vacuum preloading method to treat this type of soil foundation. For the special case of super soft ground, a floating bridge is first constructed on muddy soil and used as a service road and platform for implementing the modified vacuum preloading method. The modified technique of vacuum preloading and its construction process for the super soft soil foundation improvement is then studied. Application of modified vacuum preloading method shows that the technology and its construction process are highly suitable for improving the super soft soil foundation in coastal areas.

Keywords: Super soft foundation, dredger fill, vacuum preloading, foundation treatment, construction technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
1323 Combined Microwaves and Microreactors Plant

Authors: Shigenori Togashi, Mitsuhiro Matsuzawa

Abstract:

A pilot plant for continuous flow microwave-assisted chemical reaction combined with microreactors was developed and water heating tests were conducted for evaluation of the developed plant. We developed a microwave apparatus having a single microwave generator that can heat reaction solutions in four reaction fields simultaneously in order to increase throughput. We also designed a four-branch waveguide using electromagnetic simulation, and found that the transmission efficiency at 99%. Finally, we developed the pilot plant using the developed microwave apparatus and conducted water heating tests. The temperatures in the respective reaction fields were controlled within ±1.1 K at 353.2 K. Moreover, the energy absorption rates by the water were about 90% in the respective reaction fields, whereas the energy absorption rate was about 40% when 100 cm3 of water was heated by a commercially available multimode microwave chemical reactor.

Keywords: Microwave, Microreactor, Heating, Electromagnetic Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720